Endothelial Dysfunction Is Associated with Cerebrovascular Events in Pre-Dialysis CKD Patients: A Prospective Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Cross-Sectional Study
2.3. Prospective Study
2.4. Statistical Analysis
2.5. Ethics
3. Results
3.1. Cross-Sectional Study
3.2. Prospective Study
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Keith, D.S.; Nichols, G.A.; Gullion, C.M.; Brown, J.B.; Smith, D.H. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch. Intern. Med. 2004, 164, 659–663. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.S.; Matsushita, K.; Woodward, M.; Bilo, H.J.; Chalmers, J.; Heerspink, H.J.; Lee, B.J.; Perkins, R.M.; Rossing, P.; Sairenchi, T.; et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: A meta-analysis. Lancet 2012, 380, 1662–1673. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodi, B.K.; Matsushita, K.; Woodward, M.; Blankestijn, P.J.; Cirillo, M.; Ohkubo, T.; Rossing, P.; Sarnak, M.J.; Stengel, B.; Yamagishi, K.; et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: A meta-analysis. Lancet 2012, 380, 1649–1661. [Google Scholar] [CrossRef] [Green Version]
- Gimbrone, M.A., Jr.; Garcia-Cardena, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef] [Green Version]
- Roumeliotis, S.; Mallamaci, F.; Zoccali, C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J. Clin. Med. 2020, 9, 2359. [Google Scholar] [CrossRef]
- Perry, H.M.; Okusa, M.D. Endothelial Dysfunction in Renal Interstitial Fibrosis. Nephron 2016, 134, 167–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Six, I.; Flissi, N.; Lenglet, G.; Louvet, L.; Kamel, S.; Gallet, M.; Massy, Z.A.; Liabeuf, S. Uremic Toxins and Vascular Dysfunction. Toxins (Basel) 2020, 12, 404. [Google Scholar] [CrossRef]
- Shechter, M.; Shechter, A.; Koren-Morag, N.; Feinberg, M.S.; Hiersch, L. Usefulness of brachial artery flow-mediated dilation to predict long-term cardiovascular events in subjects without heart disease. Am. J. Cardiol. 2014, 113, 162–167. [Google Scholar] [CrossRef]
- Ras, R.T.; Streppel, M.T.; Draijer, R.; Zock, P.L. Flow-mediated dilation and cardiovascular risk prediction: A systematic review with meta-analysis. Int J. Cardiol. 2013, 168, 344–351. [Google Scholar] [CrossRef]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: A report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Anderson, T.J.; Uehata, A.; Gerhard, M.D.; Meredith, I.T.; Knab, S.; Delagrange, D.; Lieberman, E.H.; Ganz, P.; Creager, M.A.; Yeung, A.C.; et al. Close relation of endothelial function in the human coronary and peripheral circulations. J. Am. Coll. Cardiol. 1995, 26, 1235–1241. [Google Scholar] [CrossRef] [Green Version]
- Rubinshtein, R.; Kuvin, J.T.; Soffler, M.; Lennon, R.J.; Lavi, S.; Nelson, R.E.; Pumper, G.M.; Lerman, L.O.; Lerman, A. Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur. Heart J. 2010, 31, 1142–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonetti, P.O.; Pumper, G.M.; Higano, S.T.; Holmes, D.R., Jr.; Kuvin, J.T.; Lerman, A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J. Am. Coll. Cardiol. 2004, 44, 2137–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamburg, N.M.; Keyes, M.J.; Larson, M.G.; Vasan, R.S.; Schnabel, R.; Pryde, M.M.; Mitchell, G.F.; Sheffy, J.; Vita, J.A.; Benjamin, E.J. Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation 2008, 117, 2467–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axtell, A.L.; Gomari, F.A.; Cooke, J.P. Assessing endothelial vasodilator function with the Endo-PAT 2000. J. Vis. Exp. 2010. [Google Scholar] [CrossRef] [Green Version]
- Muhlestein, J.B.; Lappe, D.L.; Lima, J.A.; Rosen, B.D.; May, H.T.; Knight, S.; Bluemke, D.A.; Towner, S.R.; Le, V.; Bair, T.L.; et al. Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: The FACTOR-64 randomized clinical trial. JAMA 2014, 312, 2234–2243. [Google Scholar] [CrossRef]
- Yilmaz, M.I.; Saglam, M.; Carrero, J.J.; Qureshi, A.R.; Caglar, K.; Eyileten, T.; Sonmez, A.; Cakir, E.; Yenicesu, M.; Lindholm, B.; et al. Serum visfatin concentration and endothelial dysfunction in chronic kidney disease. Nephrol. Dial. Transplant. 2008, 23, 959–965. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Hamm, L.L.; Mohler, E.R.; Hudaihed, A.; Arora, R.; Chen, C.S.; Liu, Y.; Browne, G.; Mills, K.T.; Kleinpeter, M.A.; et al. Interrelationship of Multiple Endothelial Dysfunction Biomarkers with Chronic Kidney Disease. PLoS ONE 2015, 10, e0132047. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Huang, X.; He, W.; Liu, W.; Yang, J. Digital microvascular reactivity does not decline with impaired renal function in chronic kidney disease. BMC Nephrol. 2019, 20, 288. [Google Scholar] [CrossRef] [Green Version]
- Nakano, C.; Morimoto, S.; Nakahigashi, M.; Kusabe, M.; Ueda, H.; Someya, K.; Ichihara, A.; Iwasaka, T.; Shiojima, I. The relationships between visit-to-visit blood pressure variability and renal and endothelial function in chronic kidney disease. Hypertens. Res. 2015, 38, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Khaira, A.; Mahajan, S.; Kumar, A.; Saraya, A.; Tiwari, S.C.; Prakash, S.; Gupta, A.; Bhowmik, D.; Agarwal, S.K. Endothelial function and oxidative stress in chronic kidney disease of varying severity and the effect of acute hemodialysis. Ren. Fail. 2011, 33, 411–417. [Google Scholar] [CrossRef]
- Nohria, A.; Gerhard-Herman, M.; Creager, M.A.; Hurley, S.; Mitra, D.; Ganz, P. Role of nitric oxide in the regulation of digital pulse volume amplitude in humans. J. Appl. Physiol. 2006, 101, 545–548. [Google Scholar] [CrossRef] [Green Version]
- Joannides, R.; Haefeli, W.E.; Linder, L.; Richard, V.; Bakkali, E.H.; Thuillez, C.; Luscher, T.F. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 1995, 91, 1314–1319. [Google Scholar] [CrossRef] [PubMed]
- Moerland, M.; Kales, A.J.; Schrier, L.; van Dongen, M.G.; Bradnock, D.; Burggraaf, J. Evaluation of the EndoPAT as a Tool to Assess Endothelial Function. Int. J. Vasc. Med. 2012, 2012, 904141. [Google Scholar] [CrossRef]
- Brant, L.C.; Hamburg, N.M.; Barreto, S.M.; Benjamin, E.J.; Ribeiro, A.L. Relations of digital vascular function, cardiovascular risk factors, and arterial stiffness: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) cohort study. J. Am. Heart Assoc. 2014, 3, e001279. [Google Scholar] [CrossRef] [Green Version]
- Thang, O.H.; Serne, E.H.; Grooteman, M.P.; Smulders, Y.M.; Ter Wee, P.M.; Tangelder, G.J.; Nube, M.J. Premature aging of the microcirculation in patients with advanced chronic kidney disease. Nephron Extra 2012, 2, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, E.; Sugiyama, S.; Matsuzawa, Y.; Konishi, M.; Suzuki, H.; Nozaki, T.; Ohba, K.; Matsubara, J.; Maeda, H.; Horibata, Y.; et al. Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J. Am. Coll. Cardiol. 2012, 60, 1778–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzawa, Y.; Sugiyama, S.; Sumida, H.; Sugamura, K.; Nozaki, T.; Ohba, K.; Matsubara, J.; Kurokawa, H.; Fujisue, K.; Konishi, M.; et al. Peripheral endothelial function and cardiovascular events in high-risk patients. J. Am. Heart Assoc. 2013, 2, e000426. [Google Scholar] [CrossRef] [Green Version]
- Hirata, Y.; Sugiyama, S.; Yamamoto, E.; Matsuzawa, Y.; Akiyama, E.; Kusaka, H.; Fujisue, K.; Kurokawa, H.; Matsubara, J.; Sugamura, K.; et al. Endothelial function and cardiovascular events in chronic kidney disease. Int J. Cardiol. 2014, 173, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, F.; Rubattu, S.; Savoia, C.; Venturelli, V.; Pagannonne, E.; Volpe, M. Endothelial dysfunction and stroke. J. Cardiovasc. Pharmacol. 2001, 38 (Suppl. 2), S75–S78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Garcia, D.; Blanco, M.; Serena, J.; Rodriguez-Yanez, M.; Leira, R.; Castillo, J. Impaired brachial flow-mediated dilation is a predictor of a new-onset vascular event after stroke. Cerebrovasc. Dis. 2011, 32, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, K.; Ninomiya, T. Stroke and cerebrovascular diseases in patients with chronic kidney disease. Lancet Neurol. 2014, 13, 823–833. [Google Scholar] [CrossRef]
- Garg, A.X.; Clark, W.F.; Haynes, R.B.; House, A.A. Moderate renal insufficiency and the risk of cardiovascular mortality: Results from the NHANES I. Kidney Int. 2002, 61, 1486–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiner, D.E.; Tighiouart, H.; Amin, M.G.; Stark, P.C.; MacLeod, B.; Griffith, J.L.; Salem, D.N.; Levey, A.S.; Sarnak, M.J. Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: A pooled analysis of community-based studies. J. Am. Soc. Nephrol. 2004, 15, 1307–1315. [Google Scholar] [CrossRef]
- Imai, E.; Matsuo, S.; Makino, H.; Watanabe, T.; Akizawa, T.; Nitta, K.; Iimuro, S.; Ohashi, Y.; Hishida, A. Chronic Kidney Disease Japan Cohort study: Baseline characteristics and factors associated with causative diseases and renal function. Clin. Exp. Nephrol. 2010, 14, 558–570. [Google Scholar] [CrossRef]
Control (n = 18) | Stage 1 (n = 27) | Stage 2 (n = 16) | Stage 3a (n = 14) | Stage 3b (n = 22) | Stage 4 (n = 29) | Stage 5 (n = 12) | |
---|---|---|---|---|---|---|---|
DEMOGRAPHIC DATA | |||||||
Age (years), mean ± sd | 48.8 ± 8.4 | 46.5 ± 11.7 | 53.7 ± 14.8 | 56.6 ± 17.1 | 61.0 ± 14.7 | 65.4 ± 15.2 (p = 0.004) * | 65.2 ± 7.3 (p = 0.026) * |
Gender (n, %) | 2 (11.1) | 9 (33.3) | 8 (50.0) | 8 (57.4) | 14 (63.6) | 13 (44.8) | 5 (41.7) |
Body mass index mean ± sd | 25.3 ± 2.8 | 27.7 ± 4.2 | 30.1 ± 7.6 | 29.0 ± 4.7 | 30.2 ± 6.7 | 25.3 ± 4.8 | 30.8 ± 6.5 |
Diabetes, n (%) | 0 (0) | 1 (4) | 5 (31) | 3 (21) | 8 (36) | 12 (41) | 7 (58) |
Hypertension n (%) | 1 (7) | 13 (48) | 13 (81) | 10 (71) | 21 (95) | 27 (93) | 12 (100) |
Systolic blood pressure, (mmHg) | 125 ± 14 | 124 ± 15 | 134 ± 18 | 123 ± 13 | 139 ± 27 | 138 ± 21 | 133 ± 9 |
Diastolic blood pressure (mmHg) | 74 ± 8 | 75 ± 13 | 75 ± 13 | 79 ± 11 | 76 ± 14 | 74 ± 13 | 76 ± 13 |
Heart rate (bpm) | 71 ± 10 | 71 ± 14 | 73 ± 13 | 66 ± 13 | 68 ± 13 | 73 ± 12 | 73 ± 13 |
Cardiovascular disease, n (%) | 0 (0) | 0 (0) | 5 (31) | 3 (21) | 10 (45) | 9 (31) | 5 (42) |
CKD RELATED PARAMETERS | |||||||
eGFR CKD-EPI (ml/min/1.73 m2) mean ± sd | 111.9 ±11.2 | 112.8 ± 2.9 | 70.1 ± 1.8 | 51.7 ± 1.1 | 38.3 ± 1.1 | 22.8 ± 0.9 | 12.1 ± 0.7 |
Calcium (mg/dL) mean ± sd | 4.63 ± 0.18 | 4.72 ± 0.24 | 4.69 ± 0.29 | 4.76 ± 0.36 | 4.80 ± 0.28 | 4.62 ± 0.26 | 4.68 ± 0.33 |
Phosphate (mg/dL) mean ± sd | 3.28 ± 0.47 | 3.01 ± 0.37 | 2.96 ± 0.45 | 3.36 ± 0.51 | 3.47 ± 0.70 | 3.90 ± 0.61 (p = 0.003) * | 4.09 ± 0.54 (p = 0.001) * |
Parathormone (pg/mL) mean ± sd | 45.4 ± 14.28 | 43.0 ± 16.4 | 70.3 ± 31.8 | 63.5 ± 23.1 | 86.0 ± 44.7 | 166.7 ± 154.3 (p < 0.001) * | 179.6 ± 96.2 (p = 0.001) * |
Protein/creatinine ratio (mg/g), median (IQR) | 82.3 (65.0–117.0) | 252.0 (80.0–669.5) | 170.1 (85.3–780.1) | 462.0 (185.0–1035.4) | 329.2 (151.7–863.3) | 888.7 (362.0–1737.0) | 1199.0 (206.0–3975.0) (p = 0.020) * |
ENDOTHELIAL FUNCTION, RHI score, mean ± sd | 2.09 ± 0.40 | 2.36 ± 0.77 †,‡ | 2.10 ± 0.59 | 2.14 ± 0.76 | 2.03 ± 0.62 | 1.71 ± 0.56 † (p = 0.003) | 1.67 ± 0.38 ‡ (p = 0.033) |
CARDIOVASCULAR RELATED PARAMETERS | |||||||
Charlson Index score mean ± sd | 0.6 ± 0.6 | 0.7 ± 0.9 | 2.6 ± 2.3 (p = 0.043) * | 4.1 ± 3.1 (p < 0.001) * | 4.8 ± 2.3 (p < 0.001) * | 5.8 ± 2.3 (p < 0.001) * | 6.0 ± 2.2 (p < 0.001) * |
Sedimentation velocity mean ± sd | 14 ± 13 | 27 ± 22 | 33 ± 25 | 28 ± 25 | 35 ± 23 | 54 ± 33 (p < 0.001) * | 58 ± 31 (p = 0.018) * |
Albumin (g/dL) mean ± sd | 43.1 ± 2.6 | 41.7 ± 3.4 | 39.5 ± 4.1 (p = 0.010) * | 42.1 ± 4.9 | 39.1 ± 8.4 | 38.8 ± 4 (p = 0.050) * | 38.7 ± 3.6 |
Total Cholesterol (mg/dL) mean ± sd | 174 ± 31 | 196 ± 36 | 179 ± 50 | 194 ± 36 | 172 ± 36 | 174 ± 40 | 198 ± 63 |
HDL Cholesterol (mg/dL) mean ± sd | 59 ± 14 | 55 ± 14 | 52 ± 14 | 53 ± 13 | 51 ± 15 | 48 ± 13 | 46 ± 18 |
Triglycerides (mg/dL) mean ± sd | 82 ± 25 | 127 ± 97 | 142 ± 91 | 121 ± 37 | 121 ± 53 | 165 ± 82 | 341 ± 559 (p = 0.002) * |
Acid uric mean ± sd | 4.1 ± 0.9 | 5.2 ± 1.6 | 6.3 ± 1.9 (p = 0.004) * | 6.8 ± 2.0 p < 0.001) * | 6.7 ± 1.3 (p < 0.001) * | 7.6 ± 1.5 (p < 0.001) * | 7.7 ± 2.5 (p < 0.001) * |
C reactive protein (mg/L) median (IQR) | 1.2 (0.4–2.8) | 2.0 (1.1–5.9) | 2.8 (1.1–9.6) | 3.3 (1.7–6.1) | 2.7 (1.3–6.1) | 1.9 (1.1–5.5) | 3.1 (1.1–23.0) |
BNP (pg/mL) median (IQR) | 19.1 (10.0–30.2) | 26.7 (15.0–34.9) | 27.0 (17.0–69.5) | 84.0 (67.0–105.0) | 94.5 (74.8–159.2) | 145.5 (49.2–339.4) (p = 0.010) * | 46.0 (31.2–263.0) (p = 0.004) * |
Left Ventricular Mass (g) mean ± sd | 139.6 ± 24.9 | 182.4 ± 35.2 | 271.9 ± 149.2 | 165.4 ± 73.9 | 217.9 ± 72.9 | 207.6 ± 56.7 | 212.7 ± 81.5 |
Ejection Fraction (%) mean ± sd | 67 ± 5 | 60 ± 4 | 62 ± 9 | 63 ± 10 | 60 ± 6 | 56 ± 3 | 54 ± 24 |
RHI Correlation Coefficient | |
---|---|
Age (y) | −0.469 ** |
Charlson Index | −0.399 ** |
Body mass index (kg/m2) | −0.174 |
Systolic blood pressure (mmHg) | −0.256 ** |
Diastolic blood pressure (mmHg) | −0.087 |
Heart rate (bpm) | −0.003 |
eGFR CKD-EPI (ml/min/1.73 m2) | 0.348 ** |
Protein/creatinine ratio (mg/g) | −0.211 * |
Reactive protein-C (mg/L) | −0.061 |
HDL Cholesterol (mg/dL) | 0.190 * |
LDL Cholesterol (mg/dL) | 0.051 |
Triglycerides (mg/dL) | −0.255 ** |
Alkaline Phosphatase (mg/dL) | −0.136 |
Parathormone (pg/mL) | −0.283 ** |
BNP (pg/mL) | −0.407 ** |
Left ventricular mass (g) | −0.139 |
Ejection Fraction (%) | 0.147 |
Reactive Hyperemia Index (RHI) | ||||
---|---|---|---|---|
Mean | Standard Deviation | p Value 1 | ||
Gender | Female | 2.10 | 0.72 | 0.113 |
Male | 1.91 | 0.61 | ||
Hypertension | No | 2.53 | 0.87 | 0.002 |
Yes | 1.88 | 0.55 | ||
Diabetes | No | 2.12 | 0.73 | 0.001 |
Yes | 1.76 | 0.45 | ||
Dyslipidemia | No | 2.19 | 0.75 | 0.018 |
Yes | 1.88 | 0.59 | ||
Cardiovascular disease | No | 2.08 | 0.72 | 0.029 |
Yes | 1.82 | 0.49 | ||
Cerebrovascular disease | No | 2.06 | 0.68 | 0.036 |
Yes | 1.63 | 0.48 | ||
Statins | No | 2.23 | 0.73 | 0.002 |
Yes | 1.84 | 0.58 | ||
ACEi | No | 2.04 | 0.71 | 0.527 |
Yes | 1.96 | 0.62 |
Beta | 95% CI | p-Value | ||
---|---|---|---|---|
Model 1 | ||||
Renal function (eGFR-CKD Epi) | 0.007 | 0.004 | 0.010 | <0.001 |
Model 2 | ||||
Renal function (eGFR-CKD Epi) | 0.005 | 0.001 | 0.008 | 0.010 |
Hypertension | −0.441 | −0.758 | −0.124 | 0.007 |
Model 3 | ||||
Renal function (eGFR-CKD Epi) | 0.006 | 0.003 | 0.009 | <0.001 |
Diabetes | −0.192 | −0.456 | 0.071 | 0.152 |
Model 4 | ||||
Renal function (eGFR-CKD Epi) | 0.006 | 0.003 | 0.009 | <0.001 |
Dyslipidemia | −0.175 | −0.415 | 0.064 | 0.150 |
Model 5 | ||||
Renal function (eGFR-CKD Epi) | 0.006 | 0.003 | 0.010 | <0.001 |
Cerebrovascular disease | −0.251 | −0.639 | 0.136 | 0.202 |
Model 6 | ||||
Renal function (eGFR-CKD Epi) | 0.007 | 0.003 | 0.010 | <0.001 |
Cardiovascular disease | −0.085 | −0.356 | −187 | 0.538 |
Model 7 | ||||
Renal function (eGFR-CKD Epi) | 0.003 | 0.000 | 0.006 | 0.086 |
Age | −0.018 | −0.026 | −0.010 | <0.001 |
Model 8 | ||||
Renal function (eGFR-CKD Epi) | 0.007 | 0.004 | 0.010 | <0.001 |
Gender (male) | −0.128 | −0.356 | 0.101 | 0.272 |
Model 9 | ||||
Renal function (eGFR-CKD Epi) | 0.005 | 0.002 | 0.009 | 0.001 |
Body Mass Index | −0.017 | −0.036 | −0.003 | 0.096 |
Model 10 | ||||
Renal function (eGFR-CKD Epi) | 0.006 | 0.003 | 0.009 | 0.001 |
Systolic Blood Pressure | −0.006 | −0.011 | 0.000 | 0.041 |
Model 11 | ||||
Renal function (eGFR-CKD Epi) | 0.007 | 0.004 | 0.010 | <0.001 |
Albuminuria | −0.008 | −0.031 | 0.014 | 0.460 |
Model 12 | ||||
Renal function (eGFR-CKD Epi) | 0.004 | 0.000 | 0.007 | 0.047 |
Hypertension | −0.390 | −0.725 | −0.055 | 0.023 |
Diabetes | −0.164 | −0.459 | 0.130 | 0.271 |
Dyslipidemia | −0.075 | −0.328 | 0.178 | 0.557 |
Cerebrovascular disease | −0.228 | −0.625 | 0.169 | 0.258 |
Cardiovascular disease | 0.084 | −0.221 | 0.388 | 0.587 |
Model 12 | ||||
Renal function (eGFR-CKD Epi) | 0.002 | −0.002 | 0.006 | 0.367 |
Hypertension | −0.165 | −0.509 | 0.180 | 0.345 |
Diabetes | −0.031 | −0.339 | 0.276 | 0.840 |
Dyslipidemia | 0.040 | −0.346 | 0.425 | 0.838 |
Cerebrovascular disease | 0.198 | −0.129 | 0.525 | 0.232 |
Cardiovascular disease | −0.015 | −0.443 | 0.413 | 0.945 |
Age | −0.014 | −0.023 | −0.005 | 0.003 |
Gender | −0.085 | −0.339 | 0.170 | 0.510 |
Body Mass Index | −0.017 | −0.038 | 0.004 | 0.119 |
Albuminuria | −0.004 | −0.033 | 0.026 | 0.812 |
FOLLOW-UP (Months) | 47 (19–66) |
---|---|
Outcome | n (%) |
MACCEs | 8 (7.9) |
Acute myocardial infarction | 3 (2.97) |
Stroke | 4 (3.96) |
Composite outcome on CKD progression | 33 (33.0) |
Progression to ESRD | 17 (17.0) |
Hospital admission for medical causes | 17 (16.8) |
Death | 6 (5.9) |
Death by MACCEs | 3 (3.0) |
Composite cardiovascular outcome * | 21 (17.5) |
Reactive Hyperemia Index (RHI) | ||||
---|---|---|---|---|
Mean | sd | p-Value 1 | ||
1.MACCEs | No | 2.01 | 0.68 | 0.356 |
Yes | 1.77 | 0.68 | ||
1.1. Acute myocardial infarction | No | 1.99 | 0.69 | 0.957 |
Yes | 2.01 | 0.44 | ||
1.2. Cerebrovascular events | No | 2.02 | 0.68 | 0.004 |
Yes | 1.27 | 0.26 | ||
2.Death | No | 2.01 | 0.69 | 0.208 |
Yes | 1.65 | 0.58 | ||
3.CKD progression | No | 2.02 | 0.71 | 0.584 |
Yes | 1.94 | 0.62 | ||
3.1. Progression to ESRD | No | 2.05 | 0.70 | 0.120 |
Yes | 1.77 | 0.59 | ||
4.Hospital admission | No | 2.04 | 0.73 | 0.334 |
Yes | 1.90 | 0.59 | ||
5.Composite cardiovascular outcome * | No | 2.07 | 0.69 | 0.035 |
Yes | 1.73 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerqueira, A.; Quelhas-Santos, J.; Sampaio, S.; Ferreira, I.; Relvas, M.; Marques, N.; Dias, C.C.; Pestana, M. Endothelial Dysfunction Is Associated with Cerebrovascular Events in Pre-Dialysis CKD Patients: A Prospective Study. Life 2021, 11, 128. https://doi.org/10.3390/life11020128
Cerqueira A, Quelhas-Santos J, Sampaio S, Ferreira I, Relvas M, Marques N, Dias CC, Pestana M. Endothelial Dysfunction Is Associated with Cerebrovascular Events in Pre-Dialysis CKD Patients: A Prospective Study. Life. 2021; 11(2):128. https://doi.org/10.3390/life11020128
Chicago/Turabian StyleCerqueira, Ana, Janete Quelhas-Santos, Susana Sampaio, Inês Ferreira, Miguel Relvas, Nídia Marques, Cláudia Camila Dias, and Manuel Pestana. 2021. "Endothelial Dysfunction Is Associated with Cerebrovascular Events in Pre-Dialysis CKD Patients: A Prospective Study" Life 11, no. 2: 128. https://doi.org/10.3390/life11020128
APA StyleCerqueira, A., Quelhas-Santos, J., Sampaio, S., Ferreira, I., Relvas, M., Marques, N., Dias, C. C., & Pestana, M. (2021). Endothelial Dysfunction Is Associated with Cerebrovascular Events in Pre-Dialysis CKD Patients: A Prospective Study. Life, 11(2), 128. https://doi.org/10.3390/life11020128