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The supplementary materials provide more details about the analysis process and
describe additional analyses that were conducted in order to support the results shown
in the text. There is information on the procedures that were used to clean up the dataset
(Table S1, Figure S1), the evaluation of clinical characteristics (Figure S2), a summary of
the odds ratios of clinical characteristics (Table S2), more information on modeling based
on machine learning (Table S3-6, Figure S3&S54, Figure S5), and appendix materials re-
garding parameter tuning (Figure S6). The F-score was also calculated to overcome the
possible inadequacy of accuracy as a metric in the final fetal feature-free models (Table
S6).

1. Dataset Tidying

Different with the data frame containing only the maternal characteristics in the man-
uscript, we included the clinical characteristics of both the mother and the fetus. Before
the analyses, we performed the imputation to the missing values instead of simple dele-
tion. The missing data plot shows the distribution of non-available (NA) data (Figure S1).
The completed observations are 1057 while the rest 591 have different degree of deficiency
in the features. The total NAs count on 9.14% percent (NAs to total cells) of the full data
frame, which is perfectly less than the threshold of 10 percent for data imputation. The
comparison of the data before and after imputation was showed in Table S1, with respect
to the feature types. No difference was shown between them.
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Observed and Missing Data

Missi

Figure S1. Overview of missing data in original data. Columns represent clinical characteristics.
Rows indicate the missing characteristics and the corresponding number of individuals. Pink grids
represent missing values while blue grids represent observed values.

Table S1. S. Comparison of imputation for factor type features before and after. continued.

Imputation
Features Miljslli:gl):;a(;lfles Before After
Count of Factors Count of Factors
preeclamp 0 0:1613,1: 35 0:1613,1:35
nn_Sex 3 1: 878, 2: 767 1: 879, 2: 769
primidelv 2 0:922,1:724 0:924,1:724
obese 29 0: 1476, 1: 143 0: 1505, 1: 143
genot681_C 479 11: 698, 12: 419, 22: 52 11: 1175, 12: 420, 22: 53
genot681_M 0 11:997,12:577,22: 74 11:997,12: 577, 22: 74
genotpl2a_C 472 11: 946, 12: 219, 22: 11 11: 1418, 12: 219, 22: 11
genotpl2a M 0 11: 1323, 12: 309, 22: 16 11: 1323, 12: 309, 22: 16
genot1431_C 489 11: 880, 12: 264, 22: 15 11: 1369, 12: 264, 22: 15
genot1431_M 0 11: 1292, 12: 340, 22: 16 11: 1292, 12: 340, 22: 16
carrier681_M 0 0:997, 1: 651 0:997, 1: 651
carrierl2a_ M 0 0: 1323, 1: 325 0: 1323, 1: 325
carrier1431_M 0 0: 1292, 1: 356 0: 1292, 1: 356
carrier681_C 522 0: 666, 1: 460 0:1175,1:473
carrierl2a_C 522 0: 906, 1: 220 0: 1418, 1: 230
carrier1431_C 522 0:854,1:272 0: 1369, 1: 279

Table S2. Comparison of imputation for numeric type features before and after.

I :
Number of mputation
.. Before After
Missing Values
Mean sd Mean sd
c24_Height 17 163.46 6.23 163.46 6.20
c24_edu 29 6.54 2.48 6.53 2.47
ob_Nbpreg 0 1.35 1.49 1.35 1.49

ob_Nbdelv 2 0.83 0.97 0.83 0.97
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bmi 29 23.27 4.63 23.26 4.60
age_delv 1 29.55 4.86 29.55 4.86
nbcig 56 1.47 3.44 1.48 3.39

2. Evaluation of Clinical Characteristics

With the imputed data, we evaluated the features (clinical characteristics) using prin-
cipal component analysis (PCA) and logistic regression. Firstly, the correlation was ex-
plored for all the features, which shows the strong correlation of the number of deliveries
and number of pregnancies and medium correlation among the polymorphisms (Figure
S2A). Secondly, the weightiness of features was analyzed by the PCA with the pre-ranked
features counting about 30% in first and second dimensions, which shows the considera-
ble importance of genetic features (Figure S2B). However, the low total proportion indi-
cates the difficulties in representing individuals by only several features, which was con-
firmed by the overlapped distribution of individuals between groups through PCA and
t-SNE analyses (Figure S2C&S2D). Additionally, the distribution of balanced individuals
by t-SNE in the first dimensions was shown to compare with the original, which indicated
the general similar distribution of data points. Table S2 presents the log odds ratio of ma-
ternal and fetal clinical characteristics of the control and preeclampsia groups. The value
of the 95% confidence interval odds ratio value for the characteristics were also calculated.
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Figure S2. Evaluation of clinical characteristics. (A) The matrix of correlation coefficient for all the
characteristics. The factorial characteristics were transformed to numerical types, accompanied by
adding 0.1 to all the data in order to facilitate the calculation without 0. (B) A principal component
analysis with factor analysis of mixed data (FAMD) for all the characteristics with detailed compo-
nent proportions shown in the right. The first and second dimensions were chosen to draw the
graph with colors presenting the contribution. (C) Distribution of individuals by FAMD. (D) Distri-
bution of individuals by t-SNE in the dimensions before balancing. (E) Distribution of individuals
by t-SNE in the dimensions after balancing.

Table S3. Summary of odds ratio.

Log.OR Std.Error  95% CI of Log.OR 95% CIof OR P value

(Intercept) ~ -7.45 133 (-10.08, -4.85) (0.00004, 0.0078)  2.33E-08
24 Height  0.033  0.0075 (0.018, 0.047) (1.02,1.05)  1.44E-05
24 edu  -0.079  0.020 (-0.12, -0.04) (0.89,0.96)  6.18E-05
ob_Nbpreg 033  0.054 (0.22, 0.43) (1.25,154)  1.00E-09
ob_Nbdely  -045  0.12 (-0.70, -0.22) (0.50,0.80)  0.000191
nn_Sex -046  0.094 (-0.65, -0.28) (0.52,0.76)  9.84E-07
bmi 0.085  0.014 (0.058, 0.11) (1.06,1.12)  1.66E-09
age_delv ~ -0.014  0.011 (-0.034, 0.0072) 0.97,1.01)  0.201581
primidelv ~ 0.77 0.17 (0.45,1.10) (1.56,3.00)  3.03E-06
nbcig -0.071  0.016 (-0.10, -0.039) (0.90,0.96)  1.36E-05
obese 0085 021 (-0.33, 0.50) 0.72,1.65)  0.686189
carrier681_ M -0.76  0.14 (-1.05, -0.49) (0.35,0.62)  9.41E-08
carrierl2a M -0.29  0.18 (-0.65, 0.069) (0.52,1.07)  0.114834
carrierl431_ M 1.87 0.15 (1.59, 2.17) (4.90,8.75)  1.07E-36
carrier681_C  0.47 0.15 (0.18, 0.76) (1.20,2.15)  0.001383
carrierl2a C  0.57 0.21 (0.16, 0.98) (1.18,2.65)  0.006159
carrierl431_ C -1.69  0.19 (-2.07, -1.31) (0.13,0.27)  2.15E-18

3. Modeling Based on Machine Learning
3.1. Overview of Maternal and Fetal Clinical Characteristics in Training and Testing Sets

With the selected features, we divided the dataset into two parts, training set and
testing set. The clinical characteristics of the original dataset and the split dataset were
shown in Table S3, with respect to the feature types. The proportion of the factors in each
factor features is equal in total, training and testing set, as same as the mean and standard
deviation of the numeric features. In order to obtain the optimal performance of each
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model, the arguments of each model were tuned and the optimal combination was se-
lected according to the highest AUC value. The combination of arguments and their per-
formances were shown in Figure S6 in the appendix.

Table S3. Clinical characteristics for different data set related to factor features. continued.

Number Total Train Test
Factor of
Features Count of Factors Count of Factors Count of Factors
Factors
nn_Sex 2 1: 879, 2: 769 1: 660, 2: 576 1: 220, 2: 192
primidelv 2 0:924,1:724 0:713,1:523 0:211, 1: 201
preeclamp 2 0:1613,1: 35 0:1211, 1: 25 0:402,1:10
11: 1175, 12: 420, 22:
genot681_C 3 > =3 0 11: 875, 12: 324, 22: 37 11: 300, 12: 97, 22: 15
11: 997, 12: 577, 22: 11: 244, 12: 157, 22:
genot681_M 3 74 11: 753, 12: 420, 22: 63 1
11:1 12: 264, 22: 11:1027,12: 196, 22:
genot1431_C 3 369, 15 o4, 0 '13 %, 11: 342, 12: 68, 22: 2
11: 1292, 12: 340, 22:
genot1431_M 16 11:973,12: 250, 22: 13 11: 319, 12: 90, 22: 3
obese 2 0: 1505, 1: 143 0:1120, 1: 116 0:384, 1: 28

Table S3. Clinical characteristics for different data set related to numeric features.

Numeric Total Train Test
Features
Mean sd Mean sd Mean sd
24_edu 6.53 247 6.50 248 6.59 2.43
ob_Nbpreg 1.35 1.49 1.42 1.54 1.15 1.32
bmi 23.26 4.60 23.40 4.67 22.93 4.43
nbcig 1.48 3.39 1.57 3.49 1.24 3.07

3.2. Modeling with or without Oversampling in Dataset

To exclude the possibility of overfit in our models, different approaches were used
to preprocess our dataset. Firstly, the original dataset was split into training set and testing
set directly as shown in Table S3, followed by the model building with training set solely
and validation in testing set. The result showed the most outstanding model remained the
boost tree with the accuracy and AUC value being 0.99 and 0.92 in training set, and 0.98
and 0.77 in testing set (Table 54 & Figure S3). However, considering that the imbalance of
positive cases (37) and negative cases (1611) in our dataset would affect the accuracy of
the models, we secondly balanced the training set by oversampling the positive cases,
followed by the validation in testing set, as shown in the manuscript (Table 3 & Figure 4).
Lastly, we balanced the original dataset before splitting into training set and testing set.
The optimal model remained the boost tree with the accuracy and AUC value being 0.957
and 0.990 in training set, and 0.975 and 0.996 in testing set (Table S5 & Figure 54). Herein,
we speculated the existence of overfit in the model owing to the internal relationship be-
tween the training set and the testing set that resulted from the data simulation.
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Table S4. Prediction of the 8 Models by ML Analysis (without balancing).

Train Test

Accuracy AUC Accuracy AUC

Elastic Net Regression 0.98 0.70 0.98 0.76
Random Forest 0.99 0.84 0.98 0.73
Support Vector Machine 0.99 0.89 0.98 0.66
Decision Tree 0.98 0.82 0.97 0.54
K-Nearest Neighbor 0.97 0.66 0.95 0.51
Naive Bayes 0.99 0.74 0.97 0.63
Boost Tree 0.99 0.92 0.98 0.77
Multilayer Perceptron 0.98 0.82 0.95 0.55

AUC, area under the receiver operating characteristic curve.

ROC Curve_Train ROC Curve_Test
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— DT(AUC=0.822)— KNN(AUC=0.657)  NB(AUC=0.741) — SVM(AUC=0.887) — DT(AUC=0.536) —MLP(AUC=0.552)  NB(AUC=0.631) — SVM(AUC=0.663)

Figure S3. ROC curve of different algorithms. (A) ROC curves with training set. (B) ROC curves
with testing set. The values were shown in the legends. AUC: area under the receiver operating
characteristic curve; BT: boost tree; DT: decision tree; ENR: elastic net regression; KNN: k-nearest
neighbor; MLP: multilayer perceptron; NB: naive bayes; RF: random forest; SVM: support vector
machine; ROC: receiver operating characteristic.

Table S5. Prediction of the 8 Models by ML Analysis (with total balancing before split).

Train Test
Accuracy AUC Accuracy AUC
Elastic Net Regression 0.721 0.761 0.705 0.735
Random Forest 0.911 0.966 0.913 0.973
Support Vector Machine 0.783 0.864 0.743 0.807
Decision Tree 0.863 0.926 0.819 0.892
K-Nearest Neighbor 0.830 0.901 0.772 0.876
Naive Bayes 0.687 0.770 0.702 0.787
Boost Tree 0.957 0.990 0.975 0.996
Multilayer Perceptron 0.863 0.926 0.735 0.800

AUC, area under the receiver operating characteristic curve.
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Figure S4. ROC curve of different algorithms. (A) ROC curves with training set. (B) ROC curves
with testing set. The values were shown in the legends. AUC: area under the receiver operating
characteristic curve; BT: boost tree; DT: decision tree; ENR: elastic net regression; KNN: k—nearest
neighbor; MLP: multilayer perceptron; NB: naive bayes; RF: random forest; SVM: support vector
machine; ROC: receiver operating characteristic.

3.3. Modeling with or without Fetal Characteristics in Dataset

Furthermore, considering the difficult clinical situation in collecting fetal genotype
than that of the maternal, we thus excluded the fetal features (fetal genotypes and sex) in
the predictive model. We manually excluded the fetal features (fetal genotypes and sex)
for the following predictive models for two reasons. First, to facilitate the prediction since
the fetal genotype is not easily accessible as that of the maternal one; Second, to bring
forward the time of preeclampsia evaluation without the limitation of fetal features, we
compared the models with and without fetal features. The results showed that fetal-fea-
ture—free models generally had better accuracy and AUC values than models with fetal
features, either in balanced dataset or non-balanced dataset (Figure S5). Therefore, the
final included features for the model building included the maternal carrying of C681G
and C1341T, obesity, BMI, number of pregnancies, primary delivery, number of cigarettes,
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and education. The F-score was also calculated to overcome the possible inadequacy of
accuracy as a metric in the final fetal feature-free models (Table S6).
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Figure S5. ROC curve of different algorithms before and after balancing in fetal-feature-includ-
ing models. (A&B) ROC curves with training set and testing set without balancing. (C&D) ROC
curves with training set balanced only. (E&F) ROC curves with training set and testing set both
balanced. The values were shown in the legends. AUC: area under the receiver operating character-
istic curve; BT: boost tree; DT: decision tree; ENR: elastic net regression; KNN: k—nearest neighbor;
MLP: multilayer perceptron; NB: naive bayes; RF: random forest; SVM: support vector machine;
ROC: receiver operating characteristic.
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Table S6. F-scores of fetal feature—free models.

Train Test

Elastic Net Regression 0.768 0.922
Random Forest 0.997 0.945
Support Vector Machine 0.846 0.925
Decision Tree 0.945 0.933
K-Nearest Neighbor 0.998 0.888
Naive Bayes 0.808 0.963
Boost Tree 0.990 0.975
Multilayer Perceptron 0.853 0.894

3.4. Modeling with Undersampling Method

Besides, even though appropriate algorithm has been used to deal with the imbalance
of positive and negative cases, the difference between simulation and real cases may sub-
tly influence the model performance. Considering to figure out the effects of balancing on
modeling, we thus further undersampled the balanced training set and validated the mod-
els on testing set. The undersample training set contained 242 negative and 145 positive
cases. The optimal model remained the boost tree with the accuracy and AUC value being
0.817 and 0.889 in training set, and 0.891 and 0.672 in testing set, which was slightly dif-
ferent with the result from non-undersampled dataset (Table and figure not shown).

4. Argument tuning
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Figure S6. Argument tuning of models. We chose 8 widely used machine learning algorithms (elastic net regression,
support vector machine, random forest, boost tree, decision tree, k-nearest neighbor, naive Bayes, and multilayer percep-
tron) to test models in training set, along with argument tuning using the maximum entropy design with 1000 candidate
values. These graphs show the grid research of the optimal combination of arguments from different algorithms. The area
under the receiver operating characteristic curve (AUC) values were used to evaluate the performance of models, with the

best being filtered.



