Evaluation of Green Silver Nanoparticles Fabricated by Spirulina platensis Phycocyanin as Anticancer and Antimicrobial Agents
Abstract
:1. Introduction
2. Material and Methods
2.1. Phycocyanin Isolation and Purification
2.2. Preparation of Phycocyanin
2.3. Biosynthesis of Spirulina Platensis Phycocyanin Silver Nanoparticles (SPAgNPs)
2.4. Characterization of Spirulina Platensis phycocyanin Silver Nanoparticles (SPAgNPs)
2.5. Biological Activity of Spirulina Platensis Phycocyanin and SPAgNPs
2.5.1. Antioxidant
2.5.2. Cytotoxicity Effects
Preparation of Different Concentrations of SPAgNPs and Phycocyanin
Cell Culture and Maintenance
Measurement of Cytotoxicity Test (MTT Assay)
2.5.3. Antimicrobial
Test for Antibiotic Susceptibility for Antibiotics against Pathogenic Microbes
3. Results and Discussion
3.1. Characterization of AgNPs
3.2. Biological Activities of Phycocyanin and SPAgNPs
3.2.1. Antioxidant Activity
3.2.2. Cytotoxicity Effect of Phycocyanin and SPAgNPs
3.2.3. Antimicrobial Activity
Antibacterial
Antifungal Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Saadony, M.T.; Sitohy, M.Z.; Ramadan, M.F.; Saad, A.M. Green nanotechnology for preserving and enriching yogurt with biologically available iron (II). Innov. Food Sci. Emerg. Technol. 2021, 69, 102645. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; El-Wafai, N.A.; El-Fattah, H.I.A.; Mahgoub, S.A. Biosynthesis, optimization and characterization of silver nanoparticles using a soil isolate of Bacillus pseudomycoides MT32 and their antifungal activity against some pathogenic fungi. Adv. Anim. Vet. Sci 2019, 7, 238–249. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Alkhatib, F.M.; Alzahrani, S.O.; Shafi, M.E.; Abdel-Hamid, S.E.; Taha, T.F.; Aboelenin, S.M.; Soliman, M.M.; Ahmed, N.H. Impact of mycogenic zinc nanoparticles on performance, behavior, immune response, and microbial load in Oreochromis niloticus. Saudi J. Biol. Sci. 2021, 28, 4592–4604. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.-M.E.; El-Saadony, M.T.; Shehata, A.M.; Saad, A.M.; Aldhumri, S.A.; Ouda, S.M.; Mesalam, N.M. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi J. Biol. Sci. 2022, 29, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Saad, A.M.; Najjar, A.A.; Alzahrani, S.O.; Alkhatib, F.M.; Shafi, M.E.; Selem, E.; Desoky, E.-S.M.; Fouda, S.E.; El-Tahan, A.M. The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi J. Biol. Sci. 2021, 28, 4461–4471. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Taha, T.F.; Najjar, A.A.; Zabermawi, N.M.; Nader, M.M.; Abu Qamar, S.F.; El-Tarabily, K.A.; Salama, A. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J. Biol. Sci. 2021, 28, 6782–6794. [Google Scholar] [CrossRef] [PubMed]
- Alagesan, V.; Venugopal, S. Green synthesis of selenium nanoparticle using leaves extract of withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 2019, 9, 105–116. [Google Scholar] [CrossRef]
- Manikandan, D.B.; Sridhar, A.; Sekar, R.K.; Perumalsamy, B.; Veeran, S.; Arumugam, M.; Karuppaiah, P.; Ramasamy, T. Green fabrication, characterization of silver nanoparticles using aqueous leaf extract of Ocimum americanum (Hoary Basil) and investigation of its in vitro antibacterial, antioxidant, anticancer and photocatalytic reduction. J. Environ. Chem. Eng. 2021, 9, 104845. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Samborska, K.; Lee, C.C.; Tomas, M.; Capanoglu, E.; Tarhan, Ö.; Taze, B.; Jafari, S.M. Phycocyanin, a super functional ingredient from algae; properties, purification characterization, and applications. Int. J. Biol. Macromol. 2021, 193, 2320–2331. [Google Scholar] [CrossRef]
- Narayanan, M.; Divya, S.; Natarajan, D.; Senthil-Nathan, S.; Kandasamy, S.; Chinnathambi, A.; Alahmadi, T.A.; Pugazhendhi, A. Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications. Process Biochem. 2021, 107, 91–99. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; ALmoshadak, A.S.; Shafi, M.E.; Albaqami, N.M.; Saad, A.M.; El-Tahan, A.M.; Desoky, E.-S.M.; Elnahal, A.S.; Almakas, A.; Abd El-Mageed, T.A. Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi J. Biol. Sci. 2021, 28, 7349–7359. [Google Scholar] [CrossRef] [PubMed]
- Dhandapani, R.; Thangavelu, S.; Ragunathan, L.; Paramasivam, R.; Velmurugan, P.; Muthupandian, S. Potential bioactive compounds from marine Streptomyces sp. and their In Vitro antibiofilm and antibacterial activities against antimicrobial-resistant clinical pathogens. Appl. Biochem. Biotechnol. 2022, 194, 4702–4723. [Google Scholar] [CrossRef] [PubMed]
- Rahuman, H.B.H.; Dhandapani, R.; Narayanan, S.; Palanivel, V.; Paramasivam, R.; Subbarayalu, R.; Thangavelu, S.; Muthupandian, S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 2022, 16, 115–144. [Google Scholar] [CrossRef]
- Maheshwaran, G.; Bharathi, A.N.; Selvi, M.M.; Kumar, M.K.; Kumar, R.M.; Sudhahar, S. Green synthesis of Silver oxide nanoparticles using Zephyranthes Rosea flower extract and evaluation of biological activities. J. Environ. Chem. Eng. 2020, 8, 104137. [Google Scholar] [CrossRef]
- Manikandan, V.; Velmurugan, P.; Park, J.-H.; Chang, W.-S.; Park, Y.-J.; Jayanthi, P.; Cho, M.; Oh, B.-T. Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech 2017, 7, 72. [Google Scholar] [CrossRef] [PubMed]
- El-Ghmari, B.; Farah, H.; Ech-Chahad, A. A new approach for the green biosynthesis of Silver Oxide nanoparticles Ag2O, characterization and catalytic application. Bull. Chem. React. Eng. Catal. 2021, 16, 651–660. [Google Scholar] [CrossRef]
- Hay, S.I.; Jayaraman, S.P.; Truelsen, T.; Sorensen, R.I.; Millear, A.; Giussani, G.E.B. Disease and injury incidence and prevalence collaborators. Globalt regional and national incidence, prevalence and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the global burden of disease study. Lancet 2015, 388, 1545–1602. [Google Scholar]
- Quan, J.; Bode, A.M.; Luo, X. ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur. J. Pharmacol. 2021, 909, 174397. [Google Scholar] [CrossRef]
- Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010, 31, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Yakop, F.; Abd Ghafar, S.A.; Yong, Y.K.; Yazan, L.S.; Hanafiah, R.M.; Lim, V.; Eshak, Z. Silver nanoparticles Clinacanthus nutans leaves extract induced apoptosis towards oral squamous cell carcinoma cell lines. Artif. Cells Nanomed. Biotechnol. 2018, 46, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Sathishkumar, M.; Pavagadhi, S.; Mahadevan, A.; Balasubramanian, R. Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells. Ecotoxicol. Environ. Saf. 2015, 114, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraj, M.; Rajesh, M.; Arun, R.; MubarakAli, D.; Sathishkumar, G.; Sivanandhan, G.; Dev, G.K.; Manickavasagam, M.; Premkumar, K.; Thajuddin, N. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf. B Biointerfaces 2013, 102, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Mfouo-Tynga, I.; El-Hussein, A.; Abdel-Harith, M.; Abrahamse, H. Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines. Int. J. Nanomed. 2014, 9, 3771–3780. [Google Scholar]
- Boussiba, S.; Richmond, A.E. Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Arch. Microbiol. 1979, 120, 155–159. [Google Scholar] [CrossRef]
- Kumar, D.; Dhar, D.W.; Pabbi, S.; Kumar, N.; Walia, S. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian J. Plant Physiol. 2014, 19, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.M.; El-Saadony, M.T.; El-Tahan, A.M.; Sayed, S.; Moustafa, M.A.; Taha, A.E.; Taha, T.F.; Ramadan, M.M. Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate sustainable silver nanoparticles with larvicidal effect against Spodoptera littoralis. Saudi J. Biol. Sci. 2021, 28, 5674–5683. [Google Scholar] [CrossRef]
- El-Ashry, R.M.; El-Saadony, M.T.; El-Sobki, A.E.; El-Tahan, A.M.; Al-Otaibi, S.; El-Shehawi, A.M.; Saad, A.M.; Elshaer, N. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi J. Biol. Sci. 2022, 29, 920–932. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Abd El-Hack, M.E.; Taha, A.E.; Fouda, M.M.; Ajarem, J.S.; Maodaa, S.N.; Allam, A.A.; Elshaer, N. Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomaterials 2020, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- Padalia, H.; Moteriya, P.; Chanda, S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem. 2015, 8, 732–741. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Bahuguna, A.; Khan, I.; Bajpai, V.K.; Kang, S.C. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J. Pharmacol. 2017, 12, 115–118. [Google Scholar] [CrossRef]
- NCCLS. National Committee for Clinical Laboratory Standards: Performance Standard for Antimicrobial Disk Susceptibility Tests: Approved Standard—M2- AS Villanova; NCCLS: Malvern, UK, 1993. [Google Scholar]
- Reda, F.M.; El-Saadony, M.T.; El-Rayes, T.K.; Attia, A.I.; El-Sayed, S.A.; Ahmed, S.Y.; Madkour, M.; Alagawany, M. Use of biological nano zinc as a feed additive in quail nutrition: Biosynthesis, antimicrobial activity and its effect on growth, feed utilisation, blood metabolites and intestinal microbiota. Ital. J. Anim. Sci. 2021, 20, 324–335. [Google Scholar] [CrossRef]
- CLSI. Clinical Laboratory Standards InstitutePerformance Standards for Antimicrobial Susceptibility Testing; CLSI: Wales, UK, 2017. [Google Scholar]
- Sheiha, A.M.; Abdelnour, S.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Metwally, K.A.; Ajarem, J.S.; Maodaa, S.N.; Allam, A.A.; El-Saadony, M.T. Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals 2020, 10, 430. [Google Scholar] [CrossRef] [PubMed]
- Yehia, N.; AbdelSabour, M.A.; Erfan, A.M.; Ali, Z.M.; Soliman, R.A.; Samy, A.; Soliman, M.M.; Abd El-Hack, M.E.; El-Saadony, M.T.; Ahmed, K.A. Selenium nanoparticles enhance the efficacy of homologous vaccine against the highly pathogenic avian influenza H5N1 virus in chickens. Saudi J. Biol. Sci. 2022, 29, 2095–2111. [Google Scholar] [CrossRef] [PubMed]
- Vazirani, J.; Wurity, S.; Ali, M.H. Multidrug-resistant Pseudomonas aeruginosa keratitis: Risk factors, clinical characteristics, and outcomes. Ophthalmology 2015, 122, 2110–2114. [Google Scholar] [CrossRef] [PubMed]
- Chugh, D.; Viswamalya, V.; Das, B. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. J. Genet. Eng. Biotechnol. 2021, 19, 126. [Google Scholar] [CrossRef] [PubMed]
- Bishoyi, A.K.; Sahoo, C.R.; Sahoo, A.P.; Padhy, R.N. Bio-synthesis of silver nanoparticles with the brackish water blue-green alga Oscillatoria princeps and antibacterial assessment. Appl. Nanosci. 2021, 11, 389–398. [Google Scholar] [CrossRef]
- Marchiol, L.; Mattiello, A.; Pošćić, F.; Giordano, C.; Musetti, R. In vivo synthesis of nanomaterials in plants: Location of silver nanoparticles and plant metabolism. Nanoscale Res. Lett. 2014, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostructure Chem. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Kratošová, G.; Holišová, V.; Konvičková, Z.; Ingle, A.P.; Gaikwad, S.; Škrlová, K.; Prokop, A.; Rai, M.; Plachá, D. From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotechnol. Adv. 2019, 37, 154–176. [Google Scholar] [CrossRef]
- Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.-K. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC−1. Biomed. Res. Int. 2013, 2013, 287638. [Google Scholar] [CrossRef]
- El-Bendary, M.A.; Moharam, M.E.; Abdelraof, M.; Allam, M.A.; Roshdy, A.M.; Shaheen, M.N.; Elmahdy, E.M.; Elkomy, G.M. Multi-bioactive silver nanoparticles synthesized using mosquitocidal Bacilli and their characterization. Arch. Microbiol. 2020, 202, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Castañon, G.-A.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martinez-Mendoza, J.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanoparticle Res. 2008, 10, 1343–1348. [Google Scholar] [CrossRef]
- Cory, A.H.; Owen, T.C.; Barltrop, J.A.; Cory, J.G. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 1991, 3, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Ashe, S.; Rauta, P.R.; Kumari, M.; Nayak, B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater. Sci. Eng. C 2016, 58, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, B.; Sincari, V.; Perde-Schrepler, M.; David, L. Biosynthesis of silver nanoparticles using Ligustrum ovalifolium fruits and their cytotoxic effects. Nanomaterials 2018, 8, 627. [Google Scholar] [CrossRef] [PubMed]
- Donga, S.; Chanda, S. Facile green synthesis of silver nanoparticles using Mangifera indica seed aqueous extract and its antimicrobial, antioxidant and cytotoxic potential (3-in-1 system). Artif. Cells Nanomed. Biotechnol. 2021, 49, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Barabadi, H.; Vahidi, H.; Kamali, K.D.; Rashedi, M.; Saravanan, M. Antineoplastic biogenic silver nanomaterials to combat cervical cancer: A novel approach in cancer therapeutics. J. Clust. Sci. 2020, 31, 659–672. [Google Scholar] [CrossRef]
- Nikzamir, M.; Akbarzadeh, A.; Panahi, Y. An overview on nanoparticles used in biomedicine and their cytotoxicity. J. Drug. Deliv. Sci. Technol. 2021, 61, 102316. [Google Scholar] [CrossRef]
- Kawahara, K.; Tsuruda, K.; Morishita, M.; Uchida, M. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent. Mater. 2000, 16, 452–455. [Google Scholar] [CrossRef]
- Hamad, M. Biosynthesis of silver nanoparticles by fungi and their antibacterial activity. Int. J. Environ. Sci. Technol. 2019, 16, 1015–1024. [Google Scholar] [CrossRef]
- Crisan, C.M.; Mocan, T.; Manolea, M.; Lasca, L.I.; Tăbăran, F.-A.; Mocan, L. Review on silver nanoparticles as a novel class of antibacterial solutions. Appl. Sci. 2021, 11, 1120. [Google Scholar] [CrossRef]
- Saravanan, M.; Jacob, V.; Arockiaraj, J.; Prakash, P. Extracellular biosynthesis, characterization and antibacterial activity of silver nanoparticles synthesized by Bacillus subtilis (NCIM—2266). J. Bionanosci. 2014, 8, 21–27. [Google Scholar] [CrossRef]
- Pannerselvam, B.; Alagumuthu, T.S.; Cinnaiyan, S.K.; Al-Dhabi, N.A.; Ponmurugan, K.; Saravanan, M.; Kanth, S.V.; Thangavelu, K.P. In vitro cytotoxicity and antibacterial activity of optimized silver nanoparticles against wound infectious bacteria and their morphological studies. J. Clust. Sci. 2021, 32, 63–76. [Google Scholar] [CrossRef]
- Kumarasamyraja, D.; Jeganathan, N. Green synthesis of silver nanoparticles using aqueous extract of acalypha indica and its antimicrobial activity. Int. J. Pharm. Bio. Sci. 2013, 4, 469–476. [Google Scholar]
- Kathiravan, V.; Ravi, S.; Ashokkumar, S.; Velmurugan, S.; Elumalai, K.; Khatiwada, C.P. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochim. Acta. A Mol. Biomol. 2015, 139, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Kanagamani, K.; Muthukrishnan, P.; Shankar, K.; Kathiresan, A.; Barabadi, H.; Saravanan, M. Antimicrobial, cytotoxicity and photocatalytic degradation of norfloxacin using Kleinia grandiflora mediated silver nanoparticles. J. Clust. Sci. 2019, 30, 1415–1424. [Google Scholar] [CrossRef]
- Mansoor, S.; Zahoor, I.; Baba, T.; Padder, S.; Bhat, Z.; Koul, A.; Jiang, L. Fabrication of silver nanoparticles against fungal pathogens. Front. Nanotechnol. 2021, 3, 679358. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alaidaroos, B.A.; Farsi, R.M.; Abou-Kassem, D.E.; El-Saadony, M.T.; Saad, A.M.; Shafi, M.E.; Albaqami, N.M.; Taha, A.E.; Ashour, E.A. Impacts of supplementing broiler diets with biological curcumin, zinc nanoparticles and Bacillus licheniformis on growth, carcass traits, blood indices, meat quality and cecal microbial load. Animals 2021, 11, 1878. [Google Scholar] [CrossRef]
- Dash, S.R.; Kundu, C.N. Promising opportunities and potential risk of nanoparticle on the society. IET Nanobiotechnol. 2020, 14, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Giorgetti, L. Effects of nanoparticles in plants: Phytotoxicity and genotoxicity assessment. Nanomater. Plants Algae Microorg. 2019, 65–87. [Google Scholar]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
Conc. ug/mL | Silver Nanoparticles | Phycocyanin | ||||
---|---|---|---|---|---|---|
Viability% | Inhibitory% | S.D± | Viability% | Inhibitory% | S.D± | |
50 | 10.90 | 89.10 | 0.05 | 10.83 | 89.17 | 0.05 |
25 | 55.63 | 44.37 | 0.27 | 62.78 | 37.22 | 0.30 |
12.5 | 62.43 | 37.57 | 0.30 | 98.54 | 1.46 | 0.47 |
6.25 | 67.08 | 32.92 | 0.32 | 99.10 | 0.90 | 0.48 |
3.125 | 72.43 | 27.57 | 0.35 | 101.39 | 0.00 | 0.49 |
1.5625 | 76.74 | 23.26 | 0.37 | 101.53 | 0.00 | 0.49 |
0.78 | 77.08 | 22.92 | 0.37 | 102.71 | 0.00 | 0.49 |
0.39 | 79.31 | 20.69 | 0.38 | 102.71 | 0.00 | 0.49 |
0.195 | 95.14 | 4.86 | 0.46 | 109.38 | 0.00 | 0.50 |
0.097 | 96.67 | 3.33 | 0.46 | 109.38 | 0.00 | 0.53 |
0.049 | 99.17 | 0.83 | 0.48 | 112.36 | 0.00 | 0.54 |
0.0244 | 100.00 | 0.00 | 0.48 | 113.54 | 0.00 | 0.55 |
IC50 µg/mL | 26.55 | 32.16 |
Conc. ug/mL | Silver Nanoparticles | Phycocyanin | ||||
---|---|---|---|---|---|---|
Viability% | Inhibitory% | S.D± | Viability% | Inhibitory% | S.D± | |
50 | 9.01 | 90.99 | 0.05 | 9.42 | 90.58 | 0.05 |
25 | 43.27 | 56.73 | 0.25 | 47.89 | 52.11 | 0.27 |
12.5 | 56.20 | 43.80 | 0.32 | 77.19 | 22.81 | 0.44 |
6.25 | 68.38 | 31.62 | 0.39 | 82.57 | 17.43 | 0.47 |
3.125 | 75.56 | 24.44 | 0.43 | 93.74 | 6.26 | 0.53 |
1.5625 | 95.38 | 4.62 | 0.54 | 97.43 | 2.57 | 0.56 |
0.78 | 98.65 | 1.35 | 0.56 | 112.11 | 0.00 | 0.64 |
0.39 | 103.22 | 0.00 | 0.59 | 112.34 | 0.00 | 0.64 |
0.195 | 114.74 | 0.00 | 0.65 | 115.15 | 0.00 | 0.66 |
0.097 | 124.19 | 0.00 | 0.71 | 119.18 | 0.00 | 0.68 |
0.049 | 134.56 | 0.00 | 0.77 | 123.27 | 0.00 | 0.70 |
0.0244 | 141.17 | 0.00 | 0.80 | 141.93 | 0.00 | 0.81 |
IC50 ug/mL | 12.96 | 20.46 |
Conc. ug/mL | Silver Nanoparticles | Phycocyanin | ||||
---|---|---|---|---|---|---|
Viability% | Inhibitory% | S.D± | Viability% | Inhibitory% | S.D± | |
50 | 25.77 | 74.23 | 0.07 | 36.67 | 63.33 | 0.10 |
25 | 28.59 | 71.41 | 0.07 | 36.79 | 63.21 | 0.10 |
12.5 | 40.90 | 59.1 | 0.11 | 40.77 | 59.23 | 0.11 |
6.25 | 41.15 | 58.85 | 0.11 | 44.87 | 55.13 | 0.12 |
3.125 | 41.79 | 58.21 | 0.11 | 48.85 | 51.15 | 0.13 |
1.5625 | 41.92 | 58.08 | 0.11 | 51.92 | 48.08 | 0.14 |
0.78 | 47.56 | 52.44 | 0.12 | 55.00 | 45.00 | 0.14 |
0.39 | 48.59 | 51.41 | 0.13 | 57.05 | 42.95 | 0.15 |
0.195 | 52.56 | 47.44 | 0.14 | 58.59 | 41.41 | 0.15 |
0.097 | 53.21 | 46.79 | 0.14 | 60.26 | 39.74 | 0.16 |
0.049 | 69.49 | 30.51 | 0.18 | 96.79 | 3.21 | 0.25 |
0.0244 | 81.28 | 18.72 | 0.21 | 108.59 | 0.00 | 0.28 |
IC50 ug/mL | 0.32 | 1.77 |
Clinical Strains | Zone of Inhibition (mm) | Positive Control | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SPAgNPs Concentrations (ug/mL) | TE. (10 ug/mL) | DOX. (30 ug/mL) | CIP. (5 ug/mL) | |||||||
5 | 10 | 20 | 30 | 40 | 50 | |||||
G+ | S. aureus ATCC29737 | NZ | NZ | NZ | 3.2 ± 0.1 | 3.8 ± 0.1 | 4.33 ± 0.15 | 2.17 ± 0.12 | 2.7 ± 0.10 | 2.23 ± 0.06 |
B. cereus ATCC11778 | NZ | NZ | NZ | 2.06 ± 0.15 | 2.37 ± 0.11 | 2.87 ± 0.06 | 2.33 ± 0.21 | 2.37 ± 0.15 | 3.80 ± 0.10 | |
G− | E. coli ATCC8379 | NZ | NZ | NZ | 2.00 ± 0.1 | 2.36 ± 0.15 | 2.6 ± 0.1 | 4.17 ± 0.15 | 3.07 ± 0.74 | 3.53 ± 1.27 |
K. pneumonia ATCC00607 | NZ | NZ | NZ | 2.03 ± 0.21 | 2.46 ± 0.15 | 2.5 ± 0.1 | 4.90 ± 0.10 | 2.57 ± 0.21 | 3.90 ± 0.26 |
Clinical Strains | Zone of Inhibition (mm) | Positive Control | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Phycocyanin Extract Concentrations (ug/mL) | TE. | DOX | CIP | |||||||
5 | 10 | 20 | 30 | 40 | 50 | |||||
G+ | S. aureus ATCC29737 | NZ | NZ | NZ | NZ | 1.4 ± 0.1 | 2.87 ± 0.06 | 2.17 ± 0.12 | 2.7 ± 0.10 | 2.23 ± 0.06 |
B. cereus ATCC11778 | NZ | NZ | NZ | NZ | 1.17 ± 0.06 | 1.97 ± 0.21 | 2.33 ± 0.21 | 2.37 ± 0.15 | 3.80 ± 0.10 | |
G− | E. coli ATCC8379 | NZ | NZ | NZ | NZ | 1.166 ± 0.057 | 1.966 ± 0.20 | 4.17 ± 0.15 | 3.07 ± 0.74 | 3.53 ± 1.27 |
K. pneumonia ATCC00607 | NZ | NZ | NZ | NZ | 0.67 ± 0.15 | 1.9 ± 0.20 | 4.90 ± 0.10 | 2.57 ± 0.21 | 3.90 ± 0.26 |
Clinical Strains | Zone of Inhibition (mm) | Positive Control | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
AgNPs Concentrations (ug/mL) | Amp | Caz | L-AMP | |||||||
5 | 10 | 20 | 30 | 40 | 50 | |||||
Yeast | C. albicans ATCC60193 | NZ | NZ | NZ | 2.23 ± 0.05 | 2.47 ± 0.05 | 2.77 ± 0.06 | 3.03 ± 0.15 | 3.57 ± 0.21 | 4.33 ± 0.15 |
Fungi | A. niger ATCC16404 | NZ | NZ | NZ | 3.1 ± 0.1 | 3.1 ± 0.1 | 3.47 ± 0.05 | 1.10 ± 0.10 | 0.76 ± 0.59 | 0.39 ± 0.53 |
Clinical Strains | Zone of Inhibition (mm) | Positive Control | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Phycocyanin Concentrations (ug/mL) | Amp | Caz | L-AMP | |||||||
5 | 10 | 20 | 30 | 40 | 50 | |||||
Yeast | C. albicans ATCC60193 | NZ | NZ | NZ | NZ | 1.9 ± 0.15 | 2.27 ± 0.15 | 3.03 ± 0.15 | 3.57 ± 0.21 | 4.33 ± 0.15 |
Fungi | A. niger ATCC16404 | NZ | NZ | NZ | NZ | 2.47 ± 0.15 | 2.73 ± 0.15 | 1.10 ± 0.10 | 0.76 ± 0.59 | 0.39 ± 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soror, A.-F.S.; Ahmed, M.W.; Hassan, A.E.A.; Alharbi, M.; Alsubhi, N.H.; Al-Quwaie, D.A.; Alrefaei, G.I.; Binothman, N.; Aljadani, M.; Qahl, S.H.; et al. Evaluation of Green Silver Nanoparticles Fabricated by Spirulina platensis Phycocyanin as Anticancer and Antimicrobial Agents. Life 2022, 12, 1493. https://doi.org/10.3390/life12101493
Soror A-FS, Ahmed MW, Hassan AEA, Alharbi M, Alsubhi NH, Al-Quwaie DA, Alrefaei GI, Binothman N, Aljadani M, Qahl SH, et al. Evaluation of Green Silver Nanoparticles Fabricated by Spirulina platensis Phycocyanin as Anticancer and Antimicrobial Agents. Life. 2022; 12(10):1493. https://doi.org/10.3390/life12101493
Chicago/Turabian StyleSoror, Abel-Fattah Salah, Mai Waled Ahmed, Abdalla E. A. Hassan, Mona Alharbi, Nouf H. Alsubhi, Diana A. Al-Quwaie, Ghadeer I. Alrefaei, Najat Binothman, Majidah Aljadani, Safa H. Qahl, and et al. 2022. "Evaluation of Green Silver Nanoparticles Fabricated by Spirulina platensis Phycocyanin as Anticancer and Antimicrobial Agents" Life 12, no. 10: 1493. https://doi.org/10.3390/life12101493
APA StyleSoror, A. -F. S., Ahmed, M. W., Hassan, A. E. A., Alharbi, M., Alsubhi, N. H., Al-Quwaie, D. A., Alrefaei, G. I., Binothman, N., Aljadani, M., Qahl, S. H., Jaber, F. A., & Abdalla, H. (2022). Evaluation of Green Silver Nanoparticles Fabricated by Spirulina platensis Phycocyanin as Anticancer and Antimicrobial Agents. Life, 12(10), 1493. https://doi.org/10.3390/life12101493