Shift in Conformational Equilibrium Underlies the Oscillatory Phosphoryl Transfer Reaction in the Circadian Clock
Abstract
:1. Introduction
2. Materials and Methods
Phosphorylation Assay of the Circadian Clock In Vitro
3. Results
3.1. Breaking H-bonds between the A-loops Induces the KaiC Phosphorylation
3.2. The KaiC Dephosphorylation Was Enhanced in High Mg2+ Concentration
3.3. Decreasing Adenosine Triphosphate (ATP) Ratio Enhanced the KaiC Dephosphorylation
3.4. KaiB Attenuates the Phosphorylation Activated by Breaking the H-bonds in A-loop
3.5. CII Flexibility Governs the Damped Oscillatory Phosphorylation in KaiCE488A
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lea-Smith, D.J.; Bombelli, P.; Vasudevan, R.; Howe, C.J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta 2016, 1857, 247–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, V.; Garg, N.; Madamwar, D. An integrated process of textile dye removal and hydrogen evolution using cyanobacterium, Phormidium valderianum. World J. Microbiol. Biotechnol. 2001, 17, 499–504. [Google Scholar] [CrossRef]
- Nozzi, N.; Oliver, J.; Atsumi, S. Cyanobacteria as a Platform for Biofuel Production. Front. Bioeng. Biotechnol. 2013, 1, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducat, D.C.; Way, J.C.; Silver, P.A. Engineering cyanobacteria to generate high-value products. Trends Biotechnol. 2011, 29, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Kasting, J.F.; Siefert, J.L. Life and the evolution of Earth’s atmosphere. Science 2002, 296, 1066–1068. [Google Scholar] [CrossRef] [Green Version]
- Diamond, S.; Rubin, B.E.; Shultzaberger, R.K.; Chen, Y.; Barber, C.D.; Golden, S.S. Redox crisis underlies conditional light-dark lethality in cyanobacterial mutants that lack the circadian regulator, RpaA. Proc. Natl. Acad. Sci. USA 2017, 114, E580–E589. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Mutsuda, M.; Murayama, Y.; Tomita, J.; Hosokawa, N.; Terauchi, K.; Sugita, C.; Sugita, M.; Kondo, T.; Iwasaki, H. Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. Proc. Natl. Acad. Sci. USA 2009, 106, 14168–14173. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, V.; Zuzow, R.; O’Shea, E.K. Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc. Natl. Acad. Sci. USA 2009, 106, 22564–22568. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Y.; Andersson, C.R.; Kondo, T.; Golden, S.S.; Johnson, C.H. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl. Acad. Sci. USA 1998, 95, 8660–8664. [Google Scholar] [CrossRef] [Green Version]
- Ishiura, M.; Kutsuna, S.; Aoki, S.; Iwasaki, H.; Andersson, C.R.; Tanabe, A.; Golden, S.S.; Johnson, C.H.; Kondo, T. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 1998, 281, 1519–1523. [Google Scholar] [CrossRef]
- Williams, S.B.; Vakonakis, I.; Golden, S.S.; LiWang, A.C. Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: A potential clock input mechanism. Proc. Natl. Acad. Sci. USA 2002, 99, 15357–15362. [Google Scholar] [CrossRef] [Green Version]
- Vakonakis, I.; LiWang, A.C. Structure of the C-terminal domain of the clock protein KaiA in complex with a KaiC-derived peptide: Implications for KaiC regulation. Proc. Natl. Acad. Sci. USA 2004, 101, 10925–10930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.I.; Dong, G.; Carruthers, C.W., Jr.; Golden, S.S.; LiWang, A. The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria. Proc. Natl. Acad. Sci. USA 2008, 105, 12825–12830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, Y.M.; Dias, C.; Diekman, C.; Brochon, H.; Kim, P.; Kaur, M.; Kim, Y.S.; Jang, H.I.; Kim, Y.I. Magnesium Regulates the Circadian Oscillator in Cyanobacteria. J. Biol. Rhythm. 2019, 34, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Egli, M.; Mori, T.; Pattanayek, R.; Xu, Y.; Qin, X.; Johnson, C.H. Dephosphorylation of the core clock protein KaiC in the cyanobacterial KaiABC circadian oscillator proceeds via an ATP synthase mechanism. Biochemistry 2012, 51, 1547–1558. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.G.; Cohen, S.E.; Phong, C.; Myers, W.K.; Kim, Y.I.; Tseng, R.; Lin, J.; Zhang, L.; Boyd, J.S.; Lee, Y.; et al. Circadian rhythms. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria. Science 2015, 349, 324–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, M.; Imai, K.; Ito, H.; Nishiwaki, T.; Murayama, Y.; Iwasaki, H.; Oyama, T.; Kondo, T. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 2005, 308, 414–415. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.I.; Boyd, J.S.; Espinosa, J.; Golden, S.S. Detecting KaiC phosphorylation rhythms of the cyanobacterial circadian oscillator in vitro and in vivo. Methods Enzymol. 2015, 551, 153–173. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.; Kaszuba, A.; Jang, H.I.; Kim, Y.I. Purification of GST-Fused Cyanobacterial Central Oscillator Protein KaiC. Appl. Biochem. Microbiol. 2020, 56, 395–399. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Tseng, R.; Chang, Y.G.; Bravo, I.; Latham, R.; Chaudhary, A.; Kuo, N.W.; Liwang, A. Cooperative KaiA-KaiB-KaiC interactions affect KaiB/SasA competition in the circadian clock of cyanobacteria. J. Mol. Biol. 2014, 426, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Egli, M.; Pattanayek, R.; Sheehan, J.H.; Xu, Y.; Mori, T.; Smith, J.A.; Johnson, C.H. Loop-loop interactions regulate KaiA-stimulated KaiC phosphorylation in the cyanobacterial KaiABC circadian clock. Biochemistry 2013, 52, 1208–1220. [Google Scholar] [CrossRef]
- Pattanayek, R.; Wang, J.; Mori, T.; Xu, Y.; Johnson, C.H.; Egli, M. Visualizing a circadian clock protein: Crystal structure of KaiC and functional insights. Mol. Cell 2004, 15, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Rust, M.J.; Golden, S.S.; O’Shea, E.K. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 2011, 331, 220–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiwaki, T.; Kondo, T. Circadian autodephosphorylation of cyanobacterial clock protein KaiC occurs via formation of ATP as intermediate. J. Biol. Chem. 2012, 287, 18030–18035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, X.; Byrne, M.; Mori, T.; Zou, P.; Williams, D.R.; McHaourab, H.; Johnson, C.H. Intermolecular associations determine the dynamics of the circadian KaiABC oscillator. Proc. Natl. Acad. Sci. USA 2010, 107, 14805–14810. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-G.; Kuo, N.-W.; Tseng, R.; LiWang, A. Flexibility of the C-terminal, or CII, ring of KaiC governs the rhythm of the circadian clock of cyanobacteria. Proc. Natl. Acad. Sci. USA 2011, 108, 14431–14436. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Lavrentovich, D.O.; Chavan, A.; Leypunskiy, E.; Li, E.; Matthews, C.; LiWang, A.; Rust, M.J.; Dinner, A.R. Bayesian modeling reveals metabolite-dependent ultrasensitivity in the cyanobacterial circadian clock. Mol. Syst. Biol. 2020, 16, e9355. [Google Scholar] [CrossRef]
- Nakajima, M.; Ito, H.; Kondo, T. In vitro regulation of circadian phosphorylation rhythm of cyanobacterial clock protein KaiC by KaiA and KaiB. FEBS Lett. 2010, 584, 898–902. [Google Scholar] [CrossRef] [Green Version]
- Nishiwaki, T.; Satomi, Y.; Kitayama, Y.; Terauchi, K.; Kiyohara, R.; Takao, T.; Kondo, T. A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. EMBO J. 2007, 26, 4029–4037. [Google Scholar] [CrossRef] [Green Version]
- Rust, M.J.; Markson, J.S.; Lane, W.S.; Fisher, D.S.; O’Shea, E.K. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 2007, 318, 809–812. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-G.; Tseng, R.; Kuo, N.-W.; LiWang, A. Rhythmic ring–ring stacking drives the circadian oscillator clockwise. Proc. Natl. Acad. Sci. USA 2012, 109, 16847–16851. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Kageyama, H.; Mutsuda, M.; Nakajima, M.; Oyama, T.; Kondo, T. Autonomous synchronization of the circadian KaiC phosphorylation rhythm. Nat. Struct. Mol. Biol. 2007, 14, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Kitayama, Y.; Nishiwaki, T.; Terauchi, K.; Kondo, T. Dual KaiC-based oscillations constitute the circadian system of cyanobacteria. Genes Dev. 2008, 22, 1513–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, X.; Byrne, M.; Xu, Y.; Mori, T.; Johnson, C.H. Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system. PLoS Biol. 2010, 8, e1000394. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Sugiyama, S.; Byrne, M.; Johnson, C.H.; Uchihashi, T.; Ando, T. Revealing circadian mechanisms of integration and resilience by visualizing clock proteins working in real time. Nat. Commun. 2018, 9, 3245. [Google Scholar] [CrossRef]
- Tomita, J.; Nakajima, M.; Kondo, T.; Iwasaki, H. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 2005, 307, 251–254. [Google Scholar] [CrossRef]
- Dvornyk, V.; Vinogradova, O.; Nevo, E. Origin and evolution of circadian clock genes in prokaryotes. Proc. Natl. Acad. Sci. USA 2003, 100, 2495–2500. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.H.; Zhao, C.; Xu, Y.; Mori, T. Timing the day: What makes bacterial clocks tick? Nat. Rev. Microbiol. 2017, 15, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Pattanayek, R.; Williams, D.R.; Pattanayek, S.; Xu, Y.; Mori, T.; Johnson, C.H.; Stewart, P.L.; Egli, M. Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods. EMBO J. 2006, 25, 2017–2028. [Google Scholar] [CrossRef]
- Ma, P.; Mori, T.; Zhao, C.; Thiel, T.; Johnson, C.H. Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris. PLoS Genet. 2016, 12, e1005922. [Google Scholar] [CrossRef] [Green Version]
- Axmann, I.M.; Hertel, S.; Wiegard, A.; Dorrich, A.K.; Wilde, A. Diversity of KaiC-based timing systems in marine Cyanobacteria. Mar. Genom. 2014, 14, 3–16. [Google Scholar] [CrossRef]
- Kim, P.; Porr, B.; Mori, T.; Kim, Y.S.; Johnson, C.H.; Diekman, C.O.; Kim, Y.I. CikA, an Input Pathway Component, Senses the Oxidized Quinone Signal to Generate Phase Delays in the Cyanobacterial Circadian Clock. J. Biol. Rhythm. 2020, 35, 227–234. [Google Scholar] [CrossRef]
- Kiyohara, Y.B.; Katayama, M.; Kondo, T. A novel mutation in kaiC affects resetting of the cyanobacterial circadian clock. J. Bacteriol. 2005, 187, 2559–2564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, M.; Ng, A.; Kim, P.; Diekman, C.; Kim, Y.I. CikA Modulates the Effect of KaiA on the Period of the Circadian Oscillation in KaiC Phosphorylation. J. Biol. Rhythm. 2019, 34, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Kaur, M.; Jang, H.I.; Kim, Y.I. The Circadian Clock-A Molecular Tool for Survival in Cyanobacteria. Life 2020, 10, 365. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, P.; Thati, N.; Peshori, S.; Jang, H.-I.; Kim, Y.-I. Shift in Conformational Equilibrium Underlies the Oscillatory Phosphoryl Transfer Reaction in the Circadian Clock. Life 2021, 11, 1058. https://doi.org/10.3390/life11101058
Kim P, Thati N, Peshori S, Jang H-I, Kim Y-I. Shift in Conformational Equilibrium Underlies the Oscillatory Phosphoryl Transfer Reaction in the Circadian Clock. Life. 2021; 11(10):1058. https://doi.org/10.3390/life11101058
Chicago/Turabian StyleKim, Pyonghwa, Neha Thati, Shreya Peshori, Hye-In Jang, and Yong-Ick Kim. 2021. "Shift in Conformational Equilibrium Underlies the Oscillatory Phosphoryl Transfer Reaction in the Circadian Clock" Life 11, no. 10: 1058. https://doi.org/10.3390/life11101058
APA StyleKim, P., Thati, N., Peshori, S., Jang, H. -I., & Kim, Y. -I. (2021). Shift in Conformational Equilibrium Underlies the Oscillatory Phosphoryl Transfer Reaction in the Circadian Clock. Life, 11(10), 1058. https://doi.org/10.3390/life11101058