Cytoskeletal Tensegrity in Microgravity
Abstract
:1. Definition
2. Tensegrity and the Universe including Life
3. Tensegrity and the Body
4. Qualities of Tensegrity Structures: The Cytoskeleton
5. Tensegrity and the Nervous System
6. Graviception and the Cytoskeleton
7. Changes to Tissues in Microgravity
8. Microgravity May Promote Mental Illness
9. The Situation in Plants
10. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ingber, D.E.; Landau, M. Tensegrity. Scholarpedia 2012, 7, 8344. [Google Scholar]
- Fuller, R.B. Synergetics: Explorations in the Geometry of Thinking; Macmillan: London, UK, 1975. [Google Scholar]
- Ingber, D.E. How cells (might) sense microgravity. FASEB J. 1999, 13, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Ingber, D.E. Cellular mechanotransduction: Putting all the pieces together again. FASEB J. 2006, 220, 811–827. [Google Scholar] [CrossRef]
- Levin, S.M. The Biotensegrity Algorithm: Biotensegrity: The Structural Basis of Life, 2nd ed.; Handspring: Pencaitland, Scotland, 2018. [Google Scholar]
- Scarr, G. A consideration of the elbow as a tensegrity structure. Int. J. Osteopath. Med. 2012, 15, 171–180. [Google Scholar] [CrossRef]
- Dawkins, R. The Extended Phenotype; Oxford University Press: Oxford, UK, 1982. [Google Scholar]
- Caluwaerts, K.; D’Haene, M.; Verstraeten, D.; Schrauwen, B. Locomotion without a brain: Physical reservoir computing in tensegrity structures. Life 2012, 19, 35–66. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, J.; Overall, R.; Marc, J. The fractal nature of the brain: EEG data suggests that the brain functions as a “quantum computer” in 5-8 dimensions. Neuroquantology 2010, 8, 137–141. [Google Scholar] [CrossRef]
- Turvey, M.T.; Carello, C. Obtaining information by dynamic (effortful), touching. Biochim. Biophys. Acta 2011, 366, 3123–3132. [Google Scholar] [CrossRef]
- Liu, K.; Wu, J.; Paulino, G.H.; Qi, H.J. Programmable Deployment of Tensegrity Structures by Stimulus-Responsive Polymers. PLoS ONE 2017, 7, e3511. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Bao, G.; Wang, N. Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Ann. Rev. Biomed. Eng. 2000, 2, 189–226. [Google Scholar] [CrossRef]
- Martino, F.; Perestrelo, A.R.; Vinarsky, V.; Pagliari, S.; Forte, G. Cellular Mechanotransduction: From Tension to Function. Front. Physiol. 2018, 9, 824. [Google Scholar] [CrossRef]
- Case, L.B.; Waterman, C.M. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell Biol. 2015, 7, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Bachir, A.I.; Horwitz, A.R.; Nelson, W.J.; Bianchini, J.M. Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells. Cold Spring Harb. Perspect. Biol. 2017, 9, a023234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halbleib, J.M.; Nelson, W.J. Cadherins in development: Cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006, 20, 3199–3214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, L.; Weis, W.I. Structure and Biochemistry of Cadherins and Catenins. Cold Spring Harb Perspect. Biol. 2009, 1, a003053. [Google Scholar] [CrossRef]
- Ogneva, I.V. Cell mechanosensitivity: Mechanical properties and interaction with gravitational field. BioMed Res. Int. 2013. [Google Scholar] [CrossRef] [Green Version]
- Robison, P.; Caporizzo, M.A.; Ahmadzadeh, H.; Bogush, A.I.; Chen, C.Y.; Margulies, K.B.; Sheov, V.B.; Prosser, B.L. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 2016, 352, aaf0659. [Google Scholar] [CrossRef] [Green Version]
- Kabir, A.M.R.; Inoue, D.; Afrin, T.; Mayama, H.; Sada, K.; Kakugo, A. Buckling of Microtubules on a 2D Elastic Medium. Sci. Rep. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporizzo, M.; Chen, C.Y.; Salomon, A.K.; Margulies, K.B.; Prosser, B.L. Microtubules Provide a Viscoelastic Resistance to Myocyte Motion. Biophys. J. 2018, 115, 1796–1807. [Google Scholar] [CrossRef] [Green Version]
- Buxbaum, R.E. Nerves Are Tensegrity Structures and Grow When Pulled. 2014. Available online: https://www.rebresearch.com/blog/nerves-as-tensegrity-grow-when-pulled/ (accessed on 26 September 2021).
- Gardiner, J.; Marc, J.; Overall, R. Cytoskeletal thermal ratchets and cytoskeletal tensegrity: Determinants of brain asymmetry and symmetry? Front. Biosci. 2008, 13, 4649–4656. [Google Scholar] [CrossRef] [Green Version]
- Bordoni, B.; Mahabadi, N.; Varacallo, M. Anatomy, Fascia. StatPearls. Available online: ncbi.nlm.nih.gov/books/NBK493232/ (accessed on 22 July 2021).
- Greitz, D.; Wirestam, R.; Franck, A.; Nordell, B.; Thomsen, C.; Ståhlberg, F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 1992, 34, 370–380. [Google Scholar] [CrossRef]
- Najrana, T.; Sanchez-Esteban, J. Mechanotransduction as an adaptation to gravity. Front. Pediatr. 2016, 26, 140. [Google Scholar] [CrossRef] [Green Version]
- Versari, S.; Villa, A.; Bradamante, S.; Maier, J.A.M. Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochim. Biophys. Acta 2007, 1773, 1645–1652. [Google Scholar] [CrossRef] [Green Version]
- Hughes-Fulford, M. Function of the cytoskeleton in gravisensing during spaceflight. Adv. Space Res. 2003, 32, 1585–1593. [Google Scholar] [CrossRef]
- Corydon, T.J.; Kopp, S.; Wehland, M.; Braun, M.; Schütte, A.; Mayer, T.; Hülsing, T.; Oltmann, H.; Schmitz, B.; Hemmersbach, R.; et al. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci. Rep. 2016, 6, 20043. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Du, J.; Wang, D.; Zeng, F.; Wei, Y.; Wang, F.; Feng, C.; Li, N.; Dai, R.; Deng, Y.; et al. Effects of simulated microgravity on human brain nervous tissue. Neurosci. Lett. 2016, 627, 199–204. [Google Scholar] [CrossRef]
- Rosner, H.; Wassermann, T.; Moller, W.; Hanke, W. Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. Protoplasma 2006, 229, 225–234. [Google Scholar] [CrossRef]
- Wang, N.; Naruse, K.; Stamenović, D.D.; Fredberg, J.J.; Mijailovich, S.M.; Tolić-Nørrelykke, I.M.; Polte, T.; Mannix, R.; Ingber, D.E. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl. Acad. Sci. USA 2001, 98, 7765–7770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorselen, D.; Roos, W.H.; MacKintosh, F.C.; Wuite, G.J.L.; van Loon, J.J.W.L. The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J. 2014, 28, 536–547. [Google Scholar] [CrossRef] [Green Version]
- Pani, G.; Verslegers, M.; Quintens, R.; Samari, N.; de Saint-Georges, L.; van Oostveldt, P.; Baatout, S.; Benotmane, M.A. Combined exposure to simulated microgravity and acute or chronic radiation reduces neuronal network integrity and survival. PLoS ONE 2016, 11, e0155260. [Google Scholar] [CrossRef]
- Pani, G.; Samari, N.; Quintens, R.; de Saint-Georges, L.; Meloni, M.; Baatout, S.; Van Oostveldt, P.; Adberrafi Benetmane, M. Morphological and physiological changes in mature in vitro neuronal networks towards exposure to short-, middle- or long-term simulated microgravity. PLoS ONE 2013, 8, e73857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laranjeiro, R.; Harinath, G.; Pollard, A.K.; Gaffney, C.J.; Deane, C.S.; Vanapalli, S.A.; Etheridge, T.; Sewczyk, N.J.; Driscoll, M. Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans. Science 2021, 24, 102105. [Google Scholar] [CrossRef]
- Thomason, D.B.; Morrison, P.R.; Oganov, V.; Ilyina-Kakueva, E.; Booth, F.W.; Baldwin, K.M. Altered actin and myosin expression in muscle during exposure to microgravity. J. Appl. Physiol. 1985, 73, 90S–93S. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Zhang, Y.; ChenHe, J.; Feng, X.; Wei, W.; Hua, J.; Wang, J. Primary cilia act as microgravity sensors by depolymerizing microtubules to inhibit osteoblastic differentiation and mineralization. Bone 2020, 136, 115346. [Google Scholar] [CrossRef]
- Tauber, S.; Lauber, B.A.; Paulsen, L.E.; Lemann, M.; Hauschild, S.; Shepherd, N.R.; Polzer, J.; Segerer, J.; Thiel, C.S.; Ullrich, O. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS ONE 2017, 12, e0175599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettencourt, C.; Lima, M. Macado-Joseph Disease: From first descriptions to new perspectives. Orphanet. J. Rare Dis. 2011, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Hennah, W.; Thomson, P.; Peltonen, L.; Porteous, D. Genes and Schizophrenia: Beyond Schizophrenia: The Role of DISC1 in Major Mental Illness. Schizophr. Bull. 2006, 32, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, J. The depression/schizophrenia continuum: Does cytoskeletal tensegrity play a role? Neuroquantology 2017, 15, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Swanson, R.L. Biotensegrity: A unifying theory of biological architecture with applications to osteopathic practice, education, and research—A review and analysis. J. Am. Osteopath. Assoc. 2013, 113, 34–52. [Google Scholar] [CrossRef] [Green Version]
- Tadeo, I.; Berbegall, A.P.; Escudero, L.M.; Alvaro, T.; Noguera, R. Biotensegrity of the extracellular matrix: Physiology, dynamic mechanical balance, and implications in oncology and mechanotherapy. Front. Oncol. 2014, 4, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, M.; Hagan, J.J.; Heidbreder, C.A. Neuronal plasticity, stress and depression: Involvement of the cytoskeletal microtubular system? Curr. Drug. Targets CNS Neurol. Disord. 2005, 4, 597–611. [Google Scholar] [CrossRef]
- Yan, Z.; Kim, E.; Datta, D.; Lewis, D.A.; Soderling, S.H. Synaptic Actin Dysregulation, a Convergent Mechanism of Mental Disorders? J. Neurosci. 2016, 36, 11411–11417. [Google Scholar] [CrossRef] [Green Version]
- Kanas, N. Humans in Space: The Psychological Hurdles; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Kanas, N. Psychiatric Issues in Space. Psychiatr. Times 2016, 33. Available online: https://www.psychiatrictimes.com/view/psychiatric-issues-space (accessed on 26 September 2021).
- Meloni, M.A.; Galleri, G.; Pani, G.; Saba, A.; Pippia, P.; Cogoli-Greuter, M. Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. Cytoskeleton 2011, 68, 125–137. [Google Scholar] [CrossRef]
- Kiss, J.Z.; Wolverton, C.; Wyatt, S.E.; Hasenstein, K.H.; van Loon, J.J.W.A. Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front. Plant Sci. 2019, 10, 1577. [Google Scholar] [CrossRef] [Green Version]
- Annals of Botany Office. Fibre Cables and Tensegrity in Typha Leaves. 2014. Available online: https://www.botany.one/2014/09/fibre-cables-and-tensegrity-in-typha-leaves/ (accessed on 26 September 2021).
- Yoder, T.L.; Zheng, H.Q.; Todd, P.; Staehelin, L.A. Amyloplast sedimentation dynamics in maize columella cells supports a new model for the gravity-sensing apparatus of roots. Plant Physiol. 2001, 125, 1045–1060. [Google Scholar] [CrossRef] [Green Version]
- Volkmann, D.; Baluska, F. Gravity: One of the driving forces for evolution. Protoplasma 2006, 229, 143–148. [Google Scholar] [CrossRef]
- Quatresooz, P.; Hermanns-Le, T.; Ciccarelli, A.; Beckers, A.; Pierard, G.E. Tensegrity and type 1 dermal dendrocytes in acromegaly. Eur. J. Clin. Investig. 2005, 35, 133–139. [Google Scholar] [CrossRef]
- Demontis, G.C.; Germani, M.M.; Caiani, E.G.; Barravecchia, I.; Passino, C.; Angeloni, D. Human Pathophysiological Adaptations to the Space Environment. Front. Physiol. 2017, 8, 547. [Google Scholar] [CrossRef]
- Crawford-Young, S.J. Effects of microgravity on cell cytoskeleton and embryogenesis. Int. J. Dev. Biol. 2006, 50, 183–191. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gardiner, J. Cytoskeletal Tensegrity in Microgravity. Life 2021, 11, 1091. https://doi.org/10.3390/life11101091
Gardiner J. Cytoskeletal Tensegrity in Microgravity. Life. 2021; 11(10):1091. https://doi.org/10.3390/life11101091
Chicago/Turabian StyleGardiner, John. 2021. "Cytoskeletal Tensegrity in Microgravity" Life 11, no. 10: 1091. https://doi.org/10.3390/life11101091
APA StyleGardiner, J. (2021). Cytoskeletal Tensegrity in Microgravity. Life, 11(10), 1091. https://doi.org/10.3390/life11101091