Evaluating the Efficiency of DNA Metabarcoding to Analyze the Diet of Hippocampus guttulatus (Teleostea: Syngnathidae)
Abstract
:1. Introduction
2. Material and Methods
2.1. Feeding Trials
2.2. Field Study
2.3. DNA Extraction
2.4. Cox1 Library Preparation and Sequencing
2.5. Taxonomic Analyses
3. Results
3.1. Overall Sequencing Results
3.2. Feeding Trials
3.3. Field Study
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soule, M.E.; Estes, J.; Berger, J.; Martinez del Rio, C. Ecological effectiveness: Conservation goals for interactive species. Biol. Conserv. 2003, 17, 1238–1250. [Google Scholar] [CrossRef]
- Thuo, D.; Furlan, E.; Broekhuis, F.; Kamau, J.; Mcdonald, K.; Gleeson, D.M. Food from faeces: Evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS ONE 2019, 15, e0228950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sousa, L.L.; Silva, S.M.; Xavier, R. DNA metabarcoding in diet studies: Unveiling ecological aspects in aquatic and terrestrial ecosystems. Environ. DNA 2019, 1, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, S.K.; Harwood, J.D. Advances in molecular ecology: Tracking trophic links through predator–prey foodwebs. Funct. Ecol. 2005, 19, 751–762. [Google Scholar] [CrossRef]
- Radulovici, A.E.; Archambault, P.; Dufresne, F. DNA barcodes for marine biodiversity: Moving fast forward? Diversity 2010, 2, 450–472. [Google Scholar] [CrossRef] [Green Version]
- Berry, T.E.; Osterrieder, S.K.; Murray, D.C.; Coghlan, M.L.; Richardson, A.J.; Grealy, A.K.; Stat, M.; Bejder, L.; Bunce, M. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 2017, 7, 5435–5453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alheit, J.; Scheibel, W. Benthic harpacticoids as a food source for fish. Mar. Biol. 1982, 70, 141–147. [Google Scholar] [CrossRef]
- Scholz, D.S.; Matthews, L.L.; Feller, R.J. Detecting selective digestion of meiobenthic prey by juvenile spot Leiostomus xanthurus (Pisces) using immunoassays. Mar. Ecol. Prog. 1991, 72, 59–67. [Google Scholar] [CrossRef]
- Forin-Wiart, M.A.; Poulle, M.L.; Piry, S.; Cosson, J.F.; Larose, C.; Galan, M. Evaluating metabarcoding to analyse diet composition of species foraging in anthropogenic landscapes using Ion Torrent and Illumina sequencing. Sci. Rep. 2018, 8, 1709. [Google Scholar] [CrossRef] [Green Version]
- Shokralla, S.; Spall, J.L.; Gibson, J.F.; Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 2012, 21, 1794–1805. [Google Scholar] [CrossRef]
- Piñol, J.; San Andrés, V.; Clare, E.L.; Mir, G.; Symondson, W.O.C. A pragmatic approach to the analysis of diets of generalist predators: The use of next-generation sequencing with no blocking probes. Mol. Ecol Resour. 2014, 14, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, L.; Watson, H.; Donnelly, R.; Hampshire, R.; Sayer, C.; Breithaupt, T.; Hänfling, B. Using DNA metabarcoding to investigate diet and niche partitioning in the native European otter (Lutra lutra) and invasive American mink (Neovison vison). Metabarcoding Metagenom. 2020, 4, e56087. [Google Scholar] [CrossRef]
- Traugott, M.; Thalinger, B.; Wallinger, C.; Sint, D. Fish as predators and prey: DNA-based assessment of their role in food webs. J. Fish. Biol. 2020, 98, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.M.; Clare, E.L.; Hayden, B.; Brett, M.T.; Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 2018, 9, 278–291. [Google Scholar]
- Corse, E.; Valladares, S.; Planas, M.; Chamorro, A.; Pintado, J. Analysis of the diet of the long-snouted seahorse Hippocampus guttulatus by 18SrDNA amplification of prey in faeces. Aquac. Nutr. 2015, 21, 528–540. [Google Scholar] [CrossRef]
- Taguchi, T.; Miura, Y.; Krueger, D.; Sugiura, S. Utilizing stomach content and faecal DNA analysis techniques to assess the feeding behaviour of largemouth bass Micropterus salmoides and bluegill Lepomis macrochirus. J. Fish. Biol. 2014, 84, 1271–1288. [Google Scholar] [CrossRef] [PubMed]
- Shokri, M.R.; Gladstone, W.; Jelbart, J. The effectiveness of seahorses and pipefish (Pisces: Syngnathidae) as a flagship group to evaluate the conservation value of estuarine seagrass beds. Aquat. Conserv. 2009, 19, 588–595. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species. 2021. Available online: http://www.iucnredlist.org (accessed on 20 September 2021).
- Vincent, A.C.J.; Foster, S.J.; Koldewey, H.J. Conservation and management of seahorses and other Syngnathidae. J. Fish. Biol. 2011, 78, 1681–1724. [Google Scholar] [CrossRef]
- Ape, F.; Corriero, G.; Mirto, S.; Pierri, C.; Lazic, T.; Gristina, M. Trophic flexibility and prey selection of the wild long-snouted seahorse Hippocampus guttulatus Cuvier, 1829 in three coastal habitats. Estuar. Coast. Shelf Sci. 2019, 224, 1e10. [Google Scholar] [CrossRef]
- Kitsos, M.S.; Tzomos, T.; Anagnostopoulou, L.; Koukouras, A. Diet composition of the seahorses, Hippocampus guttulatus Cuvier, 1829 and Hippocampus hippocampus (L., 1758) (teleostei, syngnathidae) in the Aegean Sea. J. Fish. Biol. 2008, 72, 1259–1267. [Google Scholar] [CrossRef]
- Gurkan, S.; Taskavak, E.; Sever, T.M.; Akalin, S. Gut contents of two European seahorses Hippocampus hippocampus and Hippocampus guttulatus in the Aegean Sea, coasts of Turkey. Pakistan J. Zool. 2011, 43, 1197–1201. [Google Scholar]
- Valladares, S.; Planas, M. Nutrient Incorporation in First Feeding Seahorses Evidenced by Stable Carbon Isotopes. Animals 2021, 11, 470. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.A.; Chain, F.J.; Crease, T.J.; MacIsaac, H.J.; Cristescu, M.E. Divergence thresholds and divergent biodiversity estimates: Can metabarcoding reliably describe zooplankton communities? Ecol. Evol. 2005, 5, 2234–2251. [Google Scholar] [CrossRef] [PubMed]
- Gil, V.; Pinho, C.J.; Aguiar, C.A.S.; Jardim, C.; Rebelo, R.; Vasconcelos, R. Questioning the proverb ‘more haste, less speed’: Classic versus metabarcoding approaches for the diet study of a remote island endemic gecko. PeerJ 2020, 8, e8084. [Google Scholar] [CrossRef] [Green Version]
- Pompanon, F.; Deagle, B.E.; Symondson, W.O.; Brown, D.S.; Jarman, S.N.; Taberlet, P. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 2012, 21, 1931–1950. [Google Scholar] [CrossRef] [Green Version]
- Gristina, M.; Cardone, F.; Carlucci, R.; Castellano, L.; Passarelli, S.; Corriero, G. Abundance, distribution and habitat preference of Hippocampus guttulatus and Hippocampus hippocampus in a semi-enclosed central Mediterranean marine area. Mar. Ecol. 2015, 36, 57–66. [Google Scholar] [CrossRef]
- Gristina, M.; Bertrandino, S.; Cardone, F.; Mentino, D.; Corriero, G.; Scillitani, G. Skin filament recovery after clipping in Hippocampus guttulatus: Behavioural and histological aspects. Aquat. Biol. 2017, 26, 149–157. [Google Scholar] [CrossRef]
- Lorenz, J.G.; Jackson, W.E.; Beck, J.C.; Hanner, R. The problems and promise of DNA barcodes for species diagnosis of primate biomaterials. Philos. Trans. R. Soc. B. 2005, 360, 1869–1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; de Waard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Harms-Tuohy, C.A.; Schizas, N.V.; Appeldoorn, R.S. Use of DNA metabarcoding for stomach content analysis in the invasive lionfish Pterois volitans in Puerto Rico. Mar. Ecol. Prog. Ser. 2016, 558, 181–191. [Google Scholar] [CrossRef]
- Leray, M.; Yang, J.Y.; Meyer, C.P.; Mills, S.C.; Agudelo, N.; Ranwez, V.; Boehm, J.T.; Machida, R.J. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 2013, 10, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzari, C.; Fosso, B.; Marzano, M.; Annese, A.; Caprioli, R.; D’Erchia, A.M.; Gissi, C.; Intranuovo, M.; Picardi, E.; Santamaria, M.; et al. The influence of invasive jellyfish blooms on the aquatic microbiome in a coastal lagoon (Varano, SE Italy) detected by an Illumina-based deep sequencing strategy. Biol. Invasions 2015, 17, 923–940. [Google Scholar] [CrossRef] [Green Version]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewels, P.; Magnusson, M.; Lundin, S.; Kaller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581. [Google Scholar] [CrossRef] [Green Version]
- Fosso, B.; Santamaria, M.; Marzano, M.; Alonso-Alemany, D.; Valiente, G.; Donvito, G.; Monaco, A.; Notarangelo, P.; Pesole, G. BioMaS: A modular pipeline for Bioinformatic analysis of Metagenomic AmpliconS. BMC Bioinform. 2015, 16, 203. [Google Scholar] [CrossRef] [Green Version]
- Leray, M.; Ho, S.L.; Lin, I.J.; Machida, R.J. MIDORI server: A webserver for taxonomic assignment of unknown metazoan mitochondrial-encoded sequences using a curated database. Bioinformatics 2018, 34, 3753–3754. [Google Scholar] [CrossRef]
- Hildebrand, F.; Tadeo, R.; Voigt, A.Y.; Bork, P.; Raes, J. LotuS: An efficient and user-friendly OTU processing pipeline. Microbiome 2014, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 226. [Google Scholar] [CrossRef] [Green Version]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mount, D.W. Using the Basic Local Alignment Search Tool (BLAST). Cold Spring Harb. Protoc. 2007. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Alemany, D.; Barré, A.; Beretta, S.; Bonizzoni, P.; Nikolski, M.; Valiente, G. Further steps in TANGO: Improved taxonomic assignment in metagenomics. Bioinformatics 2014, 30, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosso, B.; Pesole, G.; Rosselló, F.; Valiente, G. Unbiased Taxonomic Annotation of Metagenomic Samples. J. Comput. Biol. 2017, 25, 348–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J. Vegan: An Introduction to Ordination. Available online: https://CRAN.R-project.org/package=vegan (accessed on 1 August 2021).
- Alberdi, A.; Aizpurua, O.; Gilbert, M.T.P.; Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 2018, 9, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Weber, D.; Lundgren, J. Detection of predation using qPCR: Effect of prey quantity, elapsed time, chaser diet, and sample preservation on detectable quantity of prey DNA. J. Insect Sci. 2009, 9, 12. [Google Scholar] [CrossRef]
- Barrett, R.T.; Camphuysen, K.C.J.; Anker-Nilssen, T.; Chardine, J.W.; Furness, R.W.; Garthe, S.; Hüppop, O.; Leopold, M.F.; Montevecchi, W.A.; Veit, R.R. Diet studies of seabirds: A review and recommendations. ICES J. Mar. Sci. 2007, 64, 1675–1691. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, T.E.; Larson, R.J. Gastric evacuation of three food types in the black and yellow rockfish Sebastes chrysomelas (Jordan and Gilbert). J. Fish. Biol. 1990, 36, 673–681. [Google Scholar] [CrossRef]
- Luizi, F.S.; Gara, B.; Shields, R.J.; Bromage, N.R. Further description of the development of the digestive organs in Atlantic halibut (Hippoglossus hippoglossus) larvae, with notes on differential absorption of copepod and Artemia prey. Aquaculture 1999, 176, 101–116. [Google Scholar] [CrossRef]
- Govoni, J.J.; Boehlert, G.W.; Watanabe, Y. The physiology of digestion in fish larvae. Environ. Biol. Fishes 1986, 16, 59–77. [Google Scholar] [CrossRef]
- Sheppard, S.K.; Bell, J.; Sunderland, K.D.; Fenlon, J.; Skervin, D.; Symondson, W.O.C. Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators. Mol. Ecol. 2005, 14, 4461–4468. [Google Scholar] [CrossRef] [PubMed]
- Elbrecht, V.; Leese, F. Validation and Development of COI Metabarcoding Primers for Freshwater Macroinvertebrate Bioassessment. Front. Environ. Sci. 2017, 5, 11. [Google Scholar]
- Braukmann, T.W.A.; Ivanova, N.V.; Prosser, S.W.J.; Elbrecht, V.; Steinke, D.; Ratnasingham, S.; Waard, J.R.; Sones, J.E.; Zakharov, E.V.; Hebert, P.D. Metabarcoding a diverse arthropod mock community. Mol. Ecol. Resour. 2019, 19, 711–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machida, R.J.; Hashiguchi, Y.; Nishida, M.; Nishida, S. Zooplankton diversity analysis through single-gene sequencing of a community sample. BMC Genom. 2009, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Deagle, B.E.; Jarman, S.N.; Coissac, E.; Pompanon, F.; Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett. 2014, 10, 20140562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morinière, J.; Cancian de Araujo, B.; Lam, A.W.; Hausmann, A.; Balke, M.; Schmidt, S.; Hendrich, L.; Doczal, D.; Fartman, B.; Arvidsson, S.; et al. Species Identification in Malaise Trap Samples by DNA Barcoding Based on NGS Technologies and a Scoring Matrix. PLoS ONE 2016, 11, e0155497. [Google Scholar] [CrossRef] [PubMed]
- Pierri, C.; Cardone, F.; Corriero, G.; Lazic, T.; Quattrocchi, F.; Alabiso, G.; Gristina, M. Density Decline in a Mediterranean Seahorse Population: Natural Fluctuations or New Emerging Threats? Front. Mar. Sci. 2021, 8, 1177. [Google Scholar] [CrossRef]
Taxa | FT1-AR | FT2-AR | FT3-AR | Mean | ST. DEV |
---|---|---|---|---|---|
Nannochloropsis oceanica | 93.17% | 88.93% | 83.32% | 88.47% | 4.94% |
Artemia franciscana | 6.51% | 7.65% | 16.65% | 10.27% | 5.55% |
Unassigned | 0.23% | 3.39% | 0.02% |
Taxa | FT2-ANF | FT3-ANF | MEDIA | ST. DEV |
---|---|---|---|---|
Nannochloropsis oceanica | 0.18% | 21.4% | 10.8% | 14.9% |
Gammarus sp. | 98.4% | 78.4% | 88.4% | 14.13% |
Unassigned | 1.44% | 0.20% |
Taxa | FT2-PL | FT4-PL | Mean | ST. DEV |
---|---|---|---|---|
Nannochloropsis oceanica | 0.01% | 20.77% | 10.39% | 14.68% |
Perinereis aibuhitensis | 0.22% | 14.44% | 7.33% | 10.05% |
Urodasys sp. | 33.70% | 23.1% | 28.4% | 7.5% |
Alpheus sp. | 0.37% | 1.99% | 1.18% | 1.14% |
Unassigned | 64.52% | 39.29% |
Taxa | FT2-PA | FT3-PA | FT4-PA | Mean | ST. DEV |
---|---|---|---|---|---|
Nannochloropsis oceanica | 8.79% | 22.85% | 8.88% | 13.51% | 8.09% |
Ophryotrocha labronica | 67.91% | 7.57% | 0 | 25.16% | 37.22% |
Palaemon elegans | 13.14% | 44.98% | 30.86% | 29.66% | 15.95% |
Alpheus bellulus | 0 | 4.6% | 0 | 1.53% | 2.65% |
Unassigned | 1.00% | 14.85% | 6.18% | 7.34% | 6.99% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazic, T.; Pierri, C.; Corriero, G.; Balech, B.; Cardone, F.; Deflorio, M.; Fosso, B.; Gissi, C.; Marzano, M.; Nonnis Marzano, F.; et al. Evaluating the Efficiency of DNA Metabarcoding to Analyze the Diet of Hippocampus guttulatus (Teleostea: Syngnathidae). Life 2021, 11, 998. https://doi.org/10.3390/life11100998
Lazic T, Pierri C, Corriero G, Balech B, Cardone F, Deflorio M, Fosso B, Gissi C, Marzano M, Nonnis Marzano F, et al. Evaluating the Efficiency of DNA Metabarcoding to Analyze the Diet of Hippocampus guttulatus (Teleostea: Syngnathidae). Life. 2021; 11(10):998. https://doi.org/10.3390/life11100998
Chicago/Turabian StyleLazic, Tamara, Cataldo Pierri, Giuseppe Corriero, Bachir Balech, Frine Cardone, Michele Deflorio, Bruno Fosso, Carmela Gissi, Marinella Marzano, Francesco Nonnis Marzano, and et al. 2021. "Evaluating the Efficiency of DNA Metabarcoding to Analyze the Diet of Hippocampus guttulatus (Teleostea: Syngnathidae)" Life 11, no. 10: 998. https://doi.org/10.3390/life11100998
APA StyleLazic, T., Pierri, C., Corriero, G., Balech, B., Cardone, F., Deflorio, M., Fosso, B., Gissi, C., Marzano, M., Nonnis Marzano, F., Pesole, G., Santamaria, M., & Gristina, M. (2021). Evaluating the Efficiency of DNA Metabarcoding to Analyze the Diet of Hippocampus guttulatus (Teleostea: Syngnathidae). Life, 11(10), 998. https://doi.org/10.3390/life11100998