A Rapid PCR-Free Next-Generation Sequencing Method for the Detection of Copy Number Variations in Prenatal Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Construction of NGS Libraries
2.3. Copy Number Variation Sequencing and Data Analysis
2.4. Karyotyping
2.5. Chromosome Microarray Analysis
3. Results
3.1. High Performance of PCR-Free-Based rCNV-Seq
3.2. Validation of rCNV-Seq Using PCR-Free-Frag Library Preparations
3.3. Diagnostic Performance of rCNV-Seq Using Prenatal Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mikhail, F.M. Copy number variations and human genetic disease. Curr. Opin. Pediatr. 2014, 26, 646–652. [Google Scholar] [CrossRef]
- Daughtry, B.L.; Chavez, S.L. Chromosomal instability in mammalian pre-implantation embryos: Potential causes, detection methods, and clinical consequences. Cell Tissue Res. 2016, 363, 201–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri, H.; Mercier, E.; Qiao, Y.; Stephenson, M.D.; Rajcan-Separovic, E. Genomic characteristics of miscarriage copy number variants. Mol. Hum. Reprod. 2015, 21, 655–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Bartanus, J.; Liang, D.; Zhu, H.; Breman, A.M.; Smith, J.L.; Wang, H.; Ren, Z.; Patel, A.; Stankiewicz, P.; et al. Characterization of chromosomal abnormalities in pregnancy losses reveals critical genes and loci for human early development. Hum. Mutat. 2017, 38, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Wapner, R.J.; Martin, C.L.; Levy, B.; Ballif, B.C.; Eng, C.M.; Zachary, J.M.; Savage, M.; Platt, L.D.; Saltzman, D.; Grobman, W.A.; et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 2012, 367, 2175–2184. [Google Scholar] [CrossRef] [Green Version]
- Moorthie, S.; Blencowe, H.; Darlison, M.W.; Gibbons, S.; Lawn, J.E.; Mastroiacovo, P.; Morris, J.K.; Modell, B.; Congenital Disorders Expert Group. Chromosomal disorders: Estimating baseline birth prevalence and pregnancy outcomes worldwide. J. Community Genet. 2018, 9, 377–386. [Google Scholar] [CrossRef]
- Goldenberg, P. An Update on Common Chromosome Microdeletion and Microduplication Syndromes. Pediatr. Ann. 2018, 47, e198–e203. [Google Scholar] [CrossRef]
- Lopez-Rivera, E.; Liu, Y.P.; Verbitsky, M.; Anderson, B.R.; Capone, V.P.; Otto, E.A.; Yan, Z.; Mitrotti, A.; Martino, J.; Steers, N.J.; et al. Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. N. Engl. J. Med. 2017, 376, 742–754. [Google Scholar] [CrossRef] [Green Version]
- Levy, B.; Wapner, R. Prenatal diagnosis by chromosomal microarray analysis. Fertil. Steril. 2018, 109, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, C.P.; Wiszniewska, J.; Beaudet, A.L. Copy number and SNP arrays in clinical diagnostics. Annu. Rev. Genom. Hum. Genet. 2011, 12, 25–51. [Google Scholar] [CrossRef] [Green Version]
- Srebniak, M.I.; Diderich, K.E.; Joosten, M.; Govaerts, L.C.; Knijnenburg, J.; de Vries, F.A.; Boter, M.; Lont, D.; Knapen, M.F.; de Wit, M.C.; et al. Prenatal SNP array testing in 1000 fetuses with ultrasound anomalies: Causative, unexpected and susceptibility CNVs. Eur. J. Hum. Genet. 2016, 24, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Tammi, M.T. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinform. 2009, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, D.; Peng, Y.; Lv, W.; Deng, L.; Zhang, Y.; Li, H.; Yang, P.; Zhang, J.; Song, Z.; Xu, G.; et al. Copy number variation sequencing for comprehensive diagnosis of chromosome disease syndromes. J. Mol. Diagn. 2014, 16, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Xie, W.; Chen, H.; Xu, J.; Wang, H.; Li, Y.; Wang, J.; Chen, F.; Choy, K.W.; Jiang, H. Copy-Number Variants Detection by Low-Pass Whole-Genome Sequencing. Curr. Protoc. Hum. Genet. 2017, 94, 8.17.1–8.17.16. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, L.; Zhou, C.; Wang, L.; Xie, H.; Xiao, Y.; Zhu, H.; Hu, T.; Zhang, Z.; Zhu, Q.; et al. Prospective chromosome analysis of 3429 amniocentesis samples in China using copy number variation sequencing. Am. J. Obstet. Gynecol. 2018, 219, 287.e1–287.e18. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dong, Z.; Zhang, R.; Chau, M.H.K.; Yang, Z.; Tsang, K.Y.C.; Wong, H.K.; Gui, B.; Meng, Z.; Xiao, K.; et al. Low-pass genome sequencing versus chromosomal microarray analysis: Implementation in prenatal diagnosis. Genet. Med. 2020, 22, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Song, L.; Cram, D.S.; Xiong, L.; Wang, K.; Wu, R.; Liu, J.; Deng, K.; Jia, B.; Zhong, M.; et al. Traditional karyotyping vs copy number variation sequencing for detection of chromosomal abnormalities associated with spontaneous miscarriage. Ultrasound Obstet. Gynecol. 2015, 46, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, Y.; Tian, F.; Zhang, J.; Song, Z.; Wu, Y.; Han, X.; Hu, W.; Ma, D.; Cram, D.; et al. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing. Clin. Chem. 2014, 60, 251–259. [Google Scholar] [CrossRef]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Howe, B.; Umrigar, A.; Tsien, F. Chromosome preparation from cultured cells. J. Vis. Exp. 2014, e50203. [Google Scholar] [CrossRef] [Green Version]
- Rayburn, W.F.; LaFerla, J.J. Second-trimester pregnancy termination for genetic abnormalities. J. Reprod. Med. 1982, 27, 584–588. [Google Scholar] [PubMed]
- Alfirevic, Z.; Navaratnam, K.; Mujezinovic, F. Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst. Rev. 2017, 9, CD003252. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Lu, S.; Zhou, X.; Yao, F.; Hao, N.; Yin, G.; Li, W.; Bai, J.; Li, N.; Cram, D.S. Copy number variation sequencing-based prenatal diagnosis using cell-free fetal DNA in amniotic fluid. Prenat. Diagn. 2016, 36, 576–583. [Google Scholar] [CrossRef] [PubMed]
Chromosome Disorders | CMA | rCNV-Seq (PCR-Free-Frag) | Interpretation |
---|---|---|---|
Common trisomies | |||
T21 ǂ | 47XN,+21 | 47XN,+21 | Concordant |
T18 | 47XN,+18 | 47XN,+18 | Concordant |
T13 ǂ | 47XN,+13 | 47XN,+13 | Concordant |
Sex chromosome aneuploidies (SCAs) | |||
45,XO ǂ | 45,XO | 45,XO | Concordant |
47,XXY ǂ | 47,XXY | 47,XXY | Concordant |
47,XXX | 47,XXX | 47,XXX | Concordant |
47,XYY | 47,XYY | 47,XYY | Concordant |
Microdeletion/microduplication syndromes (MMS) | |||
Cri du Chat syndrome (5p15.3-p15.2) | |||
Sample 1 ǂ | 5p15.33p13.3(113576-31928290) ×1, 31.81 Mb | 5p15.33-p13.3(del, 31.90 Mb) | Concordant |
Sample 2 | 5p15.2p15.33(151,737-14,756,030) ×1, 14.6 Mb | 5p15.33-p15.2(del, 17.30 Mb) | Concordant |
Sample 3 | 5p13.3p15.33(151,737-33,120,547) ×1, 32.97 Mb | 5p15.33-p13.3(del, 33.14 Mb) | Concordant |
Williams–Beuren syndrome (7q11.23) | |||
Sample 1 ǂ | 7q11.23(72653992-74146927) ×1, 1.49 Mb | 7q11.23(del, 1.32 Mb) | Concordant |
Sample 2 ǂ | 7q11.23(72549979-74374748) ×1, 1.82 Mb | 7q11.23(del, 1.36 Mb) | Concordant |
Sample 3 | 7q11.23(72,726,578-74,139,390) ×1, 1.41 Mb | 7q11.23(del, 1.39 Mb) | Concordant |
Wolf–Hirschhorn syndrome (4p16.3) | |||
Sample 1 ǂ | 4p16.1p16.3(71,552-8,510,870) ×1, 8.44 Mb | 4p16.3-p16.1(del, 8.48 Mb) | Concordant |
Sample 2 | 4p16.1p16.3(143,413-8,368,180) ×1, 8.22 Mb | 4p16.3-p16.1(del, 8.35 Mb) | Concordant |
DiGeorge syndrome (22q11.2) | |||
Sample 1 ǂ | 22q11.21(18648855-21800471) ×1, 3.15 Mb | 22q11.21(del, 2.49 Mb) | Concordant |
Sample 2 | 22q11.21(18,919,942-21,440,514) ×1, 2.52 Mb | 22q11.21(del, 2.55 Mb) | Concordant |
Prader-Willi/Angelman syndrome (15q11-q13) | |||
Sample 1 ǂ | 15q11.2q13.1(23290787-28560664) ×1, 5.27 Mb | 15q11.2-q13.1(del, 4.84 Mb) | Concordant |
Smith–Magenis syndrome (17p11.2) | |||
Sample 1 | 17p11.2p12(15,816,892-20,193,169) ×1, 4.38 Mb | 17p12-p11.2(del, 4.92 Mb) | Concordant |
Miller–Dieker syndrome (17p13.3-p13.2) | |||
Sample 1 ǂ | 17p13.3p13.2(1,972,209-5,945,876) ×1, 4.0 Mb | 17p13.3p13.2(del, 5.95 Mb) | Concordant |
VOUS (8p23.2) | |||
Sample 1 ǂ | 8p23.2(3,427,306-4,275,392) ×1, 0.8 Mb | 8p23.2(del, 0.83 Mb) | Concordant |
VOUS (11q14.3) | |||
Sample 1 | 11q14.3(91,347,506-92,085,142) ×3, 0.7 Mb | 11q14.3(dup, 0.73 Mb) | Concordant |
VOUS (17p13.3) | |||
Sample 1 | 17p13.3(1,004,599-1,518,383) ×3, 0.51 Mb | 17p13.3(dup,0.68 Mb) | Concordant |
VOUS (5p12-p11) | |||
Sample 1 ǂ | 5p12p11(45,455,695-46,242,541) ×3, 0.78 Mb | 5p12-p11(dup, 0.85 Mb) | Concordant |
Primary Indication for Chromosome Testing | Sample (n) | rCNV-Seq Result | |
---|---|---|---|
Abnormal | Normal | ||
Advanced Maternal Age (≥35 Years) | 152 | 4 (T21) | 148 |
Abnormal serum screening result (<35 years) | 41 | 2 (T21 and 47,XXX) | 39 |
Previously given birth to child with a chromosomal disorder | 8 | 1 (T18) | 7 |
Structural abnormality by ultrasound | 7 | 1 (T21) | 6 |
One parent is a carrier of a chromosomal disorder | 2 | 0 | 2 |
Advanced maternal age (≥35 years) and secondary indication # | 7 | 0 | 7 |
Total | 217 | 8 | 209 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Chen, X.; Jiang, Y.; Qi, Q.; Hao, N.; Liu, C.; Xu, M.; Cram, D.S.; Liu, J. A Rapid PCR-Free Next-Generation Sequencing Method for the Detection of Copy Number Variations in Prenatal Samples. Life 2021, 11, 98. https://doi.org/10.3390/life11020098
Zhou X, Chen X, Jiang Y, Qi Q, Hao N, Liu C, Xu M, Cram DS, Liu J. A Rapid PCR-Free Next-Generation Sequencing Method for the Detection of Copy Number Variations in Prenatal Samples. Life. 2021; 11(2):98. https://doi.org/10.3390/life11020098
Chicago/Turabian StyleZhou, Xiya, Xiangbin Chen, Yulin Jiang, Qingwei Qi, Na Hao, Chengkun Liu, Mengnan Xu, David S. Cram, and Juntao Liu. 2021. "A Rapid PCR-Free Next-Generation Sequencing Method for the Detection of Copy Number Variations in Prenatal Samples" Life 11, no. 2: 98. https://doi.org/10.3390/life11020098
APA StyleZhou, X., Chen, X., Jiang, Y., Qi, Q., Hao, N., Liu, C., Xu, M., Cram, D. S., & Liu, J. (2021). A Rapid PCR-Free Next-Generation Sequencing Method for the Detection of Copy Number Variations in Prenatal Samples. Life, 11(2), 98. https://doi.org/10.3390/life11020098