Cross-Validation of Next-Generation Sequencing Technologies for Diagnosis of Chromosomal Mosaicism and Segmental Aneuploidies in Preimplantation Embryos Model
Abstract
:1. Introduction
2. Results
2.1. Assessment of Chromosome Mosaicism by VeriSeq and ReproSeq NGS Methodologies in TE Biopsy Models
2.2. Concordance Analysis
2.3. Assessment of Segmental Aneuploidies by VeriSeq and ReproSeq-NGS Methodologies in TE Biopsy Models
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Reconstructed Mosaicism Experimental Model
4.3. VeriSeq-NGS Protocol (Illumina)
4.3.1. Whole Genome Amplification
4.3.2. NGS Analysis
4.4. Reproseq NGS Protocol (Thermo Fisher)
4.4.1. Whole Genome Amplification and Library Preparation
4.4.2. Template Preparation and Enrichment
4.4.3. NGS Analysis
4.4.4. Concordance Analysis
4.4.5. Evaluation of Sensitivity and Specificity
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilton, L. Preimplantation genetic diagnosis for aneuploidy screening in early human embryos: A review. Prenat. Diagn. 2002, 22, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Lathi, R.B.; Westphal, M.D.; Milki, A.A. Aneuploidy in the miscarriages of infertile women and the potential benefit of preimplantation genetic diagnosis. Fertil. Steril. 2008, 89, 353–3587. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, J.; Collins, G.S.; Salem, S.A.; Liu, X.; Lyle, S.S.; Peck, A.C.; Sills, E.S.; Salem, R.D. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: Results from a randomized pilot study. Mol. Cytogenet. 2012, 5, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, R.T., Jr.; Upham, K.M.; Forman, E.J.; Hong, K.H.; Scott, K.L.; Taylor, D.; Tao, X.; Treff, N.R. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases IVF implantation and delivery rates: A randomized controlled trial. Fertil. Steril. 2013, 100, 697–703. [Google Scholar] [CrossRef]
- Rubio, C.; Bellver, J.; Rodrigo, L.; Castillón, G.; Guillén, A.; Vidal, C.; Giles, J.; Ferrando, M.; Cabanillas, S.; Remohí, J.; et al. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: A randomized, controlled study. Fertil. Steril. 2017, 107, 1122–1129. [Google Scholar] [CrossRef] [Green Version]
- Esfandiari, N.; Bunnell, M.E.; Casper, R.F. Human embryo mosaicism: Did we drop the ball on chromosomal testing? J. Assist. Reprod. Genet. 2016, 33, 1439–1444. [Google Scholar] [CrossRef] [Green Version]
- Mastenbroek, S.; Repping, S. Preimplantation genetic screening: Back to the future. Hum. Reprod. 2014, 29, 1846–1850. [Google Scholar] [CrossRef] [Green Version]
- Mastenbroek, S.; Twisk, M.; van der Veen, F.; Repping, S. Preimplantation genetic screening: A systematic review and meta-analysis of RCTs. Hum. Reprod. Update 2011, 17, 454–466. [Google Scholar] [CrossRef] [Green Version]
- Munné, S.; Grifo, J.; Wells, D. Mosaicism: “survival of the fittest” versus “no embryo left behind”. Fertil. Steril. 2016, 105, 1146–1149. [Google Scholar] [CrossRef] [Green Version]
- Munné, S.; Weier, H.U.; Grifo, J.; Cohen, J. Chromosome mosaicism in human embryos. Biol. Reprod. 1994, 51, 373–379. [Google Scholar] [CrossRef]
- Taylor, T.H.; Gitlin, S.A.; Patrick, J.L.; Crain, J.L.; Wilson, J.M.; Griffin, D.K. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum. Reprod. Update 2014, 20, 571–581. [Google Scholar] [CrossRef]
- Greco, E.; Minasi, M.G.; Fiorentino, F. Healthy babies born after intrauterine transfer of mosaic aneuploid blastocyst. NEJM 2015, 373, 2089–2090. [Google Scholar] [CrossRef] [Green Version]
- Fragouli, E.; Alfarawati, S.; Spath, K.; Babariya, D.; Tarozzi, N.; Borini, A.; Wells, D. Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid-aneuploid blastocysts. Hum. Genet. 2017, 136, 805–819. [Google Scholar] [CrossRef]
- Munné, S.; Wells, D. Detection of mosaicism at blastocyst stage with the use of high-resolution next-generation sequencing. Fertil. Steril. 2017, 107, 1085–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinella, F.; Fiorentino, F.; Biricik, A.; Bono, S.; Ruberti, A.; Cotroneo, E.; Baldi, M.; Cursio, E.; Minasi, M.G.; Greco, E. Extent of chromosomal mosaicism influences the clinical outcome of in vitro fertilization treatments. Fertil. Steril. 2018, 109, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munné, S.; Spinella, F.; Grifo, J.; Zhang, J.; Beltran, M.P.; Fragouli, E.; Fiorentino, F. Clinical outcomes after the transfer of blastocysts characterized as mosaic by high resolution Next Generation Sequencing-further insights. Eur. J. Med. Genet. 2020, 63, 103741. [Google Scholar] [CrossRef] [PubMed]
- Victor, A.R.; Tyndall, J.C.; Brake, A.J.; Lepkowsky, L.T.; Murphy, A.E.; Griffin, D.K.; McCoy, R.C.; Barnes, F.L.; Zouves, C.G.; Viotti, M. One hundred mosaic embryos transferred prospectively in a single clinic: Exploring when and why they result in healthy pregnancies. Fertil. Steril. 2019, 111, 280–293. [Google Scholar] [CrossRef] [PubMed]
- CoGEN. CoGEN Position Statement on Chromosomal Mosaicism Detected in Preimplantation Blastocyst Biopsies. Available online: https://ivf-worldwide.com/index.php?option=com_content&view=article&id=733&Itemid=464 (accessed on 26 July 2018).
- Cram, D.S.; Leigh, D.; Handyside, A.; Rechitsky, L.; Xu, K.; Harton, G.; Grifo, J.; Rubio, C.; Fragouli, E.; Kahraman, S.; et al. PGDIS Position Statement on the Transfer of Mosaic Embryos 2019. Reprod. Biomed. Online 2019, 39 (Suppl. 1), e1–e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capalbo, A.; Ubaldi, F.M.; Rienzi, L.; Scott, R.; Treff, N. Detecting mosaicism in 611 trophectoderm biopsies: Current challenges and future possibilities. Hum. Reprod. 2017, 32, 492–498. [Google Scholar] [PubMed]
- Van der Aa, N.; Cheng, J.; Mateiu, L.; Zamani Esteki, M.; Kumar, P.; Dimitriadou, E.; Vanneste, E.; Moreau, Y.; Vermeesch, J.R.; Voet, T. Genome-wide copy number profiling of single cells in S-phase reveals DNA replication domains. Nucleic Acids Res. 2013, 41, e66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, L.; del Rey, J.; Daina, G.; Martinez-Passarell, O.; Rius, M.; Tunon, D.; Campillo, M.; Benet, J.; Navarro, J. Does the S phase have an impact on the accuracy of comparative genomic hybridization profiles in single fibroblasts and human blastomeres? Fertil. Steril. 2014, 101, 488–495. [Google Scholar] [CrossRef]
- Handyside, A.H. 24-chromosome copy number analysis: A comparison of available technologies. Fertil. Steril. 2013, 100, 595–602. [Google Scholar] [CrossRef]
- Rubio, C. Next-generation sequencing: Challenges in reproductive genetics. Fertil. Steril. 2014, 101, 1252–1253. [Google Scholar] [CrossRef] [PubMed]
- Wells, D.; Kaur, K.; Grifo, J.; Glassner, M.; Taylor, J.C.; Fragouli, E.; Munne, S. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J. Med. Genet. 2014, 51, 553–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorentino, F.; Bono, S.; Biricik, A.; Nuccitelli, A.; Cotroneo, E.; Cottone, G.; Kokocinski, F.; Michel, C.E.; Minasi, M.G.; Greco, E. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum. Reprod. 2014, 29, 2802–2813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamas, T.; Gordon, A.; Brown, A.; Harper, J.; Sengupta, S. Detection of aneuploidy by array comparative genomic hybridization using cell lines to mimic a mosaic trophectoderm biopsy. Fertil. Steril. 2012, 97, 943–947. [Google Scholar] [CrossRef]
- Capalbo, A.; Wright, G.; Elliott, T.; Ubaldi, F.M.; Rienzi, L.; Nagy, Z.P. FISH reanalysis of inner cell mass and trophectoderm samples of previously array-CGH screened blastocysts shows high accuracy of diagnosis and no major diagnostic impact of mosaicism at the blastocyst stage. Hum. Reprod. 2013, 28, 2298–2307. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.A.; Cohen, N.; Brandt, T.; Toruner, G.; Desnick, R.J.; Edelmann, L. Detection of low-level mosaicism and placental mosaicism by oligonucleotide array comparative genomic hybridization. Genet. Med. 2010, 12, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Gleicher, N.; Vidali, A.; Braverman, J.; Kushnir, V.A.; Barad, D.H.; Hudson, C.; Wu, Y.G.; Wang, Q.; Zhang, L.; Albertini, D.F.; et al. Accuracy of preimplantation genetic screening (PGS) is compromised by degree of mosaicism of human embryos. Reprod. Biol. Endocrinol. 2016, 14, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treff, N.R.; Franasiak, J.M. Detection of segmental aneuploidy and mosaicism in the human preimplantation embryo: Technical considerations and limitations. Fertil. Steril. 2017, 107, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Coonen, E.; Rubio, C.; Christopikou, D.; Dimitriadou, E.; Gontar, J.; Goossens, V.; Maurer, M.; Spinella, F.; Vermeulen, N.; De Rycke, M.; et al. ESHRE PGT Consortium good practice recommendations for the detection of structural and numerical chromosomal aberrations. Hum. Reprod. Open 2020, 2020, hoaa017. [Google Scholar] [CrossRef]
- Goodrich, D.; Tao, X.; Bohrer, C.; Lonczak, A.; Xing, T.; Zimmerman, R.; Zhan, Y.; Scott, R.T., Jr.; Treff, N.R. A randomized and blinded comparison of qPCR and NGS-based detection of aneuploidy in a cell line mixture model of blastocyst biopsy mosaicism. J. Assist. Reprod. Genet. 2016, 33, 1473–1480. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, D.; Xing, T.; Tao, X.; Lonczak, A.; Zhan, Y.; Landis, J.; Zimmerman, R.; Scott, R.T., Jr.; Treff, N.R. Evaluation of comprehensive chromosome screening platforms for the detection of mosaic segmental aneuploidy. J. Assist. Reprod. Genet. 2017, 34, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Vera-Rodriguez, M.; Michel, C.E.; Mercader, A.; Bladon, A.J.; Rodrigo, L.; Kokocinski, F.; Mateu, E.; Al-Asmar, N.; Blesa, D.; Simón, C.; et al. Distribution patterns of segmental aneuploidies in human blastocysts identified by next-generation sequencing. Fertil. Steril. 2016, 105, 1047–1055.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viotti, M.; Victor, A.; Barnes, F.; Zouves, C.; Besser, A.G.; Grifo, J.A.; Cheng, E.H.; Lee, M.S.; Lin, P.Y.; Corti, L.; et al. Using outcome data from one thousand mosaic embryo transfers to formulate an embryo ranking system for clinical use. Fertil. Steril. 2021. [Google Scholar] [CrossRef] [PubMed]
- Munné, S. New insights from one thousand mosaic embryo transfers: Features of mosaicism dictating rates of implantation, spontaneous abortion, and neonate health. Fertil. Steril. 2020, 114, e1–e2. [Google Scholar]
- Besser, A.G.; Mounts, E.L. Counselling considerations for chromosomal mosaicism detected by preimplantation genetic screening. Reprod. Biomed. Online 2017, 34, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, N.M.; Maxwell, S.M.; Besser, A.G.; Grifo, J.A. Diagnosis and clinical management of embryonic mosaicism. Fertil. Steril. 2017, 107, 6–11. [Google Scholar] [CrossRef] [Green Version]
Concordance Analysis | VeriSeq No. (95% CI) | ReproSeq No. (95% CI) |
---|---|---|
Chromosome calling comparison | 2888 | 2888 |
| 2550 | 2550 |
| 330 | 330 |
| 36 | 72 |
| 0 | 0 |
Aneuploidy call performance | ||
| 90.16% (86.64–93.02%) | 82.09% (77.98–85.71%) |
| 100% (99.86–100%) | 100% (99.86–100%) |
Whole-embryo Aneuploidy/Euploidy status comparison | ||
| 6 | 6 |
| 114 | 114 |
| 12 | 24 |
| 0 | 0 |
Aneuploid embryo call performance | ||
| 94.48% (83.95–94.98%) | 82.61% (75.24–88.53%) |
| 100% (54.07–100%) | 100% (54.07–100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biricik, A.; Cotroneo, E.; Minasi, M.G.; Greco, P.F.; Bono, S.; Surdo, M.; Lecciso, F.; Sessa, M.; Fiorentino, F.; Spinella, F.; et al. Cross-Validation of Next-Generation Sequencing Technologies for Diagnosis of Chromosomal Mosaicism and Segmental Aneuploidies in Preimplantation Embryos Model. Life 2021, 11, 340. https://doi.org/10.3390/life11040340
Biricik A, Cotroneo E, Minasi MG, Greco PF, Bono S, Surdo M, Lecciso F, Sessa M, Fiorentino F, Spinella F, et al. Cross-Validation of Next-Generation Sequencing Technologies for Diagnosis of Chromosomal Mosaicism and Segmental Aneuploidies in Preimplantation Embryos Model. Life. 2021; 11(4):340. https://doi.org/10.3390/life11040340
Chicago/Turabian StyleBiricik, Anil, Ettore Cotroneo, Maria Giulia Minasi, Pier Francesco Greco, Sara Bono, Matteo Surdo, Federica Lecciso, Mariateresa Sessa, Francesco Fiorentino, Francesca Spinella, and et al. 2021. "Cross-Validation of Next-Generation Sequencing Technologies for Diagnosis of Chromosomal Mosaicism and Segmental Aneuploidies in Preimplantation Embryos Model" Life 11, no. 4: 340. https://doi.org/10.3390/life11040340
APA StyleBiricik, A., Cotroneo, E., Minasi, M. G., Greco, P. F., Bono, S., Surdo, M., Lecciso, F., Sessa, M., Fiorentino, F., Spinella, F., & Greco, E. (2021). Cross-Validation of Next-Generation Sequencing Technologies for Diagnosis of Chromosomal Mosaicism and Segmental Aneuploidies in Preimplantation Embryos Model. Life, 11(4), 340. https://doi.org/10.3390/life11040340