Pharmacological Characterization of Veldoreotide as a Somatostatin Receptor 4 Agonist
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Constructs
2.2. Cell Culture and Transfection
2.3. Drugs and Chemicals
2.4. Immunohistochemistry
2.5. Membrane Potential Assay
2.6. Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. Cell Proliferation Assay
2.8. Statistical Analysis
3. Results
3.1. SST Receptor and GIRK2 Channel Expression
3.2. Ligand-Induced Receptor Activation
3.3. Chromogranin A Secretion
3.4. Cell Proliferation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Published Materials
Acknowledgments
Conflicts of Interest
References
- Gomes-Porras, M.; Cárdenas-Salas, J.; Álvarez-Escolá, C. Somatostatin analogs in clinical practice: A review. Int. J. Mol. Sci. 2020, 21, 1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Günther, T.; Tulipano, G.; Dournaud, P.; Bousquet, C.; Csaba, Z.; Kreienkamp, H.J.; Lupp, A.; Korbonits, M.; Castaño, J.P.; Wester, H.J.; et al. International Union of Basic and Clinical Pharmacology. CV. Somatostatin receptors: Structure, function, ligands, and new nomenclature. Pharmacol. Rev. 2018, 70, 763–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalabi, M.; Duluc, C.; Caron, P.; Vezzosi, D.; Guillermet-Guibert, J.; Pyronnet, S.; Bousquet, C. Somatostatin analogs: Does pharmacology impact antitumor efficacy? Trends Endocrinol. Metab. 2014, 25, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Lesche, S.; Lehmann, D.; Nagel, F.; Schmid, H.A.; Schulz, S. Differential effects of octreotide and pasireotide on somatostatin receptor internalization and trafficking in vitro. J. Clin. Endocrinol. Metab. 2009, 94, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Bruns, C.; Lewis, I.; Briner, U.; Meno-Tetang, G.; Weckbecker, G. SOM230: A novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur. J. Endocrinol. 2002, 146, 707–716. [Google Scholar] [CrossRef]
- Afargan, M.; Janson, E.T.; Gelerman, G.; Rosenfeld, R.; Ziv, O.; Karpov, O.; Wolf, A.; Bracha, M.; Shohat, D.; Liapakis, G.; et al. Novel long-acting somatostatin analog with endocrine selectivity: Potent suppression of growth hormone but not of insulin. Endocrinology 2001, 142, 477–486. [Google Scholar] [CrossRef]
- Plöckinger, U.; Hoffmann, U.; Geese, M.; Lupp, A.; Buchfelder, M.; Flitsch, J.; Vajkoczy, P.; Jakob, W.; Saeger, W.; Schulz, S.; et al. DG3173 (somatoprim), a unique somatostatin receptor subtypes 2-, 4- and 5-selective analogue, effectively reduces GH secretion in human GH-secreting pituitary adenomas even in octreotide non-responsive tumours. Eur. J. Endocrinol. 2012, 166, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Günther, T.; Culler, M.; Schulz, S. Research resource: Real-time analysis of somatostatin and dopamine receptor signaling in pituitary cells using a fluorescence-based membrane potential assay. Mol. Endocrinol. 2016, 30, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Taniyama, Y.; Suzuki, T.; Mikami, Y.; Moriya, T.; Satomi, S.; Sasano, H. Systemic distribution of somatostatin receptor subtypes in human: An immunohistochemical study. Endocr. J. 2005, 52, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Caron, P.; Buscail, L.; Beckers, A.; Estève, J.P.; Igout, A.; Hennen, G.; Susini, C. Expression of somatostatin receptor SST4 in human placenta and absence of octreotide effect on human placental growth hormone concentration during pregnancy. J. Clin. Endocrinol. Metab. 1997, 82, 3771–3776. [Google Scholar]
- Varecza, Z.; Elekes, K.; László, T.; Perkecz, A.; Pintér, E.; Sándor, Z.; Szolcsányi, J.; Keszthelyi, D.; Szabó, Á.; Sándor, K.; et al. Expression of the somatostatin receptor subtype 4 in intact and inflamed pulmonary tissues. J. Histochem. Cytochem. 2009, 57, 1127–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talme, T.; Ivanoff, J.; Hägglund, M.; Van Neerven, R.J.J.; Ivanoff, A.; Sundqvist, K.G. Somatostatin receptor (SSTR) expression and function in normal and leukaemic T-cells. Evidence for selective effects on adhesion to extracellular matrix components via SSTR2 and/or 3. Clin. Exp. Immunol. 2001, 125, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Thoss, V.S.; Piwko, C.; Probst, A.; Hoyer, D. Audoradiographic analysis of somatostatin SRIF1 and SRIF2 receptors. Naunyn Schmiedebergs Arch. Pharmacol. 1997, 355, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Schindler, M.; Harrington, K.A.; Humphrey, P.P.A.; Emson, P.C. Cellular localisation and co-expression of somatostatin receptor messenger RNAs in the human brain. Mol. Brain Res. 1995, 34, 321–326. [Google Scholar] [CrossRef]
- Bhandari, S.; Watson, N.; Long, E.; Sharpe, S.; Zhong, W.; Xu, S.Z.; Atkin, S.L. Expression of somatostatin and somatostatin receptor subtypes 1-5 in human normal and diseased kidney. J. Histochem. Cytochem. 2008, 56, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Helyes, Z.; Pintér, E.; Sándor, K.; Elekes, K.; Bánvölgyi, A.; Keszthelyi, D.; Szőke, É.; Tóth, D.M.; Sándor, Z.; Kereskai, L.; et al. Impaired defense mechanism against inflammation, hyperalgesia, and airway hyperreactivity in somatostatin 4 receptor gene-deleted mice. Proc. Natl. Acad. Sci. USA 2009, 106, 13088–13093. [Google Scholar] [CrossRef] [Green Version]
- Somvanshi, R.K.; Kumar, U. δ-opioid receptor and somatostatin receptor-4 heterodimerization: Possible implications in modulation of pain associated signaling. PLoS ONE 2014, 9, e85193. [Google Scholar] [CrossRef]
- Park, T.S.W.; Khan, N.; Kuo, A.; Nicholson, J.R.; Corradini, L.; Smith, M.T. J-2156, a somatostatin receptor type 4 agonist, alleviates mechanical hyperalgesia in a rat model of chronic low back pain. Biomed. Pharmacother. 2019, 117, 109056. [Google Scholar] [CrossRef]
- Kántás, B.; Börzsei, R.; Szőke, É.; Bánhegyi, P.; Horváth, Á.; Hunyady, Á.; Borbély, É.; Hetényi, C.; Pintér, E.; Helyes, Z. Novel drug-like somatostatin receptor 4 agonists are potential analgesics for neuropathic pain. Int. J. Mol. Sci. 2019, 20, 6245. [Google Scholar] [CrossRef] [Green Version]
- Thodou, E.; Kontogeorgos, G.; Theodossiou, D.; Pateraki, M. Mapping of somatostatin receptor types in GH or/and PRL producing pituitary adenomas. J. Clin. Pathol. 2006, 59, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, J.; Ohnuma, K.; Hatano, R.; Okamoto, T.; Komiya, E.; Yamazaki, H.; Iwata, S.; Dang, N.H.; Aoe, K.; Kishimoto, T.; et al. Regulation of somatostatin receptor 4-mediated cytostatic effects by CD26 in malignant pleural mesothelioma. Br. J. Cancer 2014, 110, 2232–2245. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, H.; England, J.A.; Rafferty, A.; Jesudason, V.; Bedford, K.; Karsai, L.; Atkin, S.L. Somatostatin receptor expression in thyroid disease. Int. J. Exp. Pathol. 2013, 94, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Frati, A.; Rouzier, R.; Lesieur, B.; Werkoff, G.; Antoine, M.; Rodenas, A.; Darai, E.; Chereau, E. Expression of somatostatin type-2 and -4 receptor and correlation with histological type in breast cancer. Anticancer Res. 2014, 34, 3997–4003. [Google Scholar]
- Dasgupta, P.; Günther, T.; Reinscheid, R.K.; Zaveri, N.T.; Schulz, S. Rapid assessment of G protein signaling of four opioid receptors using a real-time fluorescence-based membrane potential assay. Eur. J. Pharmacol. 2021, 890, 173640. [Google Scholar] [CrossRef] [PubMed]
- Mann, A.; Moulédous, L.; Froment, C.; O’Neill, P.R.; Dasgupta, P.; Günther, T.; Brunori, G.; Keiffer, B.L.; Toll, L.; Bruchas, M.R.; et al. Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists. Sci. Signal. 2019, 12, eaau8072. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Kliewer, A.; Günther, T.; Nagel, F.; Schulz, S. Identification of phosphorylation sites regulating sst3 somatostatin receptor trafficking. Mol. Endocrinol. 2016, 30, 645–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, M.; Koch, T.; Schröder, H.; Klutzny, M.; Kirscht, S.; Kreienkamp, H.J.; Hőllt, V.; Schulz, S. Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst3 receptor function by heterodimerization with sst2A. J. Biol. Chem. 2001, 276, 14027–14036. [Google Scholar] [CrossRef] [Green Version]
- Di Giacinto, P.; Rota, F.; Rizza, L.; Campana, D.; Isidori, A.; Lania, A.; Lenzi, A.; Zuppi, P.; Baldelli, R. Chromogranin A: From laboratory to clinical aspects of patients with neuroendocrine tumors. Int. J. Endocrinol. 2018, 2018, 8126087. [Google Scholar] [CrossRef]
- Engström, M.; Tomperi, J.; El-Darwish, K.; Åhman, M.; Savola, J.M.; Wurster, S. Superagonism at the human somatostatin receptor subtype 4. J. Pharmacol. Exp. Ther. 2005, 312, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Shenoy, P.A.; Kuo, A.; Khan, N.; Gorham, L.; Nicholson, J.R.; Corradini, L.; Vetter, I.; Smith, M.T. The somatostatin receptor-4 agonist J-2156 alleviates mechanical hypersensitivity in a rat model of breast cancer induced bone pain. Front. Pharmacol. 2018, 9, 495. [Google Scholar] [CrossRef] [Green Version]
GIRK2-SST2 | GIRK2-SST4 | GIRK2-SST5 | |
---|---|---|---|
SS-14 a | |||
Emax, % | 100 ± 3.2 | 100 ± 6.8 | 100 ± 4.4 |
EC50, nM | 2.0 ± 0.9 | 5.5 ± 2.5 | 6.6 ± 1.5 |
Octreotide | |||
Emax, % | 99.0 ± 2.4 | 27.4 ± 4.7 | 92.0 ± 5.7 |
EC50, nM | 4.6 ± 0.6 | 32.8 ± 39.6 | 54.4 ± 6.6 |
Pasireotide | |||
Emax, % | 102.2 ± 2.8 | 52.0 ± 4.9 | 98.6 ± 3.9 |
EC50, nM | 83.7 ± 8.1 | 222.9 ± 115.8 | 16.5 ± 2.5 |
Veldoreotide | |||
Emax, % | 98.0 ± 2.9 | 96.9 ± 2.7 | 90.4 ± 5.2 |
EC50, nM | 37.6 ± 4.5 | 31.3 ± 14.4 | 10.5 ± 3.4 |
J-2156 | |||
Emax, % | – | 100.7 ± 5.1 | – |
EC50, nM | 1.6 ± 0.5 |
Wild Type | SST2 | SST4 | SST5 | |
---|---|---|---|---|
SS-14 a | ||||
Emax, % | 100 ± 5.5 | 100 ± 7.4 | 100 ± 4.0 | 100 ± 1.6 |
EC50, nM | 80.9 ± 36.8 | 1.6 ± 0.6 | 16.5 ± 4.6 | 2.2 ± 0.5 |
Veldoreotide | ||||
Emax, % | 31.4 ± 3.0 | 83.1 ± 0.9 | 96.5 ± 3.5 | 93.3 ± 2.5 |
EC50, nM | 41.7 ± 28.2 | 19.0 ± 4.2 | 28.3 ± 14.2 | 16.6 ± 2.7 |
J-2156 | ||||
Emax, % | – | – | 97.5 ± 2.1 | – |
EC50, nM | 1.0 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dasgupta, P.; Gűnther, T.; Schulz, S. Pharmacological Characterization of Veldoreotide as a Somatostatin Receptor 4 Agonist. Life 2021, 11, 1075. https://doi.org/10.3390/life11101075
Dasgupta P, Gűnther T, Schulz S. Pharmacological Characterization of Veldoreotide as a Somatostatin Receptor 4 Agonist. Life. 2021; 11(10):1075. https://doi.org/10.3390/life11101075
Chicago/Turabian StyleDasgupta, Pooja, Thomas Gűnther, and Stefan Schulz. 2021. "Pharmacological Characterization of Veldoreotide as a Somatostatin Receptor 4 Agonist" Life 11, no. 10: 1075. https://doi.org/10.3390/life11101075
APA StyleDasgupta, P., Gűnther, T., & Schulz, S. (2021). Pharmacological Characterization of Veldoreotide as a Somatostatin Receptor 4 Agonist. Life, 11(10), 1075. https://doi.org/10.3390/life11101075