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Abstract: Retrotransposons, a large and diverse class of transposable elements that are still active
in humans, represent a remarkable force of genomic innovation underlying mammalian evolution.
Among the features distinguishing mammals from all other vertebrates, the presence of a neocor-
tex with a peculiar neuronal organization, composition and connectivity is perhaps the one that,
by affecting the cognitive abilities of mammals, contributed mostly to their evolutionary success.
Among mammals, hominids and especially humans display an extraordinarily expanded cortical
volume, an enrichment of the repertoire of neural cell types and more elaborate patterns of neuronal
connectivity. Retrotransposon-derived sequences have recently been implicated in multiple layers
of gene regulation in the brain, from transcriptional and post-transcriptional control to both local
and large-scale three-dimensional chromatin organization. Accordingly, an increasing variety of
neurodevelopmental and neurodegenerative conditions are being recognized to be associated with
retrotransposon dysregulation. We review here a large body of recent studies lending support to
the idea that retrotransposon-dependent evolutionary novelties were crucial for the emergence of
mammalian, primate and human peculiarities of brain morphology and function.

Keywords: SINE; ERV; LINE-1; transposable elements; enhancer; exaptation; neocortex; noncoding
RNA; neuron

1. Introduction

A large fraction of most eukaryotic genomes is constituted by transposable elements
(TEs), interspersed repeats of which the high copy number reflects mobile DNA integration
events that occurred countless times throughout evolutionary history [1]. Although they
represent a constant challenge for genome stability, TEs have at the same time introduced
potentially fruitful changes into genomes both by driving genomic rearrangements (result-
ing, for example, in gene duplication) and by exaptation of TE-derived sequences [2–4].
Since TEs replicate as genomic parasites, eukaryotic host organisms have co-evolved TE
silencing systems largely based on the deposition of repressive epigenetic marks, of which
the effect on the epigenome accompanied the effect of TE on the genome over the course of
evolution [5]. By allowing TE retention, TE silencing mechanisms have provided genomes
with large pools of latent functional elements poised for exaptation [6]. While the so-called
DNA transposons employ a mechanism directly moving DNA segments from one genomic
location to another, the heterogeneous class of TEs referred to as retrotransposons (or
retroelements) do so through reverse transcription of an RNA copy of the original element,
thereby affecting genome composition through the constant introduction of new DNA
material. The peculiar ability of retrotransposon systems to support conversion from RNA
to DNA incessantly contributes new sequences, potentially encoding new protein/RNA
molecules or providing new cis-regulatory functions that selection can act on to produce
genomic and organismal innovations [7,8].
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The last 15 years have seen a remarkable spurt of studies exploring the idea that
retrotransposon activity affects brain development and function in mammals, through the
promotion of somatic mosaicism in the brain [9,10], the generation of novel transcripts
and proteins playing diverse roles in neuron biology [11,12], as well as the seeding of
cis-regulatory elements, affecting transcription factor-dependent gene regulation, and of
boundary elements, participating in three-dimensional (3D) genome architecture [13,14].
The deep involvement of retrotransposons in brain biology also makes them a source of
vulnerability and disease [15,16]. All these indications of the pervasive influence of retro-
transposons on brain biology consolidate the idea that the evolution of the nervous system,
of which the results include the uniquely evolved human brain, has retrotransposons
among its driving factors [13,17,18].

In this review, we intend to provide a comprehensive, updated and reasoned picture
of the impact of retrotransposons on brain evolution in mammals, on which most relevant
studies have been focused. We start with brief and updated accounts the existing general
knowledge about retrotransposons and their impact on genome evolution and about key
genomic innovations underpinning brain evolution in mammals. We then move on to
a detailed discussion of recent studies which are increasingly revealing the pervasive
contribution of the different groups of retrotransposons to the evolution of distinguishing
brain features in mammals and particularly in humans.

2. Retrotransposons and Their Impact on Mammalian Genome Evolution
2.1. Retrotransposons in Mammalian Genomes

TEs are repetitive DNA sequences, typically ranging in length from 100 to 10,000 bp,
capable of colonizing new genomic locations with copies of themselves. Based on their
mode of transposition, with or without an RNA intermediate, TEs are split into two
major classes: the eukaryote-specific class I TEs, or retrotransposons, which mobilize
via a “copy-and-paste” mechanism involving reverse transcription of an RNA copy of
a source element, and the class II TEs or DNA transposons, mobilizing without reverse
transcription mainly via a “cut-and-paste” mechanism [4]. The increase in TE copy number
in genomes is primarily due to their capacity for vertical inheritance through the germline,
a property giving TEs great potential for the generation of evolutionary novelties. Indeed,
an enormous amount of studies since their discovery has mitigated the emphasis on TEs as
a useless form of parasitic DNA, by revealing their irreplaceable contribution to genome
structure, information content and regulation [19,20], thus substantially corroborating early,
far-seeing hypotheses about their role [21,22] (see [23] for a historical perspective). The other
side of the coin is that TE mobility has the potential to disrupt functional genetic elements
in both germinal and somatic cells, thus leading to disease [24,25]. It is thus not surprising
that retrotransposons coevolve with mechanisms counteracting retrotransposition [26–28].

Each class of TEs comprises different clades/superfamilies and families, the diversity
and complexity of which has prompted decades-long identification and classification
efforts [29,30]. In particular, class I TEs are typically subdivided into long terminal repeat
(LTR) and non-LTR retrotransposons, with the former displaying a close relationship with
retroviruses and other reverse-transcribing viruses (Figure 1). TEs of both class I and II can
further be classified as either autonomous or non-autonomous, the former having the ability
to self-mobilize, the latter relying on the enzymatic machinery of other TEs for mobilization.
Such a distinction is especially relevant in the case of non-LTR retrotransposons, which can
be broadly divided into the autonomous elements referred to as long interspersed elements
(LINEs) and the non-autonomous short interspersed elements (SINEs) [4]. SINEs are
known to exploit the LINE retrotransposition machinery for mobilization, often facilitated
by 3′ end sequence similarity between LINE and SINE partners [31,32]. Although LTR
and LINE retrotransposons are transcribed by the RNA polymerase II machinery, assisted
by a few sequence-specific transcription factors (TFs), most SINEs are transcribed by
RNA polymerase III due to the presence of internal control regions (A box and B box)
recognized by the Pol III-specific basal transcription factor TFIIIC [33,34]. Indeed, the
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evolutionary origin of most SINEs has been traced back to Pol III-transcribed genes coding
for abundant small RNAs, such as tRNA, 5S rRNA and 7SL RNA, all employing TFIIIC as
a sequence-specific DNA binding protein essential for transcription complex assembly [35].
Accordingly, SINEs are generally divided into SINE1/7SL, SINE2/tRNA and SINE3/5S
(Figure 1), to which the more recently identified SINEU (derived from U1 and U2 snRNAs)
have been added [29].

In the last decade, mainly due to high-throughput sequencing and TE annotation
advancements, TEs have been disclosed as a major component of vertebrate genomes,
strongly contributing to their diversity [36]. In mammals, which are the best-studied
vertebrates in terms of TE biology, the mobilome (defined as the whole set of TEs in
the genome) generally display distinguishing features among vertebrates. TEs account
for more than 50% of the size of many mammalian genomes, with a preponderance of
retrotransposons, which are present in extremely large copy numbers, a minimized content
of DNA transposons and a low subfamily diversity compared to other vertebrates [36].
For example, in the two most intensively studied mammals, humans and mice, DNA
transposons represent approximately 1.2–3% of the genome sequence, to be compared with
the 40–45% of retrotransposons. Among the latter, LINEs contribute 20–22% of the genome
sequence in both humans and mice, with LINE-1 (or L1) being the most abundant subfamily,
contributing ~17% of the genome sequence. The relative abundance of SINEs and LTR
retrotransposons differs markedly between the two mammals, however. In humans, LTR
retrotransposons and SINEs represent ~8% and ~13% of the genome, respectively, whereas
in mice the corresponding values are 12% and 8%, respectively [37,38].

The L1 family, perhaps the most evolutionarily successful retrotransposon family in
mammals, has been a resident of their genomes since early in mammalian radiation, and
is likely to have undergone recurrent cycles of adaptation and innovation, leading to the
persistence of a single successful lineage [39]. In contrast, SINEs, whose expansion is free
from the need to code for a retrotransposition machinery, did not expand continuously
from a single, evolutionarily successful family. Instead, novel SINEs have arisen multiple
times in the evolution of mammals and, more broadly, of vertebrates [36]. The diversity
of lineage-specific SINE families that emerged during mammalian evolution is evident
when looking at the distribution of SINE families across major mammal groups (see,
for example, [13]). In particular, the most numerous human SINEs, represented by the
SINE1/7SL Alu elements (~1.1 × 106 copies), are primate-specific. A comparative study of
mobile element insertions in human and great ape genomes revealed that, during recent
human/great ape evolution, the most variable form of genetic variation is represented by
Alu retrotransposition, with remarkable increases and decreases occurring over very short
evolutionary times [40]. The recently discovered, composite SVA elements—evolutionarily
young, SINE-derived retrotransposons which include subfamilies restricted to the human
lineage—are also specific to primates [1,41,42]. In mice, the most numerous SINE family
is represented by the 7SL-derived, monomeric B1 elements (~5.6 × 105 copies), closely
followed by the tRNA-derived B2 elements (~3.5 × 105 copies) and by the B1-and tRNA-
derived B4 elements (3.9 × 105 copies) [37,43,44]. More generally, drastically different
retrotransposon landscapes characterize the genomes of even closely related taxa, and
speciation events and the expansion of new retrotransposon families are often correlated,
all pointing to the mobilome as a driver of organism diversification [45]. This does not
exclude the existence of conserved retrotransposon subfamilies that appeared at very
early stages of mammalian evolution, such as the tRNA-derived SINEs referred to as
mammalian-wide interspersed repeats (MIRs), which were actively propagating prior to
the radiation of mammals and before placental mammals separated. Although they are
retropositionally inactive, MIRs still represent the second most numerous SINE subfamily
in humans [46–48].

Concerning LTR retrotransposons, as mentioned above, they derive from ancestral
retroviral infections sustained by exogenous retroviruses that have now gone extinct, except
for a few exceptional examples of ongoing endogenization [49]. Having originated from
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proviral integrations, these elements display a typical retroviral structure—presenting
two LTRs that flank the three main genes gag, pro-pol and env—and are hence also named
endogenous retroviruses (ERVs) (Figure 1). ERVs are present in all vertebrate genomes,
constituting around 10% of the diverse species’ DNA, and have provided important
contributions to their hosts over the course of evolution [50]. As suggested by comparative
studies, the numerous ERV lineages found in modern mammal genomes arose from
multiple independent events of genome invasion, also affecting the host germline, followed
by the vertical inheritance of ERVs as host alleles. As a relevant number of such events
occurred after the divergence of mammalian orders, each mammalian order tends to have
its own distinct ERV content, composition and history, with some ERVs being unique
even to individual genera or species, and the same diversification trend also applies to
vertebrates as a whole [51,52]. In the case of primates, for example, lineage-specific ERV
insertions have been observed in the genomes of African great apes that are absent from
human and Asian ape genomes [53]. Even though the retrotransposition activity of human
ERVs (HERVs) is presently very limited or absent [54], there is growing evidence that
HERVs are widely expressed in human tissues, even in the absence of protein production,
which has led to an intense study of their possible roles in human pathologies, including
cancer, autoimmune disorders and infectious diseases [55–57].

ERVs are usually divided into three classes based on their affinity to exogenous animal
viruses: class I (gammaretrovirus- and epsilonretrovirus-like), class II (betaretrovirus-like)
and class III (spumaretrovirus-like). Concerning individual ERV group classification, it
is still incomplete—also due to the relatively recent availability of assembled genome
sequences for many vertebrates—and sometimes controversial, given that ERVs are not
always named based on phylogenetic and taxonomical criteria. A recent work performed
on the human genome with the software RetroTector employed a multi-step classification
approach, identifying ~3300 reasonably intact HERV loci that were divided in 31 taxo-
nomical groups, plus 39 “non-canonical” clades showing high degrees of mosaicism and
recombination events [58]. Such a comprehensive genomic analysis, complemented by the
available detailed characterizations of individual HERV groups (see, for instance, [59–62]),
represent an ideal background to evaluate HERV expression in human tissues and its
variation in diseased contexts [63].

Figure 1. Cont.
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Figure 1. Schematic view of retrotransposons. Retrotransposons are divided into two main classes
depending on the presence of long terminal repeat (LTR) regions. (A) LTR retrotransposons are also
generally referred to as endogenous retroviruses (ERVs). Their full-length sequence (top) is schematically
composed of a 5’-LTR (orange arrow) containing the RNA polymerase II (Pol II) promoter, from which the
entire unit is transcribed. The coding region of the transcribed ERV spans three main genes, such as Gag,
Pol and Env, represented by the blue, purple and yellow boxes, respectively. The coding region is followed
by the 3’-LTR sequence (orange arrow); 5’ and 3’ LTRs are formed from viral RNA ends during reverse
transcription and are identical at the time of integration. Intact LTR retrotransposons are autonomous, as
they encode for the protein machinery required for their reverse transcription and integration. Many LTR
retrotransposons are incomplete, however. In extreme cases (bottom), the recombination between 5’ and
3’ LTRs of the same provirus can reduce ERV sequences to a solitary LTR only, from which transcripts
can originate by virtue of the Pol II promoter embedded within the LTR (orange arrow). (B) Non-LTR
retrotransposons include both autonomous (LINE) and non-autonomous (SINE, SVA) classes, illustrated
in the upper and lower parts of the panel, respectively. LINEs, predominantly represented by the LINE-1
(L1) group in humans, harbor a 5’-UTR, containing the Pol II promoter from which they are transcribed
(curved arrow). The coding region of the transcribed LINE-1 is composed of two main open-reading
frames, ORF1 and ORF2, coding for the homonymous proteins (green and pink boxes). The 3’-UTR of
the LINE-1 contains a poly(A) tract (An). SINEs are further divided into three main groups or clades:
SINE1/7SL, SINE2/tRNA and SINE3/5S, depending on the type of ancestral sequence from which they
originated, specifically the 7SL RNA, the tRNA and the 5S RNA sequence. Consistent with their origin,
SINEs contain internal Pol III promoters. Alu elements, the most numerous SINEs in humans, belong to
the SINE1/7SL group as they contain two 7SL-related moieties (gray boxes). The upstream 7SL-related
moiety harbors A- and B-box internal control elements, recognized by the Pol III-specific transcription
factor TFIIIC (yellow boxes) in their left 7SL-related moiety. The two moieties are also separated by an
A-rich tract (An). Another poly(A) tract is found at the end of the SINE. SINEs of the SINE2/tRNA group
harbor A- and B-boxes in their tRNA-related upstream moiety (yellow boxes), followed by sequences of
diverse origins. A noteworthy example of this group is represented by the mammalian-wide interspersed
repeat (MIR) elements. SINE3/5S elements are exemplified in the Figure by AmnSINE1, formed by
an upstream 5S-derived moiety (red box), containing the 5S-specific A- and C-box internal promoter
elements, followed by a tRNA-related fragment (yellow). Represented in the bottom part of the panel
is the structure of an SVA element, consisting of (from the 5’ to 3’ end) a hexameric repeat region, an
Alu-related region, a variable number tandem repeat (VNTR) region, and a SINE-R sequence sharing
homology with human endogenous retrovirus HERV-K10.
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The high proportion of retrotransposons in mammalian genomes, exceeding 90%
of all TEs in humans and 95% in mice and rats, together with the presence of at least
one family of currently accumulating retrotransposons in most mammals [38], has at-
tracted the greatest attention onto this TE class. An impressive body of studies in the
last two decades have addressed the role that retrotransposons played in mammalian,
and particularly in human, evolution by facilitating the appearance of genomic novel-
ties. As new evidence accumulated, authoritative reviews were published at various
times, covering in great detail the genomic impact and the different emerging aspects of
retrotransposons [6,8,13,37,38,52,54,64–78]. In a nutshell, it is thought that retrotrans-
posons contributed to the generation of genomic novelties in two main ways: (i) indirectly,
through the promotion of genomic rearrangements; and (ii) directly, through exaptation of
retrotransposon-derived sequences.

2.2. Retrotransposons as Drivers of Genomic Rearrangements

Their indirect contributions to genomic novelties derive from the fact that retrotrans-
posons, due to their high copy number and high sequence homology within families, are
a relatively frequent substrate of unequal recombination events producing gene and/or
exon duplication, shuffling or deletion. As an additional mechanism, retrotransposons
sometimes carry flanking genomic sequences with them (a process referred to as 5’ or
3’ transduction) thus potentially introducing new copies of genes/exons into new loca-
tions [54]. The generation of retrogenes is a further indirect consequence of the presence
of autonomous retrotransposons, the machinery of which may be exploited by mRNAs
or other RNAs to generate new copies of their coding sequences [7]. Independently from
the mechanisms of their generation, new gene copies have great potential for neofunction-
alization favoring phenotypic evolution [79], a property that, contrary to what has been
prevailingly thought, is likely to also apply to pseudogenes and retropseudogenes [80].

2.3. Retrotransposon Exaptation as a Source of Genomic Novelties

The exaptation of retrotransposed sequences, consisting in their cooption for a current
function out of a hitherto neutral evolution mode, is a well-documented phenomenon [2,74].
In general, large-scale DNA editing of retrotransposons, by simultaneously generating
large numbers of mutations, may have accelerated their exaptation during mammalian
evolution [81]. In a similar vein, inverted SINE repeats being part of longer RNAs may have
promoted RNA editing by adenosine to inosine deamination, thus generating potential
novelties in both coding and regulatory sequences [82].

For simplicity, two major exaptation modes can be distinguished. According to the
first mode, retrotransposon-derived sequences become physical and functional parts of
transcription products, even being eventually translated into protein sequences. The second
mode consists in the co-optation of retrotransposon-derived sequences as transcription
regulatory elements or 3D genome boundary elements. This exaptation mode, allowing
retrotransposon sequences to exert their influence without becoming incorporated into
gene products, might have had an even wider influence on genome evolution [83,84].

2.3.1. Retrotransposon-Derived Sequences within Gene Products

As to the first mode of action, there is solid evidence that SINE (in particular, primate-
specific Alu) exonization contributes to both untranslated and protein-coding regions of
mRNAs [85], as well as portions of long noncoding RNAs [86], to which the embedded
Alu can confer new regulatory functions [87]. Alu-derived exons are often the site of
alternative splicing, due to the presence in the Alu body of multiple cryptic splice sites [88].
SVA-mediated transduction events, involving alternative mRNA splicing at cryptic splice
sites, have been found to promote exon shuffling and thus genomic novelty [89]. At the
same time, cells have evolved precise mechanisms to control Alu and the incorporation of
other retroelements within mRNA sequences via their cryptic splice sites, as their incorrect
presence might induce devastating physiological responses [90]. Moreover, exonic SINE
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sequences embedded into the 3’ UTR of mRNAs participate in different layers of post-
transcriptional gene regulation, which may also involve intermolecular base-pairing with
SINE sequences embedded in lncRNAs [43,88,91,92]. Alu SINEs embedded into precursor
transcripts were also found to promote the formation of circRNAs [93], a complex family
of eukaryotic regulatory transcripts under intense study [94,95]. There is also abundant
evidence for TE-derived microRNAs, some of which are potentially involved in human
evolution and disease [96–100].

In the case of autonomous retrotransposons, which contain protein-coding sequences
in their body, several striking cases of exaptation of retrotransposon-encoded proteins
as new host proteins have been documented. A remarkable example is represented by
syncytins, an ensemble of Env proteins coded by different ERVs in the genome of various
vertebrates, that through a process of convergent evolution led to the development of the
placenta in eutherian mammals [55,101]. In fact, the union between maternal and fetal
cells to constitute the placental syncytiotrophoblast—the main site of trophic exchanges
during pregnancy—is mediated by the fusogenic activity of syncytins, which changed
from being mechanisms of viral entry to exerting physiological activity domesticated to
serving the host biology [55]. Some syncytins are indeed thought to have a role in other
placenta-associated functions, such as the establishment of maternal immune-tolerance
against the fetal allograft through their natural immune-suppressive properties, which in
ancestral infections likely guaranteed their immune escape [102,103].

2.3.2. Retrotransposons as a Source of cis-Regulatory Sequences

Given the centrality of cis-regulatory elements, and particularly of enhancers, in or-
chestrating organ-, tissue- and cell type-specific gene expression both during development
and in adult organisms [104], it has been argued that the “vast majority of the genetic
changes responsible for the evolution of morphology occur at pre-existing cis-regulatory
elements” [105], and that TE-mediated cis-regulatory network rewiring has been one of
the key mechanisms for the appearance of such changes [6]. In the last 10–15 years, the
exaptation of TE-derived sequences (especially retrotransposon-derived) as cis-regulatory
elements has been well documented by a rapidly growing body of studies, the majority of
which have focused on mammalian genomes, characterized by the overwhelming preva-
lence, in terms of both amount and activity, of retrotransposons over DNA transposons.
Retrotransposon-derived cis-regulatory sequences have been reported to play several roles
in gene regulation as promoters, enhancers, silencers and boundary elements [2,83]. In gen-
eral, due to their own replicative needs, retrotransposons have evolved cis-acting sequences
mimicking those of the host, a fact that predisposes them to cis-regulatory activity [76].
Although we are still far from a comprehensive picture of the multiple layers of TE-derived
regulatory novelties and their integration with the whole genomic background of mam-
malian evolution, various cis-regulatory modes of TE exaptation have begun to be clearly
portrayed (Figure 2).

First of all, many binding sites for diverse TFs are contributed by retrotransposons,
as mainly revealed by genome-wide TF occupancy mapping by chromatin immunopre-
cipitation coupled with high throughput sequencing (ChIP-seq) [106]. Although some of
the TF binding sites carried by TEs are justified by their need to employ host TFs for their
own life cycle, others may have been acquired independently through TE propagation
mechanisms [34]. Molecular evolution studies have revealed waves of expansion of the TF
target repertoire over the course of vertebrate evolution, with TEs majorly contributing to
such expansions [107]. TFs tend to bind to TE-provided cognate sites in a species-specific
manner, in line with the expansion of different TE subfamilies at different evolutionary
timepoints [83]. A striking example of how the evolutionary recruitment of TE-derived TF
binding contributed to mammalian evolution is provided by the TE-dependent transforma-
tion of the uterine regulatory landscape in the evolution of mammalian pregnancy [108].
An emerging topic that is potentially highly relevant to the exaptation of TE-binding
TFs, is that of Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs). The
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great expansion and diversification in mammals of these TFs has been correlated with
the invasion of new endogenous retroelements, which require specialized mechanisms of
repression via the binding of specific KRAB-ZPs and subsequent recruitment of the KAP1
corepressor [28]. It is thought that the arms race between KRAB-ZFPs and their target
retroelements, facilitated by the evolutionary plasticity conferred on both contenders by the
repetitive organization of their genes, favored retroelement domestication, allowing them
to develop cis-regulatory functions, to which KRAB-ZFPs have the potential to directly
contribute as enhancers or promoter-binding TFs [28,71,109,110].

Figure 2. Transcriptional and 3D genome effects of retrotransposons. Retrotransposons (or retroele-
ments, RE) are responsible for a wide range of possible effects on both transcription control and 3D
genome organization. (A) Schematic representation of some of the predominant effects of REs on
transcription. REs (purple box) can be inserted within the coding region between two exons (gray
boxes), providing new transcription start sites (TSS, dark gray arrow) for both sense and antisense
transcription. REs can also provide new cis-regulatory sequences (such as enhancers or insulators)
which can in turn activate (green arrow) and repress (red arrow) transcription of the associated gene.
REs could also alter the epigenetic state of a given gene, leading to its transcriptional repression,
by increasing the DNA methylation (yellow circles) within the promoter region of the transcription
unit and directly or indirectly recruiting repressive complexes (red box). (B) REs can impact the 3D
genome organization of the chromatin within the nuclei. REs (especially Alu elements) are found
to be enriched at topologically associating domain (TAD) boundaries. Represented in the Figure
is a putative case in which two TADs, one active (blue) and one inactive (red), are separated by
a TAD boundary. This boundary limits the action of a brain enhancer region (yellow box) within
the active TAD towards a gene (white box) within the inactive TAD, thereby impeding the ectopic
brain expression of the gene. As a result of an RE insertion event within the inactive TAD, the 3D
genome organization is altered, and a new active TAD is formed due to the boundary effect of the
RE. This leads to the spreading of the active TAD over the gene, which allows the brain enhancer
region (yellow) to now induce gene activation and therefore its ectopic expression within the brain
(yellow area).
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A second, more complex mode of TE exaptation for cis-regulatory purposes is rep-
resented by TE-derived clusters of TF binding sites, exemplified by the contribution of
species-specific, composite enhancers to mouse placental development by rodent endoge-
nous retroviruses [111]. In addition, mouse-specific LTRs have been found to carry multiple
pluripotency TF-binding sites (specifically, ESRRB-, KLF4- and SOX2-binding motifs) reg-
ulating gene expression in a mouse embryonic stem cell (ESC)-specific manner, thereby
distinguishing ESCs in mice from ESCs in other species [112]. In a similar vein, recent
hominoid-specific LTR and SVA retrotransposons were shown to host enhancers that were
active in human naive ESCs and embryonic genome activation [110]. Systematic studies of
TEs’ contribution to enhancer function have benefited greatly from high-resolution profiling
of the regulatory epigenome, such as the profiling of DNase hypersensitivity, histone H3-
lysine 4 mono-methylation (H3K4me1) and histone H3-lysine 27 acetylation (H3K27ac) as
typical enhancer chromatin signatures [113] and by the use of a chromatin characterization
software such as ChromHMM [114]. A recent comprehensive quantification of the epige-
nomic status of TEs across many human tissues and cell types revealed that approximately
one quarter of the human regulatory epigenome is composed of retrotransposed sequences,
with motif-enriched LTRs being particularly favorable substrates for the evolution of new
host regulatory elements [115]. In other studies, based on epigenomic profiling, evolution-
ary novelties in primate gene regulation were similarly found to have TEs as the primary
source, with a major contribution from ERV-derived sequences [116,117]. Accordingly, a
subset of ERV sequences were found to be significantly enriched in cis-regulatory elements,
having a critical role in primate liver gene regulation [117]. A fascinating example of ERV
contribution in the shaping of entire regulatory pathways is represented by the interferon
(IFN) transcriptional network, a crucial innate antiviral system which also serves as a
fundamental effector to initiate and maintain adaptive immunity. Chuong and coauthors
showed that ERV insertions had a central role in its evolution and amplification, accounting
for the independent dissemination of a wide number of IFN-inducible enhancers in many
mammalian genomes, which are required for the correct functioning of different immune
responses [118]. A similar scenario is found for p53 tumor suppressor factor, of which
the genomic binding sites in humans overlap in more than one-third of cases with ERV
elements [119]. Of note, these binding sites are primate-specific and not present in other
mammals, further demonstrating that TEs are able to shape important regulatory networks
in a species-specific manner. An intriguing observation, consistent with the previous ones,
is that of the pervasive function of an ape-specific class of ERV-derived LTRs, LTR5HS, as
early embryonic enhancers, regulating hundreds of human genes [120], and the strong con-
tribution of ERV and L1 retrotransposon families to species-specific differences in enhancer
activity between chimpanzee and human cranial neural crest cells [83,121]. Epigenome
profiling also allowed researchers to distinguish between older retrotransposon copies
displaying most of the features of de facto enhancers and younger copies that seem instead
to be configured as proto-enhancers, serving as a repertoire for the de novo evolutionary
birth of enhancers [122]. Despite the scarcity of studies, an intriguing retrotransposon
feature favoring their exaptation as enhancers is their intrinsic capability of generating
functional non-protein-coding RNAs (ncRNAs) that could overlap with the so-called en-
hancer RNAs (eRNAs) [123], thereby raising the possibility that many eRNAs could be
generated through TE-derived ncRNAs.

2.3.3. Involvement of Retrotransposons in Three-Dimensional Genome Architecture

Chromosome contacts within the nuclear space, recently revealed at unprecedented
resolution by HiC and complementary approaches [124], exert a wide and still largely
unexplored influence on gene regulation by demarcating regulatory districts in a highly
dynamic way. At a large scale within nuclei, chromosomes segregate into regions of
preferential long-range interactions that form two mutually excluded types of chromatin,
referred to as “A” and “B” compartments [125], the formation of which has been recently
linked to homotypic clustering of L1 and B1/Alu, respectively [126]. At a scale of tens



Life 2021, 11, 376 10 of 29

to hundreds of kilobases, chromosomes fold into domains with preferential intradomain
interactions known as topologically associating domains (TADs), which harbor the po-
tential to influence enhancer function and thus gene regulatory networks [127–132]. TAD
demarcation is achieved by specific regions called TAD boundaries, which are enriched for
the occupancy of CCCTC-binding factor (CTCF), a zinc finger DNA binding protein also
known to mediate the formation of chromatin loops [133]. SINE retrotransposons have
also been found to be enriched at TAD boundaries [134,135]. Curiously, in rodents (but not
in humans) B2 SINE retrotransposons have been shown to carry CTCF binding motifs, and
therefore rodent B2 SINEs can contribute to clustered CTCF sites at TAD boundaries, thus
helping in the maintenance of genome organization [136]. However, the rapid expansion
of rodent SINEs might provide excessive CTCF sites throughout the genome, therefore
critically increasing the possibility of genome mis-folding due to the creation of aberrant
CTCF sites. In this context, a complex formed by CHD4, ADNP and HP1 chromatin pro-
teins (ChAHP complex) has been shown to play a role in the maintenance of evolutionarily
conserved spatial chromatin organization via the buffering of novel CTCF binding sites
that emerge through SINE expansion [137]. Moreover, SINE and other retrotransposons
have been proposed to participate in the establishment of species-specific chromatin loops
by introducing novel binding sites for architectural proteins, including CTCF [138]. CTCF
might also participate, together with other proteins, in the DNA methylation and histone
modification boundary activity recently attributed to currently active copies of mouse
B2 SINEs, which might be involved in the epigenomic and phenotypic diversification of
mouse species [139].

The contribution of retrotransposons to chromatin regulatory domains is not limited
to providing CTCF binding clusters. MIR retrotransposons, for example, have been shown
to provide regulatory sequences, functioning as insulators in the human genome inde-
pendently from CTCF [140]. The presence of binding sites for the multi-subunit DNA
binding protein TFIIIC is a distinguishing feature of SINEs, and TFIIIC bound to Alu
elements has been shown to influence gene regulation through its chromatin looping and
histone acetylation capacities [141,142]. In the case of SINEs exapted as enhancers or TAD
boundaries, their regulatory function might even take advantage of their Pol III-dependent
transcription, which was recently demonstrated to occur with a marked cell-type speci-
ficity [123,143,144]. Retrotransposon transcription has also been shown to be required for
the cell type- and species-specific chromatin architecture remodeling properties recently
attributed to the primate-specific HERV-H TE family of LTR retrotransposons [145].

3. Genomic Sources of Evolutionary Novelties in the Mammalian Brain

A unique feature of the mammalian brain, distinguishing mammals from all other
vertebrates, is the presence of a six-layered cerebral cortex (neocortex) representing an
arrangement of telencephalic neurons that is absent from even the closest vertebrates. The
issue of how such a novelty originated, as well as of how exclusively it is responsible for the
functional peculiarities of the mammalian telencephalon, are still largely undecided [146].
On the one hand, the appearance of a telencephalic neuroanatomical structure without any
homologous structure in non-mammalian vertebrates deserves the utmost consideration.
On the other hand, functionally relevant homologies between vertebrate telencephala
may occur beyond the neuroanatomical level. In particular, classical and recent evidence
suggests that the core neuronal cell types participating in neocortical circuits are shared
across birds, reptiles and mammals [147].

A striking feature distinguishing eutherian (e.g., mice and humans) from non-eutherian
(e.g., marsupials and monotremes) mammals is the presence in the former of the corpus
callosum as a way to connect the neocortical hemispheres. During mouse and human
cortical development, the transcription factor SATB homeobox 2 (SATB2) specifies neurons
projecting via the corpus callosum, whereas another transcription factor, BCL11B/CTIP2,
appears to specify neurons that project subcerebrally. In a recent comparative study, it
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has been shown that differential timing in the expression of SATB2 is critical for different
neuronal projection fate in eutherian (mouse) and non-eutherian (dunnart) mammals [148].

A feature whose variation across mammals has received particular attention is brain
size. Among vertebrates, both birds and mammals generally evolved larger brains relative
to body size [146]. Such an evolutionary increase in relative brain size tends to be associated
with increased numbers of neurons in the telencephalon [149], which is dominated by
the neocortex in mammals. A large neocortex is not an invariant feature of all mammals,
however. According to comparative analyses, expansion and contraction of the neocortical
surface area occurred independently numerous times across mammalian phylogeny. In
particular, primates are characterized by an increase in the neocortex with the maintenance
of high neuron packing density, and the human neocortex is more enlarged and elaborated
than any other primate’s brain structure [150,151]. The expanded human cerebral cortex is
also intricately folded, even though gyrencephaly is likely to be an evolutionarily ancient
trait present in the common mammal progenitor [152]. The increase in size of the human
neocortex also entailed an increase in the number of neocortical areas with respect to the
15–25 neocortical areas thought to be shared across mammals [150,153].

More than the absolute or relative size or the number of neurons or glial cells, the
key to the human brain’s unique capacities is likely to be represented by an enrichment of
the repertoire of neural cell types and by wider and more elaborate patterns of neuronal
connectivity. Such features are made possible by some developmental peculiarities of the
human brain. One of them is its prolonged developmental course, during which expanded
proliferative zones with neural stem and progenitor cells with enhanced proliferative
capacities facilitate neocortex expansion [154,155].

Understandably, a vast array of studies has been devoted to linking the development
of human brain evolutionary specialization to specific genetic changes and related molecu-
lar/cellular mechanisms [155,156]. Genomic innovations thought to have contributed to
human neocortex structural and functional novelties, in particular through the enhance-
ment of neurogenesis and/or synaptogenesis, are mainly represented by human-specific
gene duplications (HSGDs) and mutations to non-protein coding regulatory regions.

As to HSGDs, a recently discovered example is represented by Notch homolog 2 N-
terminal-like (NOTCH2NL) gene duplication, producing human-specific NOTCH2 paralog
proteins that enhance neural progenitor proliferation [157–159]. In other studies, SLIT-
ROBO Rho GTPase activating protein 2 (SRGAP2) duplications were found to favor human-
specific traits of synaptic development, such as protracted synaptic maturation [160–162].
Another HSGD that is likely involved in neurodevelopment is Rho GTPase activating
protein 11B (ARHGAP11B), the product of which promotes basal progenitor amplification
and neocortex expansion and folding [163–165].

As to noncoding regions with regulatory roles, much effort has been devoted to
the identification of human-specific changes in cis-regulatory regions that are likely to
cause human-specific patterns of gene expression involved in brain development and
function [154]. Support for the evolutionary importance of such changes has come from
studies showing that the regulatory regions of neurodevelopmental genes were particularly
prone to positive selection [166,167]. Many of the regulatory regions whose evolution was
found to be accelerated in humans display typical features of enhancers, a large proportion
of which are active in the brain [168–170]. A few described cases of human-specific
changes in gene expression patterns that are important for brain development include
those affecting the enhancers of neuronal PAS domain protein 3 (NPAS3), encoding a TF
involved in neurogenesis [171], frizzled class receptor 8 (FZD8), coding for a Wnt protein
receptor involved in neocortex development [172], osteocrin (OSTN), encoding an activity-
dependent secreted factor [173], cut-like homeobox 1 (CUX1), encoding a TF involved in
dendritic development and implicated in autism spectrum disorder [170], and fibroblast
growth factor receptor 2 (FGFR2) [174]. Enhancer–promoter interactions, that are key to
the implementation of gene-regulatory programs, take place in the context of a complex
and dynamic 3D chromatin architecture, of which the involvement in brain development,
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neuronal activity and complex brain disorders is only starting to be appreciated [175,176].
Based on these premises, it is not unexpected that brain evolutionary innovations have
occurred through the 3D rewiring of the enhancer–promoter interactome, as very recently
revealed for primate corticogenesis [14].

Finally, it should be noted that genomic novelties affecting brain development/function
might do so by generating novel ncRNAs. This appears to be the case for the product of the
highly accelerated region 1A (HAR1A) gene, originally identified as one of the most rapidly
evolved non-protein coding regions in humans [166,177]. More generally, it has been
suggested that the expansion of ncRNA inventories, in particular those of miRNAs, played
a role in the emergence of vertebrates’ morphological complexity [178]. The developmen-
tal profiles of miRNAs were found to display a fast rate of human-specific evolutionary
change, and to drive gene expression changes in the human prefrontal cortex [179]. In the
last decade, further evidence has been accumulating in support of the notion that miRNAs
can accelerate the evolution of the human brain by introducing subtle alterations in gene
expression patterns [180]. Other attractive candidates for such a role are long ncRNAs
(lncRNAs), characterized by a remarkable diversity of gene regulatory activities. Although
mechanistic studies on lncRNAs’ evolutionary impact are still in their infancy, it is very
telling that of the tens of thousands of lncRNAs encoded by mammalian genomes, as
many as 40% are expressed specifically in the brain, and thousands of new lncRNAs have
appeared during primate nervous system evolution [181,182].

Given the fundamental role played by retrotransposons in phenotype-impacting
genomic innovation in mammals and other vertebrates, the growing evidence of retro-
transposon involvement in mammalian brain evolution is not surprising. What makes
this evolutionary mechanism particularly noteworthy for the brain is that it is one of the
human tissues in which somatic retrotransposition has been found to occur considerably
at some stage in development, leading to the suggestion of a key role of the mobilome in
the expansion of higher brain functions in modern humans and, as a downside, in their
proneness to age-related neurodegeneration [16,71,183]. The growing body of evidence in
favor of retrotransposons as drivers of brain evolution in mammals deserves a specific and
detailed discussion, which will be presented in the following sections.

4. Contribution of Non-LTR Retrotransposons to Mammalian Brain Evolution
4.1. Contribution through SINE Exaptation

In most mammals, SINEs account for >10% of the genome, and their lineage-specific
diversification significantly contributes to the distinctive genome composition and arrange-
ment of the different mammalian lineages [13]. As discussed above (Section 2), SINE
exaptation has greatly contributed to genomic innovations in mammals, with important
repercussions on brain evolution. From a historical perspective, the first discovered case of
SINE exaptation affecting mammalian brain function is represented by the primate-specific
BC200 RNA [184], a brain-specific ~200 nt-long ncRNA originated from an Alu monomer
sequence and playing a regulatory role in dendritic translation [185]. BC200 RNA dysreg-
ulation has been associated with neurodegeneration, but also with neoplastic changes in
various tissues [186]. Curiously, the mouse gene Bc1, coding for brain-specific BC1 RNA,
the rodent functional counterpart of BC200 RNA, is not itself a SINE, but it has been shown
to be the master gene from which the murine ID SINE subfamily originated [184]. Although
there are no other such well-characterized cases of SINE-derived RNAs involved in brain
function, other Alu-related transcripts represent interesting candidates [187]. In particular,
the Alu-derived human NDM29 transcript induces a neuron-like phenotype when trans-
fected into undifferentiated neuroblastoma cells [188], and members of the snaR family
of ncRNAs, with a possible role in translation, were found to be differentially expressed
in different brain regions [189]. Given the recent improvement of methods of detecting
and quantifying the expression of individual SINE loci in cells and tissues [144,190–192],
including single neurons [193], it is likely that more cases will be revealed of exapted SINEs
producing ncRNAs involved in brain function.
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Evolutionary novelties might also have occurred due to the regulatory effect that
SINE sequences can exert on longer RNAs (either mRNAs or lncRNAs) in which they
are embedded. In particular, the aforementioned ADAR-dependent A-to-I RNA editing
(see Section 2.3), which has been shown to be widely promoted by Alu inverted repeats
in primate transcripts [82], is thought to be critical for brain development and functions,
including their alterations in neurological and neurodegenerative disorders [18,194,195].
Exonized Alus within the 3’ UTR have regulatory potential if targeted by miRNAs, as
recently shown for a primate-specific isoform of the cytochrome P450 family 20 subfam-
ily A member 1 (CYP20A1) mRNA, whose 3’UTR includes numerous miRNA-targeted
Alu sequences acting as miRNA sponges with neuron-specific effects [196]. Embedded
SINEs have also been shown to confer translation regulatory potential to a class of an-
tisense lncRNAs, called SINEUPs, described both in mice and in humans. In SINEUP
lncRNAs, a 5’ sequence specifically targets an mRNA, whereas an inverted embedded
SINE sequence, bound by the RNA binding protein ILF3, confers translation-enhancing
activity [197]. Remarkably, the first described SINEUP lncRNA is antisense to (and upregu-
lates the translation of) the mouse ubiquitin carboxy-terminal hydrolase L1 (uchl1) mRNA,
whose product is essential for neuron maintenance and brain function [198]. Many more
natural antisense transcripts with potential SINEUP functions have been identified in the
human brain transcriptome [199], again suggesting that retrotransposons’ impact on brain
evolution and function is played out on multiple, largely unexplored layers.

Perhaps the most substantial set of evidence supporting a role of SINE exaptation
in brain evolution points to SINEs as facilitators of cis-regulatory evolution [13]. Early
studies showed that Pax6, a transcription factor with a key role in central nervous system
development, has binding sites in specific Alu elements in humans [200] and in a subset of
B1 SINEs in mice [201]. These SINE-derived binding sites are not evolutionarily related in
the two species, thus suggesting that SINE-dependent diversification of gene regulatory
networks is involved in neurodevelopment. The idea that retrotransposon exaptation as
enhancers contributed to mammalian brain novelties received strong support from a series
of studies published in the second half of the 2000s, inspired in part by the observation
that a significant fraction of evolutionarily conserved non-protein-coding sequences in
mammals, probably involved in mammal ontogeny as cis-regulatory elements, overlaps
with retrotransposons [13]. In particular, through independent studies combining compu-
tational homology searches and assays of enhancer function, it was shown that members
of two newly identified SINE families, named AmnSINE1 and LF-SINE, and a member
of the previously described MIR (or CORE-SINE) superfamily underwent exaptation as
distal cis-regulatory elements of genes involved in nervous system development and func-
tion in mammals [202–204]. Specifically, an enhancer of the ISL1 gene, encoding a TF
involved in motor neuron differentiation, was found to be constituted by an LF-SINE
(classifiable as SINE2/tRNA according to Repbase [29]) which might have been exapted
before tetrapod divergence [202]. Even more strictly related to mammalian brain evolu-
tion, the neuronal enhancer nPE2 of the proopiomelanocortin (POMC) gene was found
to originate from the exaptation of a MIR (SINE2/tRNA) retrotransposon in the lineage
leading to mammals [203], and two AmnSINE1 elements (classifiable as SINE3/5S [29])
were shown to constitute enhancers for FGF8 and SATB2 genes, of which the products
control different aspects of forebrain development in a mammalian-specific manner [204].
In particular, the AmnSINE1-derived enhancer referred to as the AS071 locus controls FGF8
expression in the diencephalon and the hypothalamus, thus allowing for FGF8-dependent,
mammalian-specific patterning of the forebrain. AmnSINE1 at the AS021 locus, highly
conserved across mammalian species, likewise functions as an enhancer, whose activity
recapitulates the expression pattern of Satb2, a sequence-specific DNA binding protein in-
volved in transcription regulation and chromatin remodeling and required for mammalian
neocortex development. Remarkably, the AS021 SINE enhancer was later shown in mice
to drive the expression of SATB2 in a subpopulation of callosal neurons, connecting the
two hemispheres of the cerebral cortex via the corpus callosum, a eutherian-specific brain
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structure [205]. A further in-depth study of the organization of the mouse AS071 enhancer
revealed a modular structure with functionally distinct sub-elements cooperatively partic-
ipating in enhancer activity in three distinct diencephalic domains, with the AmnSINE1
sub-element specifying the enhancer activity to the ventral line of the hypothalamus [206].
Overall, AmnSINE1 retrotransposons are thought to have played a relevant role in the evo-
lutionary emergence of mammals [69], an idea further corroborated by the discovery that
AmnSINE1 constitutes, together with other TE-derived sequences, an enhancer module
involved in morphogenesis of the mammalian secondary palate through the control of
wnt5a expression [207].

The integrated contribution of SINEs and other retrotransposons to cis-regulatory nov-
elties by convergent evolution finds a striking example in the aforementioned enhancers of
POMC, a gene expressed in mammalian neurons of the hypothalamus arcuate nucleus. An
in-depth genome sequence comparison of different vertebrates and mammals, together
with enhancer assays in transgenic mice, revealed that in addition to the MIR-derived nPE2
enhancer, neuron-specific POMC expression also involves another enhancer element, nPE1,
originating from the exaptation of an LTR retrotransposon before the placental mammal
radiation [208]. An extreme example of TEs’ contribution to cis-regulatory elements is
represented by the gene NPAS3 (neuronal PAS domain-containing protein 3), coding for
a transcription factor involved in both mouse and human brain development, as well as
in psychiatric illness [209]. NPAS3 is the human gene containing the largest number of
genomic regions showing accelerated evolution in the human lineage, also referred to
as human-accelerated non-protein-coding elements (HAEs) [171]. One of these elements,
referred to as 2xHAR142 and located in the fifth intron of NPAS3, was shown to behave as a
transcriptional enhancer that may have contributed to a uniquely human NPAS3 expression
pattern. Intriguingly, 2xHAR142 contains sequences derived from an MIR retrotranspo-
son, and other SINEs and LINEs may have contributed to other HAEs associated with
NPAS3 [210].

A largely unexplored layer of the potential involvement of SINEs (and other retro-
transposons) in brain evolution, which has only recently begun to be glimpsed, is related to
their involvement in three-dimensional genome architecture (see Section 2.3.3). Specifically,
high-resolution mapping of the genome architecture of the developing macaque brain,
together with cross-species 3D genome analyses, recently revealed human-gained TAD
boundaries enriched in evolutionarily young TEs, including Alu, LINE-1, ERV1 and ERVK
retrotransposons [14]. Such boundaries tend to be more enriched in brain-development-
related genes, with implications for the appearance of human-specific brain properties. For
example, the human-gained TAD boundary around contactin 5 (CNTN5), a gene involved
in neuron circuit formation and autism spectrum disorders, contains Alu Y elements and is
correlated with increased CNTN5 expression in humans compared to macaques [14].

4.2. Contribution through SINE-Dependent Genomic Rearrangements

Apart from having evolutionary roles through exaptation, SINEs most likely also
contributed to nervous system evolution by favoring gene duplication events. Particularly
relevant to this issue is the enrichment of segmental duplications in primate genomes
compared with other mammals. Segmental duplications are thought to have created novel
primate gene families, thus potentially driving primate-specific evolutionary changes and
contributing to human genic and phenotypic variation [211]. Remarkably, among the
mechanisms of segmental duplication, an important role was likely played by nonallelic
homologous recombination among Alu repeats, of which a burst of activity during a narrow
window of primate evolution provided a myriad of nearly identical sites favoring this kind
of recombination event [212]. An example of how this phenomenon may have contributed
to brain evolution is provided by the evolution of human-specific SRGAP2 genes through
incomplete segmental duplication, an event most likely favored by Alu elements mapping
precisely at duplicated segment boundaries [160].
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Recombination between Alu elements can also result in genomic deletions, with the
potential both to contribute to human genetic disorders and to introduce genomic novelties
of potential evolutionary relevance [213]. An example of Alu recombination-mediated
deletion potentially affecting the evolution of typically human nervous system features is
represented by the loss, in humans compared to chimpanzees, of the fourth exon of the
cholinergic receptor nicotinic alpha 9 subunit (CHRNA9) gene, contributing to distinctive
olfactory and auditory traits between these two primates [213]. Several genes associated
with neurological and neurodegenerative disorders have been reported to be susceptible to
deleterious Alu-mediated rearrangements (reviewed in [18]).

4.3. Contribution of LINEs

It was widely believed that LINE-1 retrotransposition could occur only in germ cells
due to their potential to contribute to the expansion of these TEs in subsequent generations.
However, this hypothesis was drastically changed by the finding that differentiation of
adult rat hippocampal neural stem cells into neuronal precursor cells (NPCs) and neu-
rons is accompanied by an increase in LINE-1 transcript abundance, and the finding that
engineered LINE-1 could retrotranspose in cultured NPCs and in the brain of transgenic
mice [214,215]. Subsequent studies also revealed that engineered LINE-1 could retrotrans-
pose in both fetal and human embryonic stem cell (hESC)-derived NPCs [216] and that
engineered human LINE-1 showed enhanced somatic retrotransposition in neurons of
mouse models lacking the methyl-CpG-binding protein 2 (MeCP2) [217] and in human
neural stem cells lacking the ataxia telangiectasia mutated (ATM) kinase protein [218].
Further insights into LINE-1 retrotransposition in the brain came from the development of
specific techniques for retrotransposon-capture and sequencing (RC-seq), which unveiled
how endogenous LINE-1 retrotransposition could be accountable for somatic mosaicism
in the human brain [219]. More sophisticated single cell-based genomic approaches have
provided key insights regarding the frequency of neuronal retrotransposition, with the
frequency estimated to be <0.6 insertions per cell [220]. Very recently, upregulation of evo-
lutionarily young LINE-1 elements (but not of other retrotransposons) was found to occur
genome-wide in DNMT1 KO-derived NPCs, and to affect the expression of L1-controlled
genes involved in neurodevelopment [221]. More studies will be needed to determine if
the LINE-1 retrotransposition rate could vary depending on different brain regions and to
explain why NPCs tend to be permissive to LINE-1 retrotransposition.

LINE-1 can therefore retrotranspose in the human brain, and the outcomes and the
consequences of this remain largely elusive and open to further investigation. The more
of the functional importance of neuron somatic retrotransposition is revealed, the more
relevant it will be to clarify its evolutionary origins. At the same time, new scenarios
of LINE cis-regulatory exaptation are just starting to appear, revealing its effect on the
generation of morphological novelties in mammals, including 3D genome innovations
during primate corticogenesis [14,222] and the very recently reported contribution of L1 to
the tissue-specific (including brain-specific) cis-regulatory landscape across mammalian
lineages, spanning more than 150 million years of mammalian evolution [223].

5. Contribution of LTR Retrotransposons to Mammalian Brain Evolution

ERV expression has been investigated in the brains of mammals. Concerning the
human brain, this field of study is also highly relevant due to the possible role of HERV
products in different neuroinflammatory, neurodegenerative and neuropsychiatric dis-
orders, such as multiple sclerosis, amyotrophic lateral sclerosis and schizophrenia, as
reviewed elsewhere [224–226].

5.1. ERV Contribution to Mouse Brain Development and Physiology

Currently, most of the direct information regarding the contribution of ERV to mam-
malian brain development is derived from studies in mouse models focused on the expres-
sion of individual ERVs, as well as their shaping of entire transcriptional patterns. At the
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protein level, the mouse genome presents a MuLV-ERV locus with full coding potential
on chromosome 8 that has shown brain expression limited to the cerebellum, in which
its low methylation status was unique as compared to the other brain regions. Apart
from being cerebellum-specific, MuLV-ERVmch8 expression was also age-dependent, with
almost no expression at 2 weeks and a plateau at 6 weeks [227]. This, together with the
fact that the MuLV-ERV locus is integrated into a region surrounded by genes linked to
neuronal development and/or inflammation, might indicate the involvement of MuLV-
ERVmch8 in cerebellar biology. However, to date, the actual role of this ERV remains to be
fully elucidated.

Moving to ERV transcriptional regulation, it is known that in most organs ERVs are
transcriptionally silenced during early embryogenesis by histone and DNA methylation,
showing a striking shift in their transcriptional activity after the first few days and according
to cell differentiation [228]. In line with this, the tripartite motif-containing protein 28
(TRIM28, also known as KAP1)—essential for early development in mice—forms a complex
on ERV LTRs and mediates their silencing in the first few days of embryogenesis through
histone 3 lysine 9 trimethylation (H3K9me3) [229]. Then, in mouse embryonic stem cells
and early embryos, this TRIM28-mediated silencing mechanism is replaced by DNA
hypermethylation of the LTRs, leaving the transcription of ERV sequences unaltered even
when TRIM28 is experimentally deleted [228]. This is not true in the brain, however, where
TRIM28-mediated control is used to dynamically regulate the transcription and silencing of
ERVs. In fact, the deletion of TRIM28 from NPCs is followed by a marked increase in ERV
transcription, sustained especially by selected members of two ERV groups, MMERVK10C
and IAP, which are not subjected to DNA methylation [230]. Accordingly, the proportion of
unmethylated DNA in NPCs is higher than in somatic cells. Of further note, unmethylated
ERVs in NPCs are often integrated near to coding regions, and the lack of silencing at
their LTRs makes them transcriptional start sites for these neighboring genes—but also
for lncRNAs when found in gene-free regions—suggesting a central role in the control of
gene networks in the mouse brain [229]. Such a role might be played also in human NPCs,
given that disruption of TRIM28 in the mouse brain leads to behavioral alterations that are
comparable to the ones observed in certain psychiatric disorders [228]. Considering the
emotional spectrum, ERV expression is known to be influenced by stressful conditions as
well. Acute stress in rats leads to an increase in the hippocampal levels of H3K9me3, which,
in turn, has a central role in the transcriptional repression of TEs, as already described
above in terms of its implication in the control of their expression during early embryonic
development and the consequent role in transcriptional plasticity of neural circuitry [231].

As a general note, it is worth mentioning that attempts to comprehensively evaluate
the TE contribution to the enhancer landscape associated with mammalian-specific brain
features, such as the neocortex, are revealing complex scenarios in which TE exaptation,
when recognizable, contributes only in part to the whole enhancer landscape [232]. Such
scenarios also include poorly characterized, interspersed repeats of uncertain classification,
such as the MER130 repeat family, which has been shown to provide key TF binding sites to
mouse neocortex developmental enhancers at a specific stage of embryo development [233].

5.2. HERV-Mediated Shaping of Genic and Transcriptional Patterns in the Human Brain

In line with the findings reported for mice, the primate-restricted KRAB zinc finger
proteins—known for their role in silencing TE-embedded regulatory sequences during
early embryogenesis—were also reported to control TE expression in the subsequent
phases of development, as well as in adult tissues, leading to their co-optation in the
genesis of brain transcription networks [234]. Particularly, ZNF417 and ZNF587 were
shown on the one side to repress HERV-K(HML2) elements in human embryonic stem
cells, and on the other side to control their expression in the developing and adult brain,
influencing the differentiation and neurotransmission profile of neurons [234]. Of note,
as already mentioned, the HERV-K(HML2) group is the most recently acquired group by
primates, even showing polymorphic integrations in humans. Hence, in addition to their
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main role in human neuronal differentiation and physiology, these evolutionarily recent
HERV transcriptional partners might account for variations in brain development and
function in the human population. In relation to to the group’s recent acquisition, it has
also recently been shown that a member of the HERV-K(HML2) group is still capable of
producing an Env protein, expressed at a high level on the surface of pluripotent cells
and involved in signaling pathways that regulate stem cell function [235]. Notably, the
downregulation of this Env led to the dissociation of the stem cell colonies and prompted
their differentiation along neuronal pathways, up to the production of neurons, suggesting
a role in the regulation of embryonic neurodevelopment [235].

Given that HERVs are at the interface between self and non-self—being retroviral
sequences endogenized by the host genome—another possible interaction with human
physiology involves their residual ability to trigger innate immunity. This interaction is
complex and multifaceted, possibly accounting either for pathogenesis or beneficial effects,
as in the case of viral infections. In fact, in the presence of an exogenous virus, HERV ex-
pression has the potential to either worsen the clinical condition through cooperative effects
or boost antiviral responses as a defense mechanism [60]. In this regard, as mentioned, the
dispersion of HERVs in the human genome has been responsible for the shaping of pivotal
antiviral networks. Particularly, LTRs of the MER41 primate-specific group were often
found in the promoter regions of immune genes and were shown to serve as IFNγ-inducible
enhancers [118]. Starting from this study and from the evidence that social behavior and
neuronal connectivity in rodents have been shaped by the pro-inflammatory cytokine
IFNγ, a similar interplay has been proposed for primate cognitive development, suggest-
ing that—in parallel to the evolution of immune genes—the stepped self-domestication of
MER41 could have contributed to key cognitive specificities found in hominins, including
human language [236]. Accordingly, the promoter regions of human genes associated
with intellectual disability are significantly enriched in MER41 LTR sequences, which hold
binding sites for IFN-related transcription factors, such as STAT, YY1 and NFKB. Moreover,
the localization of MER41 LTRs in the promoter regions of these genes is substantially
different between humans and chimpanzees, possibly indicating a role of the group in
cognitive changes that occurred after these species’ evolutionary split [236].

Another remarkable example of HERV-mediated shaping of brain gene expression
is represented by a human-specific ERV insert shown to act as a tissue-specific enhancer
for the schizophrenia-associated PRODH gene, coding for a proline dehydrogenase that is
likely involved in neuromodulator synthesis in the central nervous system. The activity
of this ERV-derived enhancer was shown to be regulated by DNA methylation in the
hippocampus and to involve the binding of the SOX2 transcription factor [237].

In addition to the dispersion of cis-regulatory sites, the presence of HERV integrations
also led to genic rearrangements during primate evolution. For example, RHOXF2 is part
of the homeobox genes, a family of key developmental regulators that are generally highly
conserved. Despite this, RHOXF2 showed an uncommon rapid evolution, with parallel
gene duplications/losses in multiple primate lineages (especially during the origins of
humans and chimpanzees) that had likely been mediated by the presence of ERV sequences
flanking the gene, responsible for non-allelic recombination mechanism that in humans
led to the presence of two RHOXF2 copies [238]. Apart from its major function in primate
spermatogenesis, RHOXF2 may also be involved in brain functioning, probably through its
direct regulation of three downstream genes (namely UNC5C, PLTP and GDAP1) that play
important roles in the central nervous system. Interestingly, although both gene copies are
equally expressed in the embryonic and newborn brain as well as in the adult testis, only
one is still active in the adult brain, suggesting a possible role in central nervous system
development [238]. In this scenario, given the dual functions of RHOXF2 in the testis and
brain, the observed between-copy gene expression divergence may represent a molecular
mechanism that evolved to balance the potential functional conflicts between reproduction
and cognition.
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5.3. Old but Gold: Domestication of Ancient LTR Retrotransposons for Brain Physiology

Intriguingly, in addition to relatively young ERVs, the most ancient or defective
LTR-retrotransposons can also still have a role in the host physiology, as reported for
various Ty3/Gypsy retrotransposons. For example, in mice, the Mart family is formed
by mammalian retrotransposons that are likely derived from a vertebrate Ty3/Gypsy
family called Sushi, which in mammals has lost some structural features such as LTRs
and the pol region, retaining a protein-coding region derived from the ancestral gag gene.
In addition to their involvement in murine placenta development, some Mart-derived
proteins have been proposed to serve as transcription factors regulating the expression of
the myelin basic protein gene. Their potential involvement in brain functions is further
suggested by the fact that disruption of the Mart4 gene in mice leads to abnormal cognitive
behaviors, possibly involving the noradrenergic system [239]. Similarly, the SCAN gene
family encodes for zinc-finger TFs having an N-terminal domain conserved in vertebrates
and showing structural homologies to the C-terminal domain of retroviral capsids, probably
derived from the domestication of a Gmr1-like LTR retrotransposon in an early tetrapod
ancestor (about 300 million years ago) [239]. This ancient integration has thus been subject
to subsequent duplication events, leading to about 70 and 40 related genes in humans
and mice, respectively. The encoded TFs are involved in various biological processes,
including the regulation of hippocampal cholesterol biosynthesis by the SCAN domain-
containing NRIF, serving as a mediator of neuronal apoptosis and also interacting with the
neurotrophin receptor p75 [240,241].

A further well-known example of a neurophysiologically relevant protein originat-
ing from the gag gene of an ancient Ty3/gypsy retrotransposon is the activity-regulated
cytoskeleton-associated protein (ARC). The ARC gene was acquired before the divergence
between mammals and amphibians and was repurposed during brain evolution to mediate
communications between neural cells, having an important role in the development and
plasticity of the nervous system [242]. The neuron-specific ARC protein exerts its role in
mammalian excitatory synapses and is required for learning and memory processes [241].
Strikingly, the ARC protein has been shown to assemble into capsids that include mRNA
sequences to be transferred from a neuron to new recipient cells through extracellular vesi-
cles, then undergoing activity-dependent translation [243]. Homolog Drosophila proteins
independently derived from the same family of retrotransposons and mediating similar
processes at the neuromuscular junction provide an impressive example of convergent
evolution, thus suggesting a deep entwining of ERV-derived proteins with nervous system
evolution in animals [12].

Overall, as summarized in Table 1, various independent studies support an active role
of evolutionarily fixed ERV integrations in the development and physiology of the mam-
malian brain, both through domestication of individual ERV loci to serve important coding
functions and through the establishment of entire ERV-based transcriptional networks. In
the case of humans, we anticipate that such an involvement will be further emphasized in
the intensive studies of the possible association of HERV dysregulation with neurological
and cognitive disorders.



Life 2021, 11, 376 19 of 29

Table 1. Main evidence concerning HERV loci and protein involvement in human brain development and physiology.

Name Classification * Retroviral Portion Role in the Brain Reference

multiple loci HERV-K(HML2) [class II] PBS involved in neuronal differentiation
and neurotransmission profile [234]

multiple loci MER41
[class I] LTRs

serve as IFNγ-inducible enhancers
in the promoter regions of immune

genes, linked to human-specific
cognitive functions

[236]

Xq24 HERV-I
[class I] whole provirus

flanking integrations mediating
non-allelic recombination of
RHOXF2 gene copies, with a

possible role in central nervous
system development

[238]

NRIF Gypsy/Ty3-like
retrotransposons Gag protein (capsid)

derived from domestication of a
Gmr1-like LTR retrotransposon,

mediates neuronal apoptosis and
interacts with the neurotrophin

receptor p75

[240]

Arc Gypsy/Ty3-like
retrotransposons Gag protein (capsid)

mediate communications between
neural cells, involved in

development and plasticity of the
nervous system

[243]

* Based on the classification from [58].

6. Conclusions

As detailed in the previous two sections, and summarized in Figure 3, both LTR and
non-LTR retrotransposons appear to have contributed to mammalian brain evolution by
acting as sources of novel ncRNAs, proteins, enhancers, RNA regulatory sites and sites for
3D genome organization.

To what extent, and according to which species-specific paths, brain functionality
in mammals relies on retrotransposon exaptation will become increasingly clear as the
particularly challenging aspects of retrotransposon molecular biology become easier to
address. Major challenges include: (i) the unambiguous identification of expressed retro-
transposon loci, together with the related issue of insertional and internal sequence poly-
morphisms [192], which becomes highly relevant when studies of retrotransposon impact
are to be conducted at the population level; (ii) the implementation of a single-cell per-
spective while addressing the expression and genomic impact of retrotransposons, which
appears particularly relevant in the case of brain biology given the extremely diverse
specialization of neurons [193,244]; (iii) the experimental assessment of cis-regulatory roles
of retrotransposons by means of their systematic perturbation, e.g., through CRISPR-based
approaches [120].

Among the advances we expect in the nearest future, those relating to the role of retro-
transposons in developmental gene control seem particularly relevant to the issue of the
molecular mechanisms of brain evolution. Brain phenotypic differences between different
mammalian species are likely to arise during brain development, and retrotransposons
have recently taken center stage in the control of mammalian embryonic development,
including neuronal differentiation [13,71,234]. Potentially relevant to this issue is the recent
observation that the product of the ADNP gene, a transcriptional regulator involved in
neuronal lineage development and associated with neurodevelopmental disorders [245],
has the potential to recruit TFIIIC to a subset of Alu elements, thereby influencing their
genome organization properties [141].
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Figure 3. Summary of retrotransposon exaptations involved in brain evolution. Schematically recapitu-
lated in the Figure are five major types of genomic novelty provided by RE exaptation that have been
recognized to strongly affect brain evolution. Going clockwise from the left upper sector: REs can be
a source of novel retrotransposon-derived ncRNAs (e.g., SINE-derived BC200 RNA); REs can be the
source of novel proteins derived from retrotransposon (especially ERV) coding sequences; exonization of
retrotransposon sequences (resulting in mRNAs or lncRNAs with embedded RE-derived sequences) can
lead, for example, to the appearance of a new regulatory site (green box) within mRNA sequences, which
can recruit miRNA, thereby affecting mRNA translation/stability; REs can provide new transcription TF
binding sites, contributing to the birth of novel enhancers and altering the transcription of specific brain
genes; REs can play a major role as 3D genome organizers, thereby strongly influencing the expression of
brain-specific genes via changes in the 3D nuclear chromatin folding.

Finally, it is worth noting once more that retrotransposon-dependent genomic innova-
tion, having contributed to human brain evolution and possibly underlying higher cogni-
tive function, might also result in deleterious retrotransposon-dependent events, contribut-
ing to neurodevelopmental, neuropsychiatric and neurodegenerative diseases [18,183,246].
In this respect, future investigations systematically addressing the contribution of retro-
transposons to the molecular changes underlying brain evolutionary transitions are likely to
provide valuable new hints about complex neurological and neurodevelopmental disorders.
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