Exercising in Hypoxia and Other Stimuli: Heart Rate Variability and Ventilatory Oscillations
Abstract
:1. Heart Rate Variability
1.1. HRV: What and Why?
1.2. HRV: Methodological Aspects
2. Ventilatory Oscillations at Exercise in Hypoxia
3. Other Factors Impacting Exercise Oscillatory Ventilation
3.1. Hypercapnia
3.2. Hyperoxia
3.3. Acetazolamide (ACZ)
3.4. Dead Space
3.5. Summary
4. Mathematical Modeling of Breathing Control System: A Two-Way Process between Theory and Observation
5. HRV and Ventilatory Oscillations at Exercise in Hypoxia: What Relationship?
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Granero-Gallegos, A.; González-Quílez, A.; Plews, D.; Carrasco-Poyatos, M. HRV-Based Training for Improving VO2max in Endurance Athletes. A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 7999. [Google Scholar] [CrossRef]
- Wu, L.; Jiang, Z.; Li, C.; Shu, M. Prediction of Heart Rate Variability on Cardiac Sudden Death in Heart Failure Patients: A Systematic Review. Int. J. Cardiol. 2014, 174, 857–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ChuDuc, H.; NguyenPhan, K.; NguyenViet, D. A Review of Heart Rate Variability and Its Applications. APCBEE Procedia 2013, 7, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Xhyheri, B.; Manfrini, O.; Mazzolini, M.; Pizzi, C.; Bugiardini, R. Heart Rate Variability Today. Prog. Cardiovasc. Dis. 2012, 55, 321–331. [Google Scholar] [CrossRef]
- Reinhold, I. Spectral Analysis for Signal. Detection and Classification: Reducing Variance and Extracting Features; Lund University: Lund, Sweden, 2021; ISBN 978-91-7895-804-7. [Google Scholar]
- Estévez, M.; Machado, C.; Leisman, G.; Estévez-Hernández, T.; Arias-Morales, A.; Machado, A.; Montes-Brown, J. Spectral Analysis of Heart Rate Variability. Int. J. Disabil. Hum. Dev. 2015, 15, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Hermand, E.; Pichon, A.; Lhuissier, F.J.; Richalet, J.-P. Low-Frequency Ventilatory Oscillations in Hypoxia Are a Major Contributor to the Low-Frequency Component of Heart Rate Variability. Eur. J. Appl. Physiol. 2019, 119, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A Healthy Heart Is Not a Metronome: An Integrative Review of the Heart’s Anatomy and Heart Rate Variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.A.; Carr, D.L.; Myers, C.W.; Eckberg, D.L. Mechanisms Underlying Very-Low-Frequency RR-Interval Oscillations in Humans. Circulation 1998, 98, 547–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Yasuma, F.; Hayano, J. Respiratory Sinus Arrhythmia. Chest 2004, 125, 683–690. [Google Scholar] [CrossRef]
- Orr, J.E.; Malhotra, A.; Sands, S.A. Pathogenesis of Central and Complex Sleep Apnoea: Central Apnoea Mechanisms. Respirology 2017, 22, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, B.P.; Lewis, G.D. Exercise Oscillatory Ventilation: Mechanisms and Prognostic Significance. World J. Cardiol. 2016, 8, 258. [Google Scholar] [CrossRef]
- Agostoni, P.; Salvioni, E. Exertional Periodic Breathing in Heart Failure. Clin. Chest Med. 2019, 40, 449–457. [Google Scholar] [CrossRef]
- Latshang, T.D.; Turk, A.J.; Hess, T.; Schoch, O.D.; Bosch, M.M.; Barthelmes, D.; Merz, T.M.; Hefti, U.; Hefti, J.P.; Maggiorini, M.; et al. Acclimatization Improves Submaximal Exercise Economy at 5533 m. Scand. J. Med. Sci. Sports 2013, 23, 458–467. [Google Scholar] [CrossRef]
- Garde, A.; Giraldo, B.F.; Jane, R.; Latshang, T.D.; Turk, A.J.; Hess, T.; Bosch, M.M.; Barthelmes, D.; Hefti, J.P.; Maggiorini, M.; et al. Periodic Breathing during Ascent to Extreme Altitude Quantified by Spectral Analysis of the Respiratory Volume Signal. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 707–710. [Google Scholar] [CrossRef]
- Hermand, E.; Pichon, A.; Lhuissier, F.J.; Richalet, J.-P. Periodic Breathing in Healthy Humans at Exercise in Hypoxia. J. Appl. Physiol. 2015, 118, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dempsey, J.A.; Veasey, S.C.; Morgan, B.J.; O’Donnell, C.P. Pathophysiology of Sleep Apnea. Physiol. Rev. 2010, 90, 47–112. [Google Scholar] [CrossRef] [PubMed]
- Ainslie, P.N.; Lucas, S.J.E.; Burgess, K.R. Breathing and Sleep at High Altitude. Respir. Physiol. Neurobiol. 2013, 188, 233–256. [Google Scholar] [CrossRef] [PubMed]
- Cherniack, N.S. Mathematical Models of Periodic Breathing and Their Usefulness in Understanding Cardiovascular and Respiratory Disorders. Exp. Physiol. 2005, 91, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Rawat, D.; Modi, P.; Sharma, S. Hypercapnea. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Lorenzi-Filho, G.; Rankin, F.; Bies, I.; Douglas, B.T. Effects of Inhaled Carbon Dioxide and Oxygen on Cheyne-Stokes Respiration in Patients with Heart Failure. Am. J. Respir. Crit. Care Med. 1999, 159, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Apostolo, A.; Agostoni, P.; Contini, M.; Antonioli, L.; Swenson, E.R. Acetazolamide and Inhaled Carbon Dioxide Reduce Periodic Breathing during Exercise in Patients with Chronic Heart Failure. J. Card. Fail. 2014, 20, 278–288. [Google Scholar] [CrossRef]
- Hermand, E.; Lhuissier, F.J.; Larribaut, J.; Pichon, A.; Richalet, J.-P. Ventilatory Oscillations at Exercise: Effects of Hyperoxia, Hypercapnia, and Acetazolamide. Physiol. Rep. 2015, 3, e12446. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.C.; Iturriaga, R.; Jeton, F.; Alcayaga, J.; Voituron, N.; Del Rio, R. Acute Effects of Systemic Erythropoietin Injections on Carotid Body Chemosensory Activity Following Hypoxic and Hypercapnic Stimulation. In Arterial Chemoreceptors; Gauda, E.B., Monteiro, M.E., Prabhakar, N., Wyatt, C., Schultz, H.D., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2018; Volume 1071, pp. 95–102. ISBN 978-3-319-91136-6. [Google Scholar]
- Mohan, R.; Duffin, J. The Effect of Hypoxia on the Ventilatory Response to Carbon Dioxide in Man. Respir. Physiol. 1997, 108, 101–115. [Google Scholar] [CrossRef]
- Dejours, P. Chemoreflexes in Breathing. Physiol. Rev. 1962, 42, 335–358. [Google Scholar] [CrossRef] [PubMed]
- Andreas, S.; Clemens, C.; Sandholzer, H.; Figulla, H.R.; Kreuzer, H. Improvement of Exercise Capacity with Treatment of Cheyne-Stokes Respiration in Patients with Congestive Heart Failure. J. Am. Coll. Cardiol. 1996, 27, 1486–1490. [Google Scholar] [CrossRef] [Green Version]
- Franklin, K.A.; Eriksson, P.; Sahlin, C.; Lundgren, R. Reversal of Central Sleep Apnea with Oxygen. Chest 1997, 111, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Gold, A.R.; Bleecker, E.R.; Smith, P.L. A Shift from Central and Mixed Sleep Apnea to Obstructive Sleep Apnea Resulting from Low-Flow Oxygen. Am. Rev. Respir. Dis. 1985, 132, 220–223. [Google Scholar]
- Ponikowski, P.; Anker, S.D.; Chua, T.P.; Francis, D.; Banasiak, W.; Poole-Wilson, P.A.; Coats, A.J.; Piepoli, M. Oscillatory Breathing Patterns during Wakefulness in Patients with Chronic Heart Failure: Clinical Implications and Role of Augmented Peripheral Chemosensitivity. Circulation 1999, 100, 2418–2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McElroy, M.K.; Gerard, A.; Powell, F.L.; Prisk, G.K.; Sentse, N.; Holverda, S.; West, J.B. Nocturnal O2 Enrichment of Room Air at High Altitude Increases Daytime O2 Saturation without Changing Control of Ventilation. High Alt. Med. Biol. 2000, 1, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Moraga, F.A.; Jiménez, D.; Richalet, J.P.; Vargas, M.; Osorio, J. Periodic Breathing and Oxygen Supplementation in Chilean Miners at High Altitude (4200m). Respir. Physiol. Neurobiol. 2014, 203, 109–115. [Google Scholar] [CrossRef]
- Richalet, J.-P.; Larmignat, P.; Poitrine, E.; Letournel, M.; Canouï-Poitrine, F. Physiological Risk Factors for Severe High-Altitude Illness: A Prospective Cohort Study. Am. J. Respir. Crit. Care Med. 2012, 185, 192–198. [Google Scholar] [CrossRef]
- Ritchie, N.D.; Baggott, A.V.; Andrew, T.W.T. Acetazolamide for the Prevention of Acute Mountain Sickness—A Systematic Review and Meta-analysis. J. Travel Med. 2012, 19, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Richalet, J.-P.; Rivera, M.; Bouchet, P.; Chirinos, E.; Onnen, I.; Petitjean, O.; Bienvenu, A.; Lasne, F.; Moutereau, S.; León-Velarde, F. Acetazolamide: A Treatment for Chronic Mountain Sickness. Am. J. Respir. Crit. Care Med. 2005, 172, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Caravita, S.; Faini, A.; Lombardi, C.; Valentini, M.; Gregorini, F.; Rossi, J.; Meriggi, P.; Di Rienzo, M.; Bilo, G.; Agostoni, P.; et al. Sex and Acetazolamide Effects on Chemoreflex and Periodic Breathing During Sleep at Altitude. Chest 2015, 147, 120–131. [Google Scholar] [CrossRef]
- Swenson, E.R. Carbonic Anhydrase Inhibitors and Ventilation: A Complex Interplay of Stimulation and Suppression. Eur. Respir. J. 1998, 12, 1242–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teppema, L.J. Multifaceted Clinical Effects of Acetazolamide: Will the Underlying Mechanisms Please Stand Up? J. Appl. Physiol. 2014, 116, 713–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontana, M.; Emdin, M.; Giannoni, A.; Iudice, G.; Baruah, R.; Passino, C. Effect of Acetazolamide on Chemosensitivity, Cheyne-Stokes Respiration, and Response to Effort in Patients with Heart Failure. Am. J. Cardiol. 2011, 107, 1675–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vovk, A.; Duffin, J.; Kowalchuk, J.M.; Paterson, D.H.; Cunningham, D.A. Changes in Chemoreflex Characteristics Following Acute Carbonic Anhydrase Inhibition in Humans at Rest. Exp. Physiol. 2000, 85, 847–856. [Google Scholar]
- Khayat, R.N.; Xie, A.; Patel, A.K.; Kaminski, A.; Skatrud, J.B. Cardiorespiratory Effects of Added Dead Space in Patients with Heart Failure and Central Sleep Apnea. Chest 2003, 123, 1551–1560. [Google Scholar] [CrossRef] [Green Version]
- Xie, A.; Rankin, F.; Rutherford, R.; Bradley, T.D. Effects of Inhaled CO2 and Added Dead Space on Idiopathic Central Sleep Apnea. J. Appl. Physiol. 1997, 82, 918–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, B.; McSharry, D.; Malhotra, A. Sleep Disordered Breathing in Patients with Heart Failure: Pathophysiology and Management. Curr. Treat. Options Cardiovasc. Med. 2011, 13, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Lovis, A.; De Riedmatten, M.; Greiner, D.; Lecciso, G.; Andries, D.; Scherrer, U.; Wellman, A.; Sartori, C.; Heinzer, R. Effect of Added Dead Space on Sleep Disordered Breathing at High Altitude. Sleep Med. 2012, 13, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Patz, D.S.; Patz, M.D.; Hackett, P.H. Dead Space Mask Eliminates Central Apnea at Altitude. High Alt. Med. Biol. 2013, 14, 168–174. [Google Scholar] [CrossRef]
- Xie, A.; Skatrud, J.B.; Puleo, D.S.; Rahko, P.S.; Dempsey, J.A. Apnea-Hypopnea Threshold for CO2 in Patients with Congestive Heart Failure. Am. J. Respir. Crit. Care Med. 2002, 165, 1245–1250. [Google Scholar] [CrossRef]
- Hermand, E.; Lhuissier, F.J.; Richalet, J.-P. Effect of Dead Space on Breathing Stability at Exercise in Hypoxia. Respir. Physiol. Neurobiol. 2017, 246, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Sinski, M.; Lewandowski, J.; Przybylski, J.; Zalewski, P.; Symonides, B.; Abramczyk, P.; Gaciong, Z. Deactivation of Carotid Body Chemoreceptors by Hyperoxia Decreases Blood Pressure in Hypertensive Patients. Hypertens. Res. 2014, 37, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Duffin, J. The Role of the Central Chemoreceptors: A Modeling Perspective. Respir. Physiol. Neurobiol. 2010, 173, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Grodins, F.S.; Buell, J.; Bart, A.J. Mathematical Analysis and Digital Simulation of the Respiratory Control System. J. Appl. Physiol. 1967, 22, 260–276. [Google Scholar] [CrossRef]
- Longobardo, G.S.; Gothe, B.; Goldman, M.D.; Cherniack, N.S. Sleep Apnea Considered as a Control System Instability. Respir. Physiol. 1982, 50, 311–333. [Google Scholar] [CrossRef]
- Khoo, M.C.; Kronauer, R.E.; Strohl, K.P.; Slutsky, A.S. Factors Inducing Periodic Breathing in Humans: A General Model. J. Appl. Physiol. 1982, 53, 644–659. [Google Scholar] [CrossRef]
- Fan, H.-H.; Khoo, M.C.K. PNEUMA-a Comprehensive Cardiorespiratory Model. In Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society Engineering in Medicine and Biology, Houston, TX, USA, 23–26 October 2002; Volume 2, pp. 1533–1534. [Google Scholar]
- Smith, C.A.; Forster, H.V.; Blain, G.M.; Dempsey, J.A. An Interdependent Model of Central/Peripheral Chemoreception: Evidence and Implications for Ventilatory Control. Respir. Physiol. Neurobiol. 2010, 173, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Hermand, E.; Lhuissier, F.J.; Voituron, N.; Richalet, J.-P. Ventilatory Oscillations at Exercise in Hypoxia: A Mathematical Model. J. Theor. Biol. 2016, 411, 92–101. [Google Scholar] [CrossRef]
- Corrà, U.; Giordano, A.; Bosimini, E.; Mezzani, A.; Piepoli, M.; Coats, A.J.S.; Giannuzzi, P. Oscillatory Ventilation during Exercise in Patients with Chronic Heart Failure: Clinical Correlates and Prognostic Implications. Chest 2002, 121, 1572–1580. [Google Scholar] [CrossRef] [Green Version]
- Garde, A.; Giraldo, B.F.; Jané, R.; Sörnmo, L. Time-Varying Respiratory Pattern Characterization in Chronic Heart Failure Patients and Healthy Subjects. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Québec, QC, Canada, 2–6 September 2009; pp. 4007–4010. [Google Scholar] [CrossRef] [Green Version]
- De Burgh, D.M. Interactions Between Respiration and Circulation. In Comprehensive Physiology; Terjung, R., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; p. 030216. ISBN 978-0-470-65071-4. [Google Scholar]
- Oliveira, A.L.M.B.; Rohan, P.D.A.; Gonçalves, T.R.; Soares, P.P.D.S. Effects of Hypoxia on Heart Rate Variability in Healthy Individuals: A Systematic Review. Int. J. Cardiovasc. Sci. 2017, 30, 251–261. [Google Scholar] [CrossRef]
- Zhang, D.; She, J.; Zhang, Z.; Yu, M. Effects of Acute Hypoxia on Heart Rate Variability, Sample Entropy and Cardiorespiratory Phase Synchronization. BioMed. Eng. Online 2014, 13, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulppo, M.P.; Mäkikallio, T.H.; Takala, T.E.; Seppänen, T.; Huikuri, H.V. Quantitative Beat-to-Beat Analysis of Heart Rate Dynamics during Exercise. Am. J. Physiol. 1996, 271, H244–H252. [Google Scholar] [CrossRef] [PubMed]
- Pichon, A.P.; De Bisschop, C.; Roulaud, M.; Denjean, A.; Papelier, Y. Spectral Analysis of Heart Rate Variability during Exercise in Trained Subjects. Med. Sci. Sports Exerc. 2004, 36, 1702–1708. [Google Scholar] [CrossRef]
- Insalaco, G.; Salvaggio, A.; Pomidori, L.; Cogo, A.; Romano, S. Heart Rate Variability during Sleep at High Altitude: Effect of Periodic Breathing. Sleep Breath 2016, 20, 197–204. [Google Scholar] [CrossRef]
- Richalet, J.-P. The Invention of Hypoxia. J. Appl. Physiol. 2021, 130, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Yates, F.E. Order and Complexity in Dynamical Systems: Homeodynamics as a Generalized Mechanics for Biology. Math. Comput. Model. 1994, 19, 49–74. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermand, E.; Lhuissier, F.J.; Pichon, A.; Voituron, N.; Richalet, J.-P. Exercising in Hypoxia and Other Stimuli: Heart Rate Variability and Ventilatory Oscillations. Life 2021, 11, 625. https://doi.org/10.3390/life11070625
Hermand E, Lhuissier FJ, Pichon A, Voituron N, Richalet J-P. Exercising in Hypoxia and Other Stimuli: Heart Rate Variability and Ventilatory Oscillations. Life. 2021; 11(7):625. https://doi.org/10.3390/life11070625
Chicago/Turabian StyleHermand, Eric, François J. Lhuissier, Aurélien Pichon, Nicolas Voituron, and Jean-Paul Richalet. 2021. "Exercising in Hypoxia and Other Stimuli: Heart Rate Variability and Ventilatory Oscillations" Life 11, no. 7: 625. https://doi.org/10.3390/life11070625
APA StyleHermand, E., Lhuissier, F. J., Pichon, A., Voituron, N., & Richalet, J. -P. (2021). Exercising in Hypoxia and Other Stimuli: Heart Rate Variability and Ventilatory Oscillations. Life, 11(7), 625. https://doi.org/10.3390/life11070625