General Counteraction Exerted by Sugars against Denaturants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. DSC Measurements
2.3. Density Measurements
2.4. Theoretical Approach
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Meersman, F.; Smeller, L.; Heremans, K. Protein stability and dynamics in the pressure–temperature plane. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2006, 1764, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Balny, C.; Masson, P. Effects of high pressure on proteins. Food Rev. Int. 1993, 9, 611–628. [Google Scholar] [CrossRef]
- Gault, S.; Jaworek, M.W.; Winter, R.; Cockell, C.S. High pressures increase α-chymotrypsin enzyme activity under perchlorate stress. Commun. Biol. 2020, 3, 550. [Google Scholar] [CrossRef]
- Wiedersich, J.; Kohler, S.; Skerra, A.; Friedrich, J. Temperature and pressure dependence of protein stability: The engineered fluorescein-binding lipocalin FluA shows an elliptic phase diagram. Proc. Natl. Acad. Sci. USA 2008, 105, 5756–5761. [Google Scholar] [CrossRef] [Green Version]
- Jaenicke, R. Protein stability and molecular adaptation to extreme conditions. In EJB Reviews; Christen, P., Hofmann, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 291–304. [Google Scholar] [CrossRef]
- Cinar, H.; Fetahaj, Z.; Cinar, S.; Vernon, R.M.; Chan, H.S.; Winter, R.H.A. Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid–Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications. Chem. Eur. J. 2019, 25, 13049–13069. [Google Scholar] [CrossRef]
- Canchi, D.R.; García, A.E. Cosolvent Effects on Protein Stability. Annu. Rev. Phys. Chem. 2013, 64, 273–293. [Google Scholar] [CrossRef] [PubMed]
- Chalikian, T.V. Effect of cosolvent on protein stability: A theoretical investigation. J. Chem. Phys. 2014, 141, 22D504. [Google Scholar] [CrossRef] [PubMed]
- Back, J.F.; Oakenfull, D.; Smith, M.B. Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry 1979, 18, 5191–5196. [Google Scholar] [CrossRef]
- Wang, Y.; Sarkar, M.; Smith, A.E.; Krois, A.S.; Pielak, G.J. Macromolecular Crowding and Protein Stability. J. Am. Chem. Soc. 2012, 134, 16614–16618. [Google Scholar] [CrossRef]
- Saunders, A.J.; Davis-Searles, P.R.; Allen, D.L.; Pielak, G.J.; Erie, D.A. Osmolyte-induced changes in protein conformational equilibria. Biopolymers 2000, 53, 293–307. [Google Scholar] [CrossRef]
- Bolen, D.W. Protein Stabilization by Naturally Occurring Osmolytes. In Protein Structure, Stability, and Folding; Humana Press: Totowa, NJ, USA, 2001; Volume 168, pp. 017–036. [Google Scholar] [CrossRef]
- Kumar, R. Role of naturally occurring osmolytes in protein folding and stability. Arch. Biochem. Biophys. 2009, 491, 1–6. [Google Scholar] [CrossRef]
- Arakawa, T.; Timasheff, S.N. The stabilization of proteins by osmolytes. Biophys. J. 1985, 47, 411–414. [Google Scholar] [CrossRef]
- Makhatadze, G.I.; Privalov, P.L. Protein interactions with urea and guanidinium chloride. J. Mol. Biol. 1992, 226, 491–505. [Google Scholar] [CrossRef]
- Lindgren, M.; Westlund, P.-O. On the stability of chymotrypsin inhibitor 2 in a 10 M urea solution. The role of interaction energies for urea-induced protein denaturation. Phys. Chem. Chem. Phys. 2010, 12, 9358. [Google Scholar] [CrossRef]
- Godawat, R.; Jamadagni, S.N.; Garde, S. Unfolding of hydrophobic polymers in guanidinium chloride solutions. J. Phys. Chem. B 2010, 114, 2246–2254. [Google Scholar] [CrossRef]
- Forney-Stevens, K.M.; Bogner, R.H.; Pikal, M.J. Addition of Amino Acids to Further Stabilize Lyophilized Sucrose-Based Protein Formulations: I. Screening of 15 Amino Acids in Two Model Proteins. J. Pharm. Sci. 2016, 105, 697–704. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Kishore, N. Protein stabilization and counteraction of denaturing effect of urea by glycine betaine. Biophys. Chem. 2014, 189, 16–24. [Google Scholar] [CrossRef]
- Arakawa, T.; Timasheff, S.N. Protein stabilization and destabilization by guanidinium salts. Biochemistry 1984, 23, 5924–5929. [Google Scholar] [CrossRef]
- Foglia, F.; Carullo, P.; del Vecchio, P. The effect of trimethylamine N-oxide on RNase a stability: A DSC study. J. Therm. Anal. Calorim. 2008, 91, 67–72. [Google Scholar] [CrossRef]
- Kaushik, J.K.; Bhat, R. Why Is Trehalose an Exceptional Protein Stabilizer? An Analysis of the Thermal Stability of Proteins in The Presence of the Compatible Osmolyte Trehalose. J. Biol. Chem. 2003, 278, 26458–26465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graziano, G. How does trimethylamine N-oxide counteract the denaturing activity of urea? Phys. Chem. Chem. Phys. 2011, 13, 17689. [Google Scholar] [CrossRef]
- del Vecchio, P.; Graziano, G.; Granata, V.; Barone, G.; Mandrich, L.; Rossi, M.; Manco, G. Denaturing action of urea and guanidine hydrochloride towards two thermophilic esterases. Biochem. J. 2002, 367, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Graziano, G. Contrasting the denaturing effect of guanidinium chloride with the stabilizing effect of guanidinium sulfate. Phys. Chem. Chem. Phys. 2011, 13, 12008. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.A. Denaturation of globular proteins. Interaction of guanidinium salts with three proteins. Biochemistry 1972, 11, 1862–1870. [Google Scholar] [CrossRef]
- Record, M.T.; Guinn, E.; Pegram, L.; Capp, M. Introductory Lecture: Interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model. Faraday Discuss. 2013, 160, 9–44. [Google Scholar] [CrossRef]
- Schellman, J.A. Protein Stability in Mixed Solvents: A Balance of Contact Interaction and Excluded Volume. Biophys. J. 2003, 85, 108–125. [Google Scholar] [CrossRef] [Green Version]
- Zangi, R.; Zhou, R.; Berne, B.J. Urea’s action on hydrophobic interactions. J. Am. Chem. Soc. 2009, 131, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
- Tonnis, W.F.; Mensink, M.A.; de Jager, A.; van der VoortMaarschalk, K.; Frijlink, H.W.; Hinrichs, W.L.J. Size and Molecular Flexibility of Sugars Determine the Storage Stability of Freeze-Dried Proteins. Mol. Pharm. 2015, 12, 684–694. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, F.-F.; Dong, X.-Y.; Sun, Y. Molecular Insight into the Counteraction of Trehalose on Urea-Induced Protein Denaturation Using Molecular Dynamics Simulation. J. Phys. Chem. B 2012, 116, 7040–7047. [Google Scholar] [CrossRef]
- Cozzolino, S.; Graziano, G. The magnitude of macromolecular crowding caused by Dextran and Ficoll for the conformational stability of globular proteins. J. Mol. Liq. 2021, 322, 114969. [Google Scholar] [CrossRef]
- von Hippel, P.H.; Wong, K.Y. On the conformational stability of globular proteins. The effects of various electrolytes and nonelectrolytes on the thermal ribonuclease transition. J. Biol. Chem. 1965, 240, 3909–3923. [Google Scholar] [CrossRef]
- Sengupta, R.; Pantel, A.; Cheng, X.; Shkel, I.; Peran, I.; Stenzoski, N.; Raleigh, D.P.; Record, M.T., Jr. Positioning the Intracellular Salt Potassium Glutamate in the Hofmeister Series by Chemical Unfolding Studies of NTL9. Biochemistry 2016, 55, 2251–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arakawa, T.; Tsumoto, K.; Kita, Y.; Chang, B.; Ejima, D. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids 2007, 33, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, S.; Oliva, R.; Graziano, G.; del Vecchio, P. Counteraction of denaturant-induced protein unfolding is a general property of stabilizing agents. Phys. Chem. Chem. Phys. 2018, 20, 29389–29398. [Google Scholar] [CrossRef]
- Jaworska, K.; Hering, D.; Mosieniak, G.; Bielak-Zmijewska, A.; Pilz, M.; Konwerski, M.; Gasecka, A.; Cieślicka, A.K.; Filipiak, K.; Sikora, E.; et al. TMA, A Forgotten Uremic Toxin, but Not TMAO, Is Involved in Cardiovascular Pathology. Toxins 2019, 11, 490. [Google Scholar] [CrossRef] [Green Version]
- Jaworska, K.; Konop, M.; Hutsch, T.; Perlejewski, K.; Radkowski, M.; Grochowska, M.; Zmijewska, A.B.; Mosieniak, G.; Sikora, E.; Ufnal, M. Trimethylamine But Not Trimethylamine Oxide Increases With Age in Rat Plasma and Affects Smooth Muscle Cells Viability. J. Gerontol. Ser. A 2020, 75, 1276–1283. [Google Scholar] [CrossRef]
- Yancey, P.H.; Clark, M.E.; Hand, S.C.; Bowlus, R.D.; Somero, G.N. Living with water stress: Evolution of osmolyte systems. Science 1982, 217, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.E.; Zhou, L.Z.; Gorensek, A.H.; Senske, M.; Pielak, G.J. In-cell thermodynamics and a new role for protein surfaces. Proc. Natl. Acad. Sci. USA 2016, 113, 1725–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elcock, A.H. Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Curr. Opin. Struct. Biol. 2010, 20, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, I.; Zaslavsky, B.; Breydo, L.; Turoverov, K.; Uversky, V. Beyond the Excluded Volume Effects: Mechanistic Complexity of the Crowded Milieu. Molecules 2015, 20, 1377–1409. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Liu, M.; Pielak, G.J.; Li, C. Macromolecular and Small Molecular Crowding Have Similar Effects on α-Synuclein Structure. Chem. Phys. Chem. 2017, 18, 55–58. [Google Scholar] [CrossRef]
- Vigorita, M.; Cozzolino, S.; Oliva, R.; Graziano, G.; del Vecchio, P. Counteraction ability of TMAO toward different denaturing agents. Biopolymers 2018, 109, e23104. [Google Scholar] [CrossRef]
- Rahman, S.; Islam, A.; Hassan, M.I.; Kim, J.; Ahmad, F. Unfoldness of the denatured state of proteins determines urea: Methylamine counteraction in terms of Gibbs free energy of stabilization. Int. J. Biol. Macromol. 2019, 132, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Lebowitz, J.L.; Helfand, E.; Praestgaard, E. Scaled Particle Theory of Fluid Mixtures. J. Chem. Phys. 1965, 43, 774–779. [Google Scholar] [CrossRef]
- Graziano, G. How does sucrose stabilize the native state of globular proteins? Int. J. Biol. Macromol. 2012, 50, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Graziano, G. On the mechanism of cold denaturation. Phys. Chem. Chem. Phys. 2014, 16, 21755–21767. [Google Scholar] [CrossRef]
- Foglia, F.; Mandrich, L.; Pezzullo, M.; Graziano, G.; Barone, G.; Rossi, M.; Manco, G.; del Vecchio, P. Role of the N-terminal region for the conformational stability of esterase 2 from Alicyclobacillus acidocaldarius. Biophys. Chem. 2007, 127, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Hall, C.K.; Karplus, M. The calorimetric criterion for a two-state process revisited. Protein Sci. 1999, 8, 1064–1074. [Google Scholar] [CrossRef] [Green Version]
- Ben-Naim, A. Hydrophobic interaction and structural changes in the solvent. Biopolymers 1975, 14, 1337–1355. [Google Scholar] [CrossRef]
- Lee, B. Enthalpy-entropy compensation in the thermodynamics of hydrophobicity. Biophys. Chem. 1994, 51, 271–278. [Google Scholar] [CrossRef]
- Graziano, G. Scaled Particle Theory Study of the Length Scale Dependence of Cavity Thermodynamics in Different Liquids. J. Phys. Chem. B 2006, 110, 11421–11426. [Google Scholar] [CrossRef]
- Patel, A.J.; Varilly, P.; Chandler, D. Fluctuations of water near extended hydrophobic and hydrophilic surfaces. J. Phys. Chem. B 2010, 114, 1632–1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallqvist, A.; Berne, B.J. Molecular Dynamics Study of the Dependence of Water Solvation Free Energy on Solute Curvature and Surface Area. J. Phys. Chem. 1995, 99, 2885–2892. [Google Scholar] [CrossRef] [Green Version]
- Graziano, G. The Gibbs energy cost of cavity creation depends on geometry. J. Mol. Liq. 2015, 211, 1047–1051. [Google Scholar] [CrossRef]
- Tran, H.T.; Pappu, R.V. Toward an Accurate Theoretical Framework for Describing Ensembles for Proteins under Strongly Denaturing Conditions. Biophys. J. 2006, 91, 1868–1886. [Google Scholar] [CrossRef] [Green Version]
- Royer, C.A. Revisiting volume changes in pressure-induced protein unfolding. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 2002, 1595, 201–209. [Google Scholar] [CrossRef]
- Chalikian, T.V. Volumetric properties of proteins. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 207–235. [Google Scholar] [CrossRef]
- Chen, C.R.; Makhatadze, G.I. Molecular determinant of the effects of hydrostatic pressure on protein folding stability. Nat. Commun. 2017, 8, 14561. [Google Scholar] [CrossRef]
- Head-Gordon, T.; Hura, G. Water Structure from Scattering Experiments and Simulation. Chem. Rev. 2002, 102, 2651–2670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenberg, D.S.; Kauzmann, W. The Structure and Properties of Water; Clarendon Press: New York, NY, USA; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Pica, A.; Graziano, G. Shedding light on the extra thermal stability of thermophilic proteins. Biopolymers 2016, 105, 856–863. [Google Scholar] [CrossRef]
- O’Connor, T.F.; Debenedetti, P.G.; Carbeck, J.D. Stability of proteins in the presence of carbohydrates; experiments and modeling using scaled particle theory. Biophys. Chem. 2007, 127, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Edward, J.T. Molecular volumes and the Stokes-Einstein equation. J. Chem. Educ. 1970, 47, 261. [Google Scholar] [CrossRef]
- Street, T.O.; Bolen, D.W.; Rose, G.D. A molecular mechanism for osmolyte-induced protein stability. Proc. Natl. Acad. Sci. USA 2006, 103, 13997–14002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, Y. Ionic radii in aqueous solutions. Chem. Rev. 1988, 88, 1475–1498. [Google Scholar] [CrossRef]
- Wilhelm, E.; Battino, R. Estimation of Lennard-Jones (6, 12) Pair Potential Parameters from Gas Solubility Data. J. Chem. Phys. 1971, 55, 4012–4017. [Google Scholar] [CrossRef]
- Graziano, G. On the molecular origin of cold denaturation of globular proteins. Phys. Chem. Chem. Phys. 2010, 12, 14245. [Google Scholar] [CrossRef]
- Benton, L.A.; Smith, A.E.; Young, G.B.; Pielak, G.J. Unexpected Effects of Macromolecular Crowding on Protein Stability. Biochemistry 2012, 51, 9773–9775. [Google Scholar] [CrossRef]
- Collins, K.D. Charge density-dependent strength of hydration and biological structure. Biophys. J. 1997, 72, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Mason, P.E.; Neilson, G.W.; Dempsey, C.E.; Barnes, A.C.; Cruickshank, J.M. The hydration structure of guanidinium and thiocyanate ions: Implications for protein stability in aqueous solution. Proc. Natl. Acad. Sci. USA 2003, 100, 4557–4561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senske, M.; Törk, L.; Born, B.; Havenith, M.; Herrmann, C.; Ebbinghaus, S. Protein Stabilization by Macromolecular Crowding through Enthalpy Rather Than Entropy. J. Am. Chem. Soc. 2014, 136, 9036–9041. [Google Scholar] [CrossRef] [PubMed]
- Sapir, L.; Harries, D. Macromolecular Stabilization by Excluded Cosolutes: Mean Field Theory of Crowded Solutions. J. Chem. Theory Comput. 2015, 11, 3478–3490. [Google Scholar] [CrossRef] [PubMed]
- Pace, C.N.; Grimsley, G.R.; Thomas, S.T.; Makhatadze, G.I. Heat capacity change for ribonuclease A folding. Protein Sci. 1999, 8, 1500–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerbret, A.; Bordat, P.; Affouard, F.; Guinet, Y.; Hédoux, A.; Paccou, L.; Prévost, D.; Descamps, M. Influence of homologous disaccharides on the hydrogen-bond network of water: Complementary Raman scattering experiments and molecular dynamics simulations. Carbohydr. Res. 2005, 340, 881–887. [Google Scholar] [CrossRef]
- O’Brien, E.P.; Ziv, G.; Haran, G.; Brooks, B.R.; Thirumalai, D. Effects of denaturants and osmolytes on proteins are accurately predicted by the molecular transfer model. Proc. Natl. Acad. Sci. USA 2008, 105, 13403–13408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Reddy, G.; Thirumalai, D. Folding PDZ2 Domain Using the Molecular Transfer Model. J. Phys. Chem. B 2016, 120, 8090–8101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ρ (g L−1) | [H2O] (M) | σ (Å) | ξ3 | |
---|---|---|---|---|
H2O | 997 | 55.3 | 2.80 | 0.383 |
1.0 M Fructose | 1066 | 49.2 | 6.40 | 0.423 |
1.0 M Glucose | 1062 | 48.9 | 6.60 | 0.429 |
1.0 M Sucrose | 1126 | 43.5 | 8.10 | 0.469 |
1.0 M Trehalose | 1130 | 43.7 | 8.30 | 0.483 |
1.0 M Urea | 1013 | 52.9 | 4.64 | 0.398 |
1.0 M Urea + 1.0 M Fructose | 1082 | 46.7 | 4.64 and 6.40 | 0.437 |
1.0 M Urea + 1.0 M Glucose | 1080 | 46.6 | 4.64 and 6.60 | 0.445 |
1.0 M Urea + 1.0 M Sucrose | 1143 | 41.1 | 4.64 and 8.10 | 0.484 |
1.0 M Urea + 1.0 M Trehalose | 1144 | 41.2 | 4.64 and 8.30 | 0.497 |
1.0 M TMU | 999 | 49.0 | 6.13 | 0.412 |
1.0 M TMU + 1.0 M Fructose | 1067 | 42.8 | 6.13 and 6.40 | 0.451 |
1.0 M TMU + 1.0 M Glucose | 1068 | 42.8 | 6.13 and 6.60 | 0.460 |
1.0 M TMU + 1.0 M Sucrose | 1127 | 37.1 | 6.13 and 8.10 | 0.497 |
1.0 M TMU + 1.0 M Trehalose | 1131 | 37.3 | 6.13 and 8.30 | 0.511 |
1.0 M NaClO4 | 1068 | 52.5 | 2.02 and 4.80 | 0.401 |
1.0 M NaClO4 + 1.0 M Fructose | 1144 | 46.7 | 2.02, 4.80, and 6.40 | 0.443 |
1.0 M NaClO4 + 1.0 M Glucose | 1136 | 46.3 | 2.02, 4.80, and 6.60 | 0.448 |
1.0 M NaClO4 + 1.0 M Sucrose | 1198 | 40.7 | 2.02, 4.80, and 8.10 | 0.487 |
1.0 M NaClO4 + 1.0 M Trehalose | 1216 | 41.7 | 2.02, 4.80, and 8.30 | 0.506 |
1.0 M GdmCl | 1022 | 51.4 | 4.70 and 3.62 | 0.404 |
1.0 M GdmCl + 1.0 M Fructose | 1090 | 45.2 | 4.70, 3.62, and 6.40 | 0.443 |
1.0 M GdmCl + 1.0 M Glucose | 1091 | 45.2 | 4.70, 3.62, and 6.60 | 0.451 |
1.0 M GdmCl + 1.0 M Sucrose | 1150 | 39.5 | 4.70, 3.62, and 8.10 | 0.489 |
1.0 M GdmCl + 1.0 M Trehalose | 1156 | 39.9 | 4.70, 3.62, and 8.30 | 0.504 |
0.5 M GdmSCN | 1011 | 52.8 | 4.70 and 3.94 | 0.392 |
0.5 M GdmSCN + 1.0 M Fructose | 1079 | 46.6 | 4.70, 3.94, and 6.40 | 0.431 |
0.5 M GdmSCN + 1.0 M Glucose | 1079 | 46.6 | 4.70, 3.94, and 6.60 | 0.439 |
0.5 M GdmSCN + 1.0 M Sucrose | 1145 | 41.3 | 4.70, 3.94, and 8.10 | 0.479 |
0.5 M GdmSCN + 1.0 M Trehalose | 1141 | 41.0 | 4.70, 3.94, and 8.30 | 0.490 |
Co-Solute | a Td (°C) | a ΔHd(Td) (kJ mol−1) | CU | ΔGd(25 °C) (kJ mol−1) | |
---|---|---|---|---|---|
- | - | 63.4 | 448 | 1.0 | 36 |
- | 1.0 M Fructose | 65.7 | 442 | 1.0 | 37 |
- | 1.0 M Glucose | 66.2 | 443 | 0.96 | 37 |
- | 1.0 M Sucrose | 67.6 | 472 | 0.98 | 41 |
- | 1.0 M Trehalose | 68.4 | 446 | 1.0 | 38 |
Urea | |||||
1.0 M | - | 59.7 | 440 | 1.0 | 33 |
1.0 M | 1.0 M Fructose | 62.9 | 372 | 0.95 | 28 |
1.0 M | 1.0 M Glucose | 63.5 | 432 | 0.98 | 35 |
1.0 M | 1.0 M Sucrose | 64.6 | 428 | 0.96 | 35 |
1.0 M | 1.0 M Trehalose | 65.6 | 422 | 0.99 | 34 |
TMU | |||||
1.0 M | - | 53.9 | 427 | 1.0 | 29 |
1.0 M | 1.0 M Fructose | 54.4 | 344 | 0.96 | 22 |
1.0 M | 1.0 M Glucose | 55.6 | 433 | 0.95 | 31 |
1.0 M | 1.0 M Sucrose | 56.3 | 444 | 1.0 | 32 |
1.0 M | 1.0 M Trehalose | 56.8 | 444 | 1.0 | 33 |
NaClO4 | |||||
1.0 M | - | 53.0 | 403 | 0.96 | 27 |
1.0 M | 1.0 M Fructose | 52.6 | 326 | 0.97 | 20 |
1.0 M | 1.0 M Glucose | 54.5 | 400 | 0.95 | 27 |
1.0 M | 1.0 M Sucrose | 55.4 | 420 | 0.96 | 30 |
1.0 M | 1.0 M Trehalose | 58.2 | 392 | 0.98 | 28 |
GdmCl | |||||
1.0 M | - | 53.9 | 383 | 0.94 | 25 |
1.0 M | 1.0 M Fructose | 57.6 | 391 | 0.99 | 28 |
1.0 M | 1.0 M Glucose | 57.4 | 394 | 0.95 | 28 |
1.0 M | 1.0 M Sucrose | 58.6 | 392 | 0.94 | 28 |
1.0 M | 1.0 M Trehalose | 61.1 | 382 | 0.96 | 28 |
GdmSCN | |||||
0.5 M | - | 47.9 | 320 | 0.94 | 17 |
0.5 M | 1.0 M Fructose | 50.3 | 320 | 0.97 | 19 |
0.5 M | 1.0 M Glucose | 50.0 | 324 | 0.93 | 19 |
0.5 M | 1.0 M Sucrose | 51.0 | 343 | 0.94 | 21 |
0.5 M | 1.0 M Trehalose | 53.6 | 340 | 0.97 | 22 |
ΔGc(N) | ΔGc(D) | ΔΔGc | ΔΔGc′ | |
---|---|---|---|---|
H2O | 1074 | 1878 | 804 | - |
1 M fructose | 1125 | 1967 | 842 | 38 |
1 M glucose | 1145 | 2001 | 856 | 52 |
1 M sucrose | 1155 | 2020 | 865 | 61 |
1 M trehalose | 1223 | 2138 | 915 | 111 |
1 M urea | 1111 | 1942 | 831 | 27 |
1 M urea + 1 M fructose | 1167 | 2040 | 873 | 69 |
1 M urea + 1 M glucose | 1195 | 2088 | 893 | 89 |
1 M urea + 1 M sucrose | 1207 | 2110 | 903 | 99 |
1 M urea + 1 M trehalose | 1269 | 2218 | 949 | 145 |
1 M TMU | 1079 | 1887 | 808 | 4 |
1 M TMU + 1 M fructose | 1131 | 1978 | 847 | 43 |
1 M TMU + 1 M glucose | 1168 | 2042 | 874 | 70 |
1 M TMU + 1 M sucrose | 1165 | 2037 | 872 | 68 |
1 M TMU + 1 M trehalose | 1237 | 2162 | 925 | 121 |
1 M NaClO4 | 1128 | 1972 | 844 | 40 |
1 M NaClO4 + 1 M fructose | 1209 | 2114 | 905 | 101 |
1 M NaClO4 + 1 M glucose | 1219 | 2130 | 911 | 107 |
1 M NaClO4 + 1 M sucrose | 1230 | 2150 | 920 | 116 |
1 M NaClO4 + 1 M trehalose | 1359 | 2373 | 1014 | 210 |
1 M GdmCl | 1130 | 1976 | 846 | 42 |
1 M GdmCl + 1 M fructose | 1187 | 2076 | 889 | 85 |
1 M GdmCl + 1 M glucose | 1225 | 2141 | 916 | 112 |
1 M GdmCl + 1 M sucrose | 1227 | 2145 | 918 | 114 |
1 M GdmCl + 1 M trehalose | 1309 | 2288 | 979 | 175 |
0.5 M GdmSCN | 1085 | 1897 | 812 | 8 |
0.5 M GdmSCN + 1 M fructose | 1135 | 1985 | 850 | 46 |
0.5 M GdmSCN + 1 M glucose | 1168 | 2041 | 873 | 69 |
0.5 M GdmSCN + 1 M sucrose | 1188 | 2077 | 889 | 85 |
0.5 M GdmSCN + 1 M trehalose | 1231 | 2151 | 920 | 116 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzolino, S.; Tortorella, A.; Del Vecchio, P.; Graziano, G. General Counteraction Exerted by Sugars against Denaturants. Life 2021, 11, 652. https://doi.org/10.3390/life11070652
Cozzolino S, Tortorella A, Del Vecchio P, Graziano G. General Counteraction Exerted by Sugars against Denaturants. Life. 2021; 11(7):652. https://doi.org/10.3390/life11070652
Chicago/Turabian StyleCozzolino, Serena, Attila Tortorella, Pompea Del Vecchio, and Giuseppe Graziano. 2021. "General Counteraction Exerted by Sugars against Denaturants" Life 11, no. 7: 652. https://doi.org/10.3390/life11070652
APA StyleCozzolino, S., Tortorella, A., Del Vecchio, P., & Graziano, G. (2021). General Counteraction Exerted by Sugars against Denaturants. Life, 11(7), 652. https://doi.org/10.3390/life11070652