Lung Microbiome in Critically Ill Patients
Abstract
:1. Introduction
2. Lung Microbiome in Critically Ill Patients
2.1. Lung Bacterial Microbiota
2.1.1. Lung Bacterial Microbiota and Invasive Mechanical Ventilation
2.1.2. Lung Bacterial Microbiota and Acute Respiratory Distress Syndrome
2.1.3. Bacterial Microbiota and Lung Infections
2.2. Lung Virome
2.2.1. Virome and Invasive Mechanical Ventilation
2.2.2. Virome and Pulmonary Infections
Virome and Community-Acquired Pneumonia
- Eukaryotic Virome and Community-Acquired Pneumonia
- Prokaryotic Viruses and Community-Acquired Pneumonia
Virome and Ventilator-Associated Pneumonia
2.3. Lung Mycobiota
3. Lung Microbiome in Intensive Care Medicine: Limits and Perspectives
3.1. Limits in 2021
3.2. Perspectives
3.2.1. Establishing a Framework for Microbiome Research
3.2.2. Clinical Application
Improvement in Diagnostic Accuracy
Prevention of Ventilator-Associated Pneumonia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Man, W.H.; De Steenhuijsen Piters, W.A.A.; Bogaert, D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef]
- Wypych, T.P.; Wickramasinghe, L.C.; Marsland, B.J. The influence of the microbiome on respiratory health. Nat. Immunol. 2019, 20, 1279–1290. [Google Scholar] [CrossRef]
- Fujimura, K.E.; Lynch, S.V. Microbiota in Allergy and Asthma and the Emerging Relationship with the Gut Microbiome. Cell Host Microbe 2015, 17, 592–602. [Google Scholar] [CrossRef] [Green Version]
- Fromentin, M.; Ricard, J.-D.; Roux, D. Respiratory microbiome in mechanically ventilated patients: A narrative review. Intensive Care Med. 2021, 47, 292–306. [Google Scholar] [CrossRef]
- Flanagan, J.L.; Brodie, E.L.; Weng, L.; Lynch, S.V.; Garcia, O.; Brown, R.; Hugenholtz, P.; DeSantis, T.Z.; Andersen, G.L.; Wiener-Kronish, J.P.; et al. Loss of Bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J. Clin. Microbiol. 2007, 45, 1954–1962. [Google Scholar] [CrossRef] [Green Version]
- Bousbia, S.; Papazian, L.; Saux, P.; Forel, J.M.; Auffray, J.-P.; Martin, C.; Raoult, D.; La Scola, B. Repertoire of intensive care unit pneumonia microbiota. PLoS ONE 2012, 7, e32486. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.D.; Zhang, Y.; Barber, R.C.; Minshall, C.T.; Huebinger, R.M.; Allen, M.S. Common lung microbiome identified among mechanically ventilated surgical patients. PLoS ONE 2016, 11, e0166313. [Google Scholar] [CrossRef]
- Kelly, B.J.; Imai, I.; Bittinger, K.; Laughlin, A.; Fuchs, B.D.; Bushman, F.D.; Collman, R.G. Composition and dynamics of the respiratory tract microbiome in intubated patients. Microbiome 2016, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zakharkina, T.; Martin-Loeches, I.; Matamoros, S.; Povoa, P.; Torres, A.; Kastelijn, J.B.; Hofstra, J.J.; De Wever, B.; De Jong, M.; Schultz, M.J.; et al. The dynamics of the pulmonary microbiome during mechanical ventilation in the intensive care unit and the association with occurrence of pneumonia. Thorax 2017, 72, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Madan, J.C.; Koestler, D.C.; Stanton, B.A.; Davidson, L.; Moulton, L.A.; Housman, M.L.; Moore, J.H.; Guill, M.F.; Morrison, H.G.; Sogin, M.L.; et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: Interaction between intestinal and respiratory tracts and impact of nutritional exposures. mBio 2012, 3, e00251-12. [Google Scholar] [CrossRef] [Green Version]
- Dickson, R.P.; Singer, B.; Newstead, M.W.; Falkowski, N.R.; Erb-Downward, J.R.; Standiford, T.J.; Huffnagle, G.B. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 2016, 1, 16113. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Schultz, M.J.; van der Poll, T.; Schouten, L.R.; Falkowski, N.R.; Luth, J.E.; Sjoding, M.W.; Brown, C.A.; Chanderraj, R.; Huffnagle, G.B.; et al. Lung Microbiota Predict Clinical Outcomes in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2020, 201, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Panzer, A.R.; Lynch, S.V.; Langelier, C.; Christie, J.; McCauley, K.; Nelson, M.; Cheung, C.K.; Benowitz, N.L.; Cohen, M.J.; Calfee, C.S. Lung Microbiota is related to smoking status and to development of acute respiratory distress syndrome in critically Ill trauma patients. Am. J. Respir. Crit. Care Med. 2018, 197, 621–631. [Google Scholar] [CrossRef]
- Kyo, M.; Nishioka, K.; Nakaya, T.; Kida, Y.; Tanabe, Y.; Ohshimo, S.; Shime, N. Unique patterns of lower respiratory tract microbiota are associated with inflammation and hospital mortality in acute respiratory distress syndrome. Respir. Res. 2019, 20, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, F.; Lipinski, A.; Hofer, S.; Uhle, F.; Nusshag, C.; Hackert, T.; Dalpke, A.; Weigand, M.; Brenner, T.; Boutin, S. Pulmonary microbiome patterns correlate with the course of disease in patients with sepsis-induced ARDS following major abdominal surgery. J. Hosp. Infect. 2020, 105, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Emonet, S.; Lazarevic, V.; Refondini, C.L.; Gaïa, N.; Leo, S.; Girard, M.; Boyer, V.N.; Wozniak, H.; Després, L.; Renzi, G.; et al. Identification of respiratory microbiota markers in ventilator-associated pneumonia. Intensiv. Care Med. 2019, 45, 1082–1092. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Bushman, F.D. The human virome: Assembly, composition and host interactions. Nat. Rev. Genet. 2021, 19, 514–527. [Google Scholar] [CrossRef]
- Abt, M.C.; Osborne, L.; Monticelli, L.A.; Doering, T.A.; Alenghat, T.; Sonnenberg, G.F.; Paley, M.; Antenus, M.; Williams, K.L.; Erikson, J.; et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012, 37, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Handley, S.A. The virome: A missing component of biological interaction networks in health and disease. Genome Med. 2016, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, R.; Farne, H.; Ritchie, A.; Luke, E.; Johnston, S.; Mallia, P. The role of viral infections in exacerbations of chronic obstructive pulmonary disease and asthma. Ther. Adv. Respir. Dis. 2016, 10, 158–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtzman, M.J. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. J. Clin. Investig. 2012, 122, 2741–2748. [Google Scholar] [CrossRef] [Green Version]
- Limaye, A.P.; Kirby, K.; Rubenfeld, G.D.; Leisenring, W.M.; Bulger, E.M.; Neff, M.J.; Gibran, N.S.; Huang, M.-L.; Santo, T.K.; Corey, L.; et al. Cytomegalovirus Reactivation in Critically Ill Immunocompetent Patients. JAMA 2008, 300, 413–422. [Google Scholar] [CrossRef]
- Frantzeskaki, F.G.; Karampi, E.-S.; Kottaridi, C.; Alepaki, M.; Routsi, C.; Tzanela, M.; Vassiliadi, D.A.; Douka, E.; Tsaousi, S.; Gennimata, V.; et al. Cytomegalovirus reactivation in a general, nonimmunosuppressed intensive care unit population: Incidence, risk factors, associations with organ dysfunction, and inflammatory biomarkers. J. Crit. Care 2015, 30, 276–281. [Google Scholar] [CrossRef]
- Papazian, L.; Doddoli, C.; Chetaille, B.; Gernez, Y.; Thirion, X.; Roch, A.; Donati, Y.; Bonnety, M.; Zandotti, C.; Thomas, P. A contributive result of open-lung biopsy improves survival in acute respiratory distress syndrome patients. Crit. Care Med. 2007, 35, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Walton, A.; Muenzer, J.T.; Rasche, D.; Boomer, J.S.; Sato, B.; Brownstein, B.H.; Pachot, A.; Brooks, T.L.; Deych, E.; Shannon, W.D.; et al. Reactivation of multiple viruses in patients with sepsis. PLoS ONE 2014, 9, e98819. [Google Scholar] [CrossRef] [Green Version]
- Coisel, Y.; Bousbia, S.; Forel, J.-M.; Hraiech, S.; Lascola, B.; Roch, A.; Zandotti, C.; Million, M.; Jaber, S.; Raoult, D.; et al. Cytomegalovirus and herpes simplex virus effect on the prognosis of mechanically ventilated patients suspected to have ventilator-associated pneumonia. PLoS ONE 2012, 7, e51340. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Self, W.H.; Wunderink, R.G.; Fakhran, S.; Balk, R.; Bramley, A.M.; Reed, C.; Grijalva, C.G.; Anderson, E.J.; Courtney, D.M.; et al. Community-Acquired Pneumonia Requiring Hospitalization among US Adults. N. Engl. J. Med. 2015, 373, 415–427. [Google Scholar] [CrossRef] [Green Version]
- Piralla, A.; Mariani, B.; Rovida, F.; Baldanti, F. Frequency of respiratory viruses among patients admitted to 26 Intensive Care Units in seven consecutive winter-spring seasons (2009–2016) in Northern Italy. J. Clin. Virol. 2017, 92, 48–51. [Google Scholar] [CrossRef]
- Sajjan, U.; Wang, Q.; Zhao, Y.; Gruenert, D.C.; Hershenson, M.B. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am. J. Respir. Crit. Care Med. 2008, 178, 1271–1281. [Google Scholar] [CrossRef] [Green Version]
- Lynch, S.V. Viruses and Microbiome Alterations. Ann. Am. Thorac. Soc. 2014, 11, S57–S60. [Google Scholar] [CrossRef]
- Pettigrew, M.M.; Gent, J.F.; Revai, K.; Patel, J.A.; Chonmaitree, T. Microbial Interactions during Upper Respiratory Tract Infections. Emerg. Infect. Dis. 2008, 14, 1584–1591. [Google Scholar] [CrossRef]
- Bellinghausen, C.; Gulraiz, F.; Heinzmann, A.C.A.; Dentener, M.A.; Savelkoul, P.H.M.; Wouters, E.F.; Rohde, G.G.; Stassen, F.R. Exposure to common respiratory bacteria alters the airway epithelial response to subsequent viral infection. Respir. Res. 2016, 17, 68. [Google Scholar] [CrossRef] [Green Version]
- Popgeorgiev, N.; Temmam, S.; Raoult, D.; Desnues, C. Describing the silent human virome with an emphasis on giant viruses. Intervirology 2013, 56, 395–412. [Google Scholar] [CrossRef]
- Koskella, B.; Brockhurst, M.A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 2014, 38, 916–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touchon, M.; Moura de Sousa, J.A.; Rocha, E.P. Embracing the enemy: The diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr. Opin. Microbiol. 2017, 38, 66–73. [Google Scholar] [CrossRef]
- Chiche, L.; Forel, J.-M.; Papazian, L. The role of viruses in nosocomial pneumonia. Curr. Opin. Infect. Dis. 2011, 24, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Florescu, D.F. Prevalence and mortality associated with cytomegalovirus infection in nonimmunosuppressed patients in the intensive care unit. Crit. Care Med. 2009, 37, 2350–2358. [Google Scholar] [CrossRef] [Green Version]
- Luyt, C.-E.; Combes, A.; Deback, C.; Aubriot-Lorton, M.-H.; Nieszkowska, A.; Trouillet, J.-L.; Capron, F.; Agut, H.; Gibert, C.; Chastre, J. Herpes Simplex Virus Lung Infection in Patients Undergoing Prolonged Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2007, 175, 935–942. [Google Scholar] [CrossRef]
- Fang, X.; Mei, Q.; Fan, X.; Zhu, C.; Yang, T.; Zhang, L.; Geng, S.; Pan, A. Diagnostic Value of metagenomic next-generation sequencing for the detection of pathogens in bronchoalveolar lavage fluid in ventilator-associated pneumonia patients. Front. Microbiol. 2020, 11, 599756. [Google Scholar] [CrossRef]
- Marsland, B.J.; Gollwitzer, E.S. Host–microorganism interactions in lung diseases. Nat. Rev. Immunol. 2014, 14, 827–835. [Google Scholar] [CrossRef]
- Charlson, E.S.; Diamond, J.M.; Bittinger, K.; Fitzgerald, A.S.; Yadav, A.; Haas, A.R.; Bushman, F.; Collman, R.G. Lung-enriched organisms and aberrant bacterial and fungal respiratory microbiota after lung transplant. Am. J. Respir. Crit. Care Med. 2012, 186, 536–545. [Google Scholar] [CrossRef] [Green Version]
- Delhaes, L.; Monchy, S.; Fréalle, E.; Hubans, C.; Salleron, J.; Leroy, S.; Prevotat, A.; Wallet, F.; Wallaert, B.; Dei-Cas, E.; et al. The Airway microbiota in cystic fibrosis: A complex fungal and bacterial community—Implications for therapeutic management. PLoS ONE 2012, 7, e36313. [Google Scholar] [CrossRef] [Green Version]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the Oral Fungal Microbiome (Mycobiome) in Healthy Individuals. PLoS Pathog. 2010, 6, e1000713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, R.; Sauer-Heilborn, A.; Welte, T.; Guzman, C.A.; Abraham, W.-R.; Höfle, M.G. Cohort study of airway mycobiome in adult cystic fibrosis patients: Differences in community structure between fungi and bacteria reveal predominance of transient fungal elements. J. Clin. Microbiol. 2015, 53, 2900–2907. [Google Scholar] [CrossRef] [Green Version]
- Azoulay, E.; Timsit, J.-F.; Tafflet, M.; de Lassence, A.; Darmon, M.; Zahar, J.-R.; Adrie, C.; Garrouste-Orgeas, M.; Cohen, Y.; Mourvillier, B.; et al. Candida Colonization of the Respiratory Tract and Subsequent Pseudomonas Ventilator-Associated Pneumonia. Chest 2006, 129, 110–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Ebiary, M.; Torres, A.; Fábregas, N.; De La Bellacasa, J.P.; González, J.; Ramirez, J.; Del Baño, D.; Hernández, C.; De Anta, M.T.J. Significance of the Isolation of Candida Species from Respiratory Samples in Critically Ill, Non-neutropenic Patients. An Immediate Postmortem Histologic Study. Am. J. Respir. Crit. Care Med. 1997, 156, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Zhu, S.; Yan, D.; Chen, W.; Chen, R.; Zou, J.; Yan, J.; Zhang, X.; Farmakiotis, D.; Mylonakis, E. Candida spp. airway colonization: A potential risk factor for Acinetobacter baumannii ventilator-associated pneumonia. Med. Mycol. 2016, 54, 557–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, D.; Gaudry, S.; Dreyfuss, D.; El-Benna, J.; de Prost, N.; Denamur, E.; Saumon, G.; Ricard, J.-D. Candida albicans impairs macrophage function and facilitates Pseudomonas aeruginosa pneumonia in rat. Crit. Care Med. 2009, 37, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Chen, R.; Zhu, S.; Wang, H.; Yan, D.; Zhang, X.; Farmakiotis, D.; Mylonakis, E. Candida albicans airway colonization facilitates subsequent Acinetobacter baumannii pneumonia in a rat model. Antimicrob. Agents Chemother. 2016, 60, 3348–3354. [Google Scholar] [CrossRef] [Green Version]
- Roux, D.; Gaudry, S.; Khoy-Ear, L.; Aloulou, M.; Phillips-Houlbracq, M.; Bex, J.; Skurnik, D.; Denamur, E.; Monteiro, R.C.; Dreyfuss, D.; et al. Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail. Crit. Care Med. 2013, 41, e191–e199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, R.; Halwachs, B.; Thallinger, G.G.; Klymiuk, I.; Gorkiewicz, G.; Hoenigl, M.; Prattes, J.; Valentin, T.; Heidrich, K.; Buzina, W.; et al. Characterisation of Candida within the Mycobiome/Microbiome of the Lower Respiratory Tract of ICU Patients. PLoS ONE 2016, 11, e0155033. [Google Scholar] [CrossRef] [PubMed]
- Eggimann, P.; Garbino, J.; Pittet, D. Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect. Dis. 2003, 3, 685–702. [Google Scholar] [CrossRef]
- Mukherjee, S.; Hanidziar, D. More of the gut in the lung: How two microbiomes meet in ARDS. Yale J. Boil. Med. 2018, 91, 143–149. [Google Scholar]
- Fouhy, F.; Clooney, A.G.; Stanton, C.; Claesson, M.J.; Cotter, P.D. 16S rRNA gene sequencing of mock microbial populations- impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiol. 2016, 16, 123. [Google Scholar] [CrossRef]
- Soergel, D.A.W.; Dey, N.; Knight, R.; Brenner, S.E. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J. 2012, 6, 1440–1444. [Google Scholar] [CrossRef] [Green Version]
- De Steenhuijsen Piters, W.A.A.; Huijskens, E.G.W.; Wyllie, A.L.; Biesbroek, G.; Bergh, M.R.V.D.; Veenhoven, R.H.; Wang, X.; Trzcinski, K.; Bonten, M.J.; Rossen, J.; et al. Dysbiosis of upper respiratory tract microbiota in elderly pneumonia patients. ISME J. 2016, 10, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Salk, H.M.; Simon, W.L.; Lambert, N.D.; Kennedy, R.B.; Grill, D.E.; Kabat, B.F.; Poland, G.A. Taxa of the Nasal Microbiome Are Associated with Influenza-Specific IgA Response to Live Attenuated Influenza Vaccine. PLoS ONE 2016, 11, e0162803. [Google Scholar] [CrossRef] [Green Version]
- Jamal, W.; Al Roomi, E.; Abdulaziz, L.R.; Rotimi, V.O. Evaluation of Curetis Unyvero, a Multiplex PCR-Based Testing System, for Rapid Detection of Bacteria and Antibiotic Resistance and Impact of the Assay on Management of Severe Nosocomial Pneumonia. J. Clin. Microbiol. 2014, 52, 2487–2492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadsby, N.J.; McHugh, M.P.; Forbes, C.; MacKenzie, L.; Hamilton, S.K.D.; Griffith, D.M.; Templeton, K.E. Comparison of Unyvero P55 Pneumonia Cartridge, in-house PCR and culture for the identification of respiratory pathogens and antibiotic resistance in bronchoalveolar lavage fluids in the critical care setting. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Papan, C.; Meyer-Buehn, M.; Laniado, G.; Nicolai, T.; Griese, M.; Huebner, J. Assessment of the multiplex PCR-based assay Unyvero pneumonia application for detection of bacterial pathogens and antibiotic resistance genes in children and neonates. Infection 2018, 46, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Ma, Y.; Wang, Q.; Pan, J.; Zhang, Y.; Jin, W.; Yao, Y.; Su, Y.; Huang, Y.; Wang, M.; et al. Microbiological Diagnostic Performance of Metagenomic Next-generation Sequencing When Applied to Clinical Practice. Clin. Infect. Dis. 2018, 67, S231–S240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ai, J.-W.; Cui, P.; Zhang, W.-H.; Wu, H.-L.; Ye, M.-Z. A cluster of cases of pneumocystis pneumonia identified by shotgun metagenomics approach. J. Infect. 2019, 78, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Han, Y.; Feng, J. Metagenomic next-generation sequencing for mixed pulmonary infection diagnosis. BMC Pulm. Med. 2019, 19, 252. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Haidar, G.; Zia, H.; Nettles, R.; Qin, S.; Wang, X.; Shah, F.; Rapport, S.F.; Charalampous, T.; Methé, B.; et al. Metagenomic identification of severe pneumonia pathogens in mechanically-ventilated patients: A feasibility and clinical validity study. Respir. Res. 2019, 20, 265. [Google Scholar] [CrossRef]
- Li, Y.; Sun, B.; Tang, X.; Liu, Y.-L.; He, H.-Y.; Li, X.-Y.; Wang, R.; Guo, F.; Tong, Z.-H. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in critically ill patients. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 369–374. [Google Scholar] [CrossRef]
- Fang, C.; Zhong, H.; Lin, Y.; Chen, B.; Han, M.; Ren, H.; Lu, H.; Luber, J.; Yuxiang, L.; Li, W.; et al. Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing. GigaScience 2018, 7, gix133. [Google Scholar] [CrossRef]
- Tavernier, E.; Barbier, F.; Meziani, F.; Quenot, J.-P.; Herbrecht, J.-E.; Landais, M.; Roux, D.; Seguin, P.; Schnell, D.; Veinstein, A.; et al. Inhaled amikacin versus placebo to prevent ventilator-associated pneumonia: The AMIKINHAL double-blind multicentre randomised controlled trial protocol. BMJ Open 2021, 11, e048591. [Google Scholar] [CrossRef]
Study | Enrolled Patients | Methods (Sampling and Sequencing) | Main Results |
---|---|---|---|
Panzer et al., 2018 [13] | 30 ventilated patients (severe blunt traumatism) - 13 ARDS 1 patients - 17 non-ARDS patients | ETA 2 on admission and 24 h after V4 16s-rRNA MiSeq Illumina sequencer | - Association between ARDS development and lung community composition at 48 h (r2 = 0.08, p = 0.04) - ARDS patients: microbiota enriched with Enterobacteriaceae, Prevotella and Fusobacterium |
Kyo et al., 2019 [14] | 47 ventilated patients: - 40 ARDS - 7 non-ARDS | BAL 3 within 24 h after intubation V5-6 16s-rRNA Ion One Touch sequencer | - Decreased alpha diversity in ARDS patient compared to controls (p = 0.031) - Copy number of 16S rRNA gene of Betaproteobacteria decreased in non-surviving (n = 16) vs. surviving patient (n = 24). (106 vs. 104; p < 0.05) |
Dickson et al., 2020 [11] | 91 ventilated patients - 17 ARDS - 84 non-ARDS | BAL within 24 h of ICU admission V4 16s-rRNA MiSeq Illumina sequencer | - Increased relative abundance of Enterobacteriaceae in ARDS patient (12.5% vs. 0.8%) (p = 0.002). - Association between presence of gut associated bacteria in the lung microbiota and the ventilator-free days at day 28 (p = 0.003) |
Schmitt et al., 2020 [15] | 30 ventilated patients (surgical) - 15 patients with sepsis-induced ARDS - 15 controls | BAL at ARDS onset (D0 4, D5 5, D10) V4 16s-rRNA MiSeq Illumina sequencer | - Lower alpha diversity in BAL of ARDS patients vs. controls (Shannon index 3 (2;3.6) vs. 1 (0.5;1.5); p = 0.007) - Decrease in anaerobic bacteria Prevotella spp (p = 0.0033) and Veillonella spp (p = 0.0002) in ARDS patient - Decreased alpha diversity associated with increased length of mechanical ventilation (ρ = −0.48, p = 0.009) |
Study | Enrolled Patients | Methods (Sampling and Sequencing) | Main Results |
---|---|---|---|
Kelly et al., 2016 [8] | - 15 MV 1 patients from medical intensive care unit - 12 healthy unventilated patients | ETA 2 and OS 3 within 24 h of orotracheal intubation and every 72 h after V1–V2 16s-rRNA MiSeq Illumina sequencer | - Lower alpha diversity in intubated patients than healthy controls (p = 2.3 × 10−13) - Decreasing alpha diversity overtime in URT 4 of VAP 5 patient (p = 0.0015) - Higher beta diversity in MV patients than in healthy controls |
Zakharkina et al., 2017 [9] | - 11 ventilated patients with VAP 5 - 18 ventilated patients without VAP - 6 HAP 6/CAP 7 - non ventilated control patients | - BAL 8 for VAP suspicion - ETA at ICU 9 admission and twice a week thereafter 16s-rRNA 454 platform | - Decreased alpha diversity associated with increased length of mechanical ventilation (fixed effect regression coefficient (β): −0.03 CI95% [−0.05; −0.005]) - Increase in β diversity for VAP patients (p = 0.03) |
Emonet et al. 2019 [16] | - 16 late onset confirmed VAP patient - 38 matched ventilated controls | - ETA and OS at five time points during MV including the diagnosis of VAP (DVAP) and three days later (DVAP +3) V3-V4 16s-rRNA MiSeq Illumina sequencer | - Progressive increase in Proteobacteria and decrease in Firmicutes (40% vs. 30%) in OS and ETA of VAP patients - Greater initial abundance of the Bacilli class in ETA from control patients - Association between presence of gut associated bacteria in the lung microbiota and the ventilator-free days at day 28 (p = 0.003) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fromentin, M.; Ricard, J.-D.; Roux, D. Lung Microbiome in Critically Ill Patients. Life 2022, 12, 7. https://doi.org/10.3390/life12010007
Fromentin M, Ricard J-D, Roux D. Lung Microbiome in Critically Ill Patients. Life. 2022; 12(1):7. https://doi.org/10.3390/life12010007
Chicago/Turabian StyleFromentin, Mélanie, Jean-Damien Ricard, and Damien Roux. 2022. "Lung Microbiome in Critically Ill Patients" Life 12, no. 1: 7. https://doi.org/10.3390/life12010007
APA StyleFromentin, M., Ricard, J. -D., & Roux, D. (2022). Lung Microbiome in Critically Ill Patients. Life, 12(1), 7. https://doi.org/10.3390/life12010007