The Effect of High-Dose-Rate Pulsed Radiation on the Survival of Clinically Relevant Radioresistant Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. X-Irradiation and Irradiation Schedule
2.3. Cell Proliferation Assay
2.4. Clonogenic Assay
2.5. γH2AX Analysis by Flow Cytometry
2.6. Intracellular ROS Analysis by Flow Cytometry
2.7. Statistical Analysis
3. Results
3.1. Cell Proliferation Assay
3.2. Clonogenic Assay
3.3. γH2AX Analysis by Flow Cytometry
3.4. Intracellular ROS Analysis by Flow Cytometry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Harada, H.; Inoue, M.; Itasaka, S.; Hirota, K.; Morinibu, A.; Shinomiya, K.; Zeng, L.; Ou, G.; Zhu, Y.; Yoshimura, M.; et al. Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate towards tumour blood vessels. Nat. Commun. 2012, 3, 783. [Google Scholar] [CrossRef]
- Kim, W.; Lee, S.; Seo, D.; Kim, D.; Kim, K.; Kim, E.; Kang, J.; Seong, K.M.; Youn, H.; Youn, B. Cellular Stress Responses in Radiotherapy. Cells 2019, 8, 1105. [Google Scholar] [CrossRef] [Green Version]
- Short, S.C.; Kelly, J.; Mayes, C.R.; Woodcock, M.; Joiner, M.C. Low-dose hypersensitivity after fractionated low-dose irradiation in vitro. Int. J. Radiat. Biol. 2001, 77, 655–664. [Google Scholar] [CrossRef]
- Beauchesne, P.D.; Bertrand, S.; Branche, R.; Linke, S.P.; Revel, R.; Dore, J.-F.; Pedeux, R.M. Human malignant glioma cell lines are sensitive to low radiation doses. Int. J. Cancer 2003, 105, 33–40. [Google Scholar] [CrossRef]
- Spring, P.M.; Arnold, S.M.; Shajahan, S.; Brown, B.; Dey, S.; Lele, S.M.; Valentino, J.; Jones, R.; Mohiuddin, M.; Ahmed, M.M. Low dose fractionated radiation potentiates the effects of taxotere in nude mice xenografts of squamous cell carcinoma of head and neck. Cell Cycle 2004, 3, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, M.; Prager, J.; Wohlfarth, J.; Hessel, F.; Dorner, D.; Haase, M.; Joiner, M.C.; Baumann, M. Ultrafractionation does not improve the results of radiotherapy in radioresistant murine DDL1 lymphoma. Strahlenther. Onkol. 2005, 181, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.; Wohlfarth, J.; Georgi, B.; Pimentel, N.; Dorner, D.; Zips, D.; Eicheler, W.; Hessel, F.; Short, S.C.; Joiner, M.C.; et al. Low-dose hyperradiosensitivity of human glioblastoma cell lines in vitro does not translate into improved outcome of ultrafractionated radiotherapy in vivo. Int. J. Radiat. Biol. 2005, 81, 751–758. [Google Scholar] [CrossRef]
- Martin, L.M.; Marples, B.; Lynch, T.H.; Hollywood, D.; Marignol, L. Exposure to low dose ionising radiation: Molecular and clinical consequences. Cancer Lett. 2013, 338, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Schoenherr, D.; Krueger, S.A.; Martin, L.; Marignol, L.; Wilson, G.D.; Marples, B. Determining if low dose hyper-radiosensitivity (HRS) can be exploited to provide a therapeutic advantage: A cell line study in four glioblastoma multiforme (GBM) cell lines. Int. J. Radiat. Biol. 2013, 89, 1009–1016. [Google Scholar] [CrossRef]
- Todorovic, V.; Prevc, A.; Zakelj, M.N.; Savarin, M.; Bucek, S.; Groselj, B.; Strojan, P.; Cemazar, M.; Sersa, G. Pulsed low dose-rate irradiation response in isogenic HNSCC cell lines with different radiosensitivity. Radiol. Oncol. 2020, 54, 168–179. [Google Scholar] [CrossRef]
- Tomé, W.A.; Howard, S.P. On the possible increase in local tumour control probability for gliomas exhibiting low dose hyper-radiosensitivity using a pulsed schedule. Br. J. Radiol. 2007, 80, 32–37. [Google Scholar] [CrossRef]
- Richards, G.M.; Tomé, W.A.; Robins, H.I.; Stewart, J.A.; Welsh, J.S.; Mahler, P.A.; Howard, S.P. Pulsed reduced dose-rate radiotherapy: A novel locoregional retreatment strategy for breast cancer recurrence in the previously irradiated chest wall, axilla, or supraclavicular region. Breast Cancer Res. Treat. 2009, 114, 307–313. [Google Scholar] [CrossRef]
- Yan, J.; Yang, J.; Yang, Y.; Ren, W.; Liu, J.; Gao, S.; Li, S.; Kong, W.; Zhu, L.; Yang, M.; et al. Use of Pulsed Low-Dose Rate Radiotherapy in Refractory Malignancies. Transl. Oncol. 2018, 11, 175–181. [Google Scholar] [CrossRef]
- Almahariq, M.F.; Quinn, T.J.; Arden, J.D.; Roskos, P.T.; Wilson, G.D.; Marples, B.; Grills, I.S.; Chen, P.Y.; Krauss, D.J.; Chinnaiyan, P.; et al. Pulsed radiation therapy for the treatment of newly diagnosed glioblastoma. Neuro. Oncol. 2021, 23, 447–456. [Google Scholar] [CrossRef]
- Marples, B.; Collis, S.J. Low-dose hyper-radiosensitivity: Past, present, and future. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Joiner, M.C.; Lambin, P.; Malaise, E.P.; Robson, T.; Arrand, J.E.; Skov, K.A.; Marples, B. Hypersensitivity to very-low single radiation doses: Its relationship to the adaptive response and induced radioresistance. Mutat. Res. 1996, 358, 171–183. [Google Scholar] [CrossRef]
- Terashima, S.; Hosokawa, Y.; Tsuruga, E.; Mariya, Y.; Nakamura, T. Impact of time interval and dose rate on cell survival following low-dose fractionated exposures. J. Radiat. Res. 2017, 58, 782–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwahara, Y.; Li, L.; Baba, T.; Nakagawa, H.; Shimura, T.; Yamamoto, Y.; Ohkubo, Y.; Fukumoto, M. Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays. Cancer Sci. 2009, 100, 747–752. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Mori, M.; Oikawa, T.; Shimura, T.; Ohtake, Y.; Mori, S.; Ohkubo, Y.; Fukumoto, M. The modified high-density survival assay is the useful tool to predict the effectiveness of fractionated radiation exposure. J. Radiat. Res. 2010, 51, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.-S.; Wu, A. Not all 2 Gray radiation prescriptions are equivalent: Cytotoxic effect depends on delivery sequences of partial fractionated doses. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 536–544. [Google Scholar] [CrossRef]
- Simonsson, M.; Qvarnström, F.; Nyman, J.; Johansson, K.-A.; Garmo, H.; Turesson, I. Low-dose hypersensitive gammaH2AX response and infrequent apoptosis in epidermis from radiotherapy patients. Radiother. Oncol. 2008, 88, 388–397. [Google Scholar] [CrossRef]
- Qvarnström, F.; Simonsson, M.; Nyman, J.; Hermansson, I.; Book, M.; Johansson, K.-A.; Turesson, I. Double strand break induction and kinetics indicate preserved hypersensitivity in keratinocytes to subtherapeutic doses for 7 weeks of radiotherapy. Radiother. Oncol. 2017, 122, 163–169. [Google Scholar] [CrossRef]
- Ogura, A.; Oowada, S.; Kon, Y.; Hirayama, A.; Yasui, H.; Meike, S.; Kobayashi, S.; Kuwabara, M.; Inanami, O. Redox regulation in radiation-induced cytochrome c release from mitochondria of human lung carcinoma A549 cells. Cancer Lett. 2009, 277, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Fetisova, E.K.; Antoschina, M.M.; Cherepanynets, V.D.; Izumov, D.S.; Kireev, I.I.; Kireev, R.I.; Lyamzaev, K.G.; Riabchenko, N.I.; Chernyak, B.V.; Skulachev, V.P. Radioprotective effects of mitochondria-targeted antioxidant SkQR1. Radiat. Res. 2015, 183, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, Y.; Roudkenar, M.H.; Suzuki, M.; Urushihara, Y.; Fukumoto, M.; Saito, Y.; Fukumoto, M. The Involvement of Mitochondrial Membrane Potential in Cross-Resistance Between Radiation and Docetaxel. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 556–565. [Google Scholar] [CrossRef]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Z.; Li, X.A.; Yu, C.X.; DiBiase, S.J. The low α/β ratio for prostate cancer: What does the clinical outcome of HDR brachytherapy tell us? Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 1101–1108. [Google Scholar] [CrossRef]
- Setsukinai, K.-I.; Urano, Y.; Kakinuma, K.; Majima, H.J.; Nagano, T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 2003, 278, 3170–3175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Hu, W.; Ding, N.; Ye, C.; Usikalu, M.; Li, S.; Hu, B.; Sutherland, B.M.; Zhou, G. An optimized colony forming assay for low-dose-radiation cell survival measurement. Int. Res. J. Biotechnol. 2011, 2, 164–172. [Google Scholar]
- Joiner, M.C.; Marples, B.; Lambin, P.; Short, S.C.; Turesson, I. Low-dose hypersensitivity: Current status and possible mechanisms. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 379–389. [Google Scholar] [CrossRef]
- Klokov, D.; MacPhail, S.M.; Banáth, J.P.; Byrne, J.P.; Olive, P.L. Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays. Radiother. Oncol. 2006, 80, 223–229. [Google Scholar] [CrossRef]
- Menegakis, A.; Yaromina, A.; Eicheler, W.; Dörfler, A.; Beuthien-Baumann, B.; Thames, H.D.; Baumann, M.; Krause, M. Prediction of clonogenic cell survival curves based on the number of residual DNA double strand breaks measured by gammaH2AX staining. Int. J. Radiat. Biol. 2009, 85, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Muslimovic, A.; Johansson, P.; Hammarste, O. Measurement of H2AX Phosphorylation as a Marker of Ionizing Radiation Induced Cell Damage. In Current Topics in Ionizing Radiation Research; Intechopen: London, UK, 2012. [Google Scholar]
- Siddiqui, M.S.; François, M.; Fenech, M.F.; Leifert, W.R. Persistent γH2AX: A promising molecular marker of DNA damage and aging. Mutat. Res.-Rev. Mut. Res. 2015, 766, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wykes, S.M.; Piasentin, E.; Joiner, M.C.; Wilson, G.D.; Marples, B. Low-dose hyper-radiosensitivity is not caused by a failure to recognize DNA double-strand breaks. Radiat. Res. 2006, 165, 516–524. [Google Scholar] [CrossRef]
- Bodgi, L.; Foray, N. The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: Resolution of the linear-quadratic model. Int. J. Radiat. Biol. 2016, 92, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Berthel, E.; Foray, N.; Ferlazzo, M.L. The Nucleoshuttling of the ATM Protein: A Unified Model to Describe the Individual Response to High- and Low-Dose of Radiation? Cancers 2019, 11, 905. [Google Scholar] [CrossRef] [Green Version]
- Lavelle, C.; Foray, N. Chromatin structure and radiation-induced DNA damage: From structural biology to radiobiology. Int. J. Biochem. Cell Biol. 2014, 49, 84–97. [Google Scholar] [CrossRef]
- Altman, M.B.; Stinauer, M.A.; Javier, D.; Smith, B.D.; Herman, L.C.; Pytynia, M.L.; Aydogan, B.; Pelizzari, C.A.; Chmura, S.J.; Roeske, J.C. Validation of temporal optimization effects for a single fraction of radiation in vitro. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 1240–1246. [Google Scholar] [CrossRef]
- Ranganathan, S.; Harmison, G.G.; Meyertholen, K.; Pennuto, M.; Burnett, B.G.; Fischbeck, K.H. Mitochondrial abnormalities in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 2009, 18, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Nishida, N.; Yasui, H.; Nagane, M.; Yamamori, T.; Inanami, O. 3-Methyl pyruvate enhances radiosensitivity through increasing mitochondria-derived reactive oxygen species in tumor cell lines. J. Radiat. Res. 2014, 55, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Moritake, T.; Ito, K.; Matsumoto, Y.; Yasui, H.; Nakagawa, H.; Hirayama, A.; Inanami, O.; Tsuboi, K. Metabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets. PLoS ONE 2017, 12, e0176162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
α | β | α/β | D10 | DMF10 b | ||
---|---|---|---|---|---|---|
(Gy−1) a | (Gy−2) a | (Gy) a | (Gy) | |||
SAS | Single exposure | 0.34 ± 0.03 | 0.034 ± 0.005 | 10.2 ± 1.9 | 4.6 | 1.00 |
High-dose-rate PR | 0.39 ± 0.012 | 0.038 ± 0.002 | 10.3 ± 0.7 | 4.2 | 1.11 | |
SAS-R | Single exposure | 0.00017 ± 0.06 | 0.061 ± 0.005 | 0.0028 ± 0.5 | 6.1 | 1.00 |
High-dose-rate PR | 0 ± 0.03 | 0.077 ± 0.004 | 0 | 5.5 | 1.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terashima, S.; Yoshino, H.; Kuwahara, Y.; Sakuraba, H.; Hosokawa, Y. The Effect of High-Dose-Rate Pulsed Radiation on the Survival of Clinically Relevant Radioresistant Cells. Life 2021, 11, 1295. https://doi.org/10.3390/life11121295
Terashima S, Yoshino H, Kuwahara Y, Sakuraba H, Hosokawa Y. The Effect of High-Dose-Rate Pulsed Radiation on the Survival of Clinically Relevant Radioresistant Cells. Life. 2021; 11(12):1295. https://doi.org/10.3390/life11121295
Chicago/Turabian StyleTerashima, Shingo, Hironori Yoshino, Yoshikazu Kuwahara, Hiro Sakuraba, and Yoichiro Hosokawa. 2021. "The Effect of High-Dose-Rate Pulsed Radiation on the Survival of Clinically Relevant Radioresistant Cells" Life 11, no. 12: 1295. https://doi.org/10.3390/life11121295
APA StyleTerashima, S., Yoshino, H., Kuwahara, Y., Sakuraba, H., & Hosokawa, Y. (2021). The Effect of High-Dose-Rate Pulsed Radiation on the Survival of Clinically Relevant Radioresistant Cells. Life, 11(12), 1295. https://doi.org/10.3390/life11121295