Improving Nitrogen Use Efficiency in Rice for Sustainable Agriculture: Strategies and Future Perspectives
Abstract
:1. Introduction
2. Nitrogen Functions and Nitrogen Deficiency Symptoms
2.1. Role of Nitrogen in Rice Photosynthesis
2.2. Role of Nitrogen in Rice Root
2.3. Role of Nitrogen in Rice Metabolism
2.4. Role of Nitrogen in Rice Yield and Yield Components
3. Definitions and Estimation of Nitrogen Use Efficiency in Plants
4. Approaches to Improve Nitrogen Use Efficiency in Rice
4.1. Improvement of Nitrogen Use Efficiency: Physiological Perspective
4.2. Improvement of Nitrogen Use Efficiency: Agronomic Perspective
4.3. Improvement of Nitrogen Use Efficiency: Genetic Perspective
4.3.1. NRT Genes Involved in Rice NUE
4.3.2. The AMT Genes Involved in Rice NUE
4.3.3. The NLP Family Genes Involved in Rice NUE
4.3.4. Other NUE-Related Rice Genes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogawa, T.; Oikawa, S.; Hirose, T. Nitrogen-utilization efficiency in rice: An analysis at leaf, shoot, and whole-plant level. Plant Soil 2016, 404, 321–344. [Google Scholar] [CrossRef]
- Lee, S. Recent Advances on nitrogen use efficiency in rice. Agronomy 2021, 11, 753. [Google Scholar] [CrossRef]
- FAO. Rice Market Monitor; FAO: Roma, Italy, 2018. [Google Scholar]
- FAOSTAT. Statistical Database of the Food and Agricultural Organization of the United Nations. Available online: http://www.fao.org/faostat/en/ (accessed on 12 June 2022).
- Han, M.; Okamoto, M.; Beatty, P.H.; Rothstein, S.J.; Good, A.G. The genetics of nitrogen use efficiency in crop plants. Annu. Rev. Genet. 2015, 49, 269–289. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xiang, J.; Zhang, Y.; Zhang, Y.; Peng, S.; Chen, H.; Zhu, D. Effects of post-anthesis nitrogen uptake and translocation on photosynthetic production and rice yield. Sci. Rep. 2018, 8, 12891. [Google Scholar] [CrossRef]
- Herrera, J.M.; Rubio, G.; Häner, L.L.; Delgado, J.A.; Lucho-Constantino, C.A.; Islas-Valdez, S.; Pellet, D. Emerging and established technologies to increase nitrogen use efficiency of cereals. Agronomy 2016, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, H.; Jiang, Z.; Wang, W.; Xu, R.; Wang, Q.; Zhang, Z.; Li, A.; Liang, Y.; Ou, S.; et al. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 2021, 590, 600–605. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar] [CrossRef]
- Gramma, V.; Kontbay, K.; Wahl, V. Crops for the future: On the way to reduce nitrogen pollution. Am. J. Bot. 2020, 107, 1211–1213. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Alves, B.; Aulakh, M.; Bekunda, Z.; Cai, L.; Drinkwater, D.; Mugendi, C.; Kessel, C.v.; Oenema, O. Crop, environmental, and management factors affecting nitrogen use efficiency. In Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the Environment; Mosier, A.R., Syers, J.K., Freney, J.R., Eds.; Island Press: Washington, DC, USA, 2004; pp. 19–34. [Google Scholar]
- Evans, J.R.; Clarke, V.C. The nitrogen cost of photosynthesis. J. Exp. Bot. 2019, 70, 7–15. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Chu, C. Towards understanding the hierarchical nitrogen signalling network in plants. Curr. Opin. Plant Biol. 2020, 55, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hu, B.; Chu, C. Nitrogen use efficiency in crops: Lessons from Arabidopsis and rice. J. Exp. Bot. 2017, 68, 2477–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The, S.V.; Snyder, R.; Tegeder, M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Front. Plant Sci. 2021, 11, 628366. [Google Scholar] [CrossRef]
- Spiertz, J.H.J. Nitrogen, sustainable agriculture and food security: A Review. Agron. Sustain. Develop. 2010, 30, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Onoda, Y.; Hikosaka, K.; Hirose, T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct. Ecol. 2004, 18, 419–425. [Google Scholar] [CrossRef]
- Furbank, R.T.; Sharwood, R.; Estavillo, G.M.; Silva-Perez, V.; Condon, A.G. Photons to food: Genetic improvement of cereal crop photosynthesis. J. Exp. Bot. 2020, 71, 2226–2238. [Google Scholar] [CrossRef] [Green Version]
- Long, S.P.; Zhu, X.-G.; Naidu, S.L.; Ort, D.R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef]
- Hirel, B.; Lea, P.J. The molecular genetics of nitrogen use efficiency in crops. In The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops; Hawkesford, M.J., Barraclough, P.B., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 139–164. [Google Scholar] [CrossRef]
- Poorter, H.; Evans, J.R. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 1998, 116, 26–37. [Google Scholar] [CrossRef]
- Lambers, H.; Oliveira, R.S. Photosynthesis, respiration, and long-distance transport: Photosynthesis. In Plant Physiological Ecology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 111–114. [Google Scholar]
- Orr, D.J.; Alcântara, A.; Kapralov, M.V.; Andralojc, P.J.; Carmo-Silva, E.; Parry, M.A.J. Surveying rubisco diversity and temperature response to improve crop photosynthetic efficiency. Plant Physiol. 2016, 172, 707–717. [Google Scholar] [CrossRef]
- Ghannoum, O.; Evans, J.R.; Chow, W.S.; Andrews, T.J.; Conroy, J.P.; von Caemmerer, S. Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses. Plant Physiol. 2005, 137, 638–650. [Google Scholar] [CrossRef] [Green Version]
- Makino, A. Rubisco and nitrogen relationships in rice: Leaf photosynthesis and plant growth. Soil Sci. Plant Nutr. 2003, 49, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Bao, A.; Li, H.; Cai, H. The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression. Biol. Plantarum 2015, 70, 1340–1350. [Google Scholar] [CrossRef]
- Ju, C.; Buresh, R.J.; Wang, Z.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crop. Res. 2015, 175, 47–55. [Google Scholar] [CrossRef]
- Lynch, J.P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New phytol. 2019, 223, 548–564. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, R.; Yadav, R. Targeting nitrogen use efficiency for sustained production of cereal crops. J. Plant Nutr. 2019, 42, 1086–1113. [Google Scholar] [CrossRef]
- Nunes-Nesi, A.; Fernie, A.R.; Stitt, M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol. Plant 2010, 3, 973–996. [Google Scholar] [CrossRef]
- Han, X.; Wu, K.; Fu, X.; Liu, Q. Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture. aBIOTECH 2020, 1, 255–275. [Google Scholar] [CrossRef]
- Teng, W.; He, X.; Tong, Y. Genetic control of efficient nitrogen use for high yield and grain protein concentration in wheat: A Review. Plants 2022, 11, 492. [Google Scholar] [CrossRef]
- Hu, A.; Tang, T.; Liu, Q. Nitrogen use efficiency in different rice-based rotations in southern China. Nutr. Cycl. Agroecosyst. 2018, 112, 75–86. [Google Scholar] [CrossRef]
- Makino, A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol. 2010, 155, 125–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neeraja, C.N.; Voleti, S.R.; Desiraju, S.; Kuchi, S.; Bej, S.; Talapanti, K.; Puskur, R.R. Molecular breeding for improving nitrogen use efficiency in rice: Progress and perspectives. In Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 234–248. [Google Scholar] [CrossRef]
- Yadav, M.R.; Kumar, R.; Parihar, C.M.; Yadav, R.K.; Jat, S.L.; Ram, H.; Meena, R.K.; Singh, M.; Birbal; Verma, A.P.; et al. Strategies for improving nitrogen use efficiency: A review. Agric. Rev. 2017, 38, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Zhang, J.; Zhao, Y.; She, M.; Ma, W. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. Plant Sci. 2021, 303, 110759. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Santiago-Arenas, R.; Ferdous, Z.; Attia, A.; Datt, A. Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Adv. Agron. 2019, 156, 109–157. [Google Scholar] [CrossRef]
- Dobermann, A.R. Nitrogen Use Efficiency–State of the Art; IFA International Workshop on Enhanced-Efficiency Fertilizers: Frankfurt, Germany, 2005. [Google Scholar]
- Lebedev, V.G.; Popova, A.A.; Shestibratov, K.A. Genetic engineering and genome editing for improving nitrogen use efficiency in plants. Cells 2021, 10, 3303. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.H.; Yim, Y. Genetic modification of rice for efficient nitrogen utilization. Plant Biotechnol. Rep. 2021, 15, 573–583. [Google Scholar] [CrossRef]
- Xue, Y.; Duan, H.; Liu, L.; Wang, Z.; Yang, J.; Zhang, J. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Sci. 2013, 53, 271–284. [Google Scholar] [CrossRef]
- Li, R.; Li, M.; Ashraf, U.; Liu, S.; Zhang, J. Exploring the relationships between yield and yield-related traits for rice varieties released in China from 1978 to 2017. Front. Plant Sci. 2019, 10, 543. [Google Scholar] [CrossRef]
- Leister, D. Enhancing the light reactions of photosynthesis: Strategies, controversies and perspectives. Mol. Plant 2022, 15, 1–19. [Google Scholar] [CrossRef]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Chen, D.; Wang, J.; Tang, Q.; Yan, X. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Chang. Biol. 2017, 23, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tian, Y.; Wu, K.; Ye, Y.; Yu, J.; Zhang, J.; Liu, Q.; Hu, M.; Li, H.; Tong, Y.; et al. Modulating plant growth–metabolism coordination for sustainable agriculture. Nature 2018, 560, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Nazish, T.; Arshad, M.; Jan, S.U.; Javaid, A.; Khan, M.H.; Naeem, M.A.; Baber, M.; Ali, M. Transporters and transcription factors gene families involved in improving nitrogen use efficiency (NUE) and assimilation in rice (Oryza sativa L.). Transgenic Res. 2022, 31, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Gao, S.; Chu, C. Improvement of nutrient use efficiency in rice: Current toolbox and future perspectives. Theor. Appl. Genet. 2020, 133, 1365–1384. [Google Scholar] [CrossRef]
- Li, Y.; Ouyang, J.; Wang, Y.Y.; Hu, R.; Xia, K.; Duan, J.; Wang, Y.; Tsay, Y.F.; Zhang, M. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci. Rep. 2015, 5, 9635. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Fan, X.; Wei, J.; Feng, H.; Qu, H.; Xie, D.; Miller, A.J.; Xu, G. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. J. Exp. Bot. 2015, 66, 317–331. [Google Scholar] [CrossRef]
- Wang, S.; Chen, A.; Xie, K.; Yang, X.; Luo, Z.; Chen, J.; Zeng, D.; Ren, Y.; Yang, C.; Wang, L.; et al. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proc. Natl. Acad. Sci. USA 2020, 117, 16649–16659. [Google Scholar] [CrossRef]
- Hu, R.; Qiu, D.; Chen, Y.; Miller, A.J.; Fan, X.; Pan, X.; Zhang, M. Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate supply. Front. Plant Sci. 2016, 7, 1529. [Google Scholar] [CrossRef]
- Hu, B.; Wang, W.; Ou, S.; Tang, J.; Li, H.; Che, R.; Zhang, Z.; Chai, X.; Wang, H.; Wang, Y.; et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 2015, 47, 834–838. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A. Plant Nitrogen Assimilation and Use Efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Fan, X.; Li, Q.; Feng, H.; Miller, A.; Shen, Q.; Xu, G. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol. 2012, 160, 2052–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Tang, Z.; Tan, Y.; Zhang, Y.; Luo, B.; Yang, M.; Lian, X.; Shen, Q.; Miller, A.J.; Xu, G. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc. Natl. Acad. Sci. USA 2016, 113, 7118–7123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Zheng, Y.; Feng, H.; Qu, H.; Fan, X.; Yamaji, N.; Ma, J.F.; Xu, G. OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. J. Exp. Bot. 2018, 69, 1095–1107. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Fan, X.; Feng, H.; Miller, A.J.; Shen, Q.; Xu, G. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ. 2011, 34, 1360–1372. [Google Scholar] [CrossRef]
- Sonoda, Y.; Ikeda, A.; Saiki, S.; Wirén, N.v.; Yamaya, T.; Yamaguchi, J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1–1;3) in rice. Plant Cell Physiol. 2003, 44, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Suenaga, A.; Moriya, K.; Sonoda, Y.; Ikeda, A.; von Wirén, N.; Hayakawa, T.; Yamaguchi, J.; Yamaya, T. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol. 2003, 44, 206–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonoda, Y.; Ikeda, A.; Saiki, S.; Yamaya, T.; Yamaguchi, J. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol. 2003, 44, 1396–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konishi, N.; Ma, J.F. Three polarly localized ammonium transporter 1 members are cooperatively responsible for ammonium uptake in rice under low ammonium condition. New Phytol. 2021, 232, 1778–1792. [Google Scholar] [CrossRef]
- Chardin, C.; Girin, T.; Roudier, F.; Meyer, C.; Krapp, A. The plant RWP-RK transcription factors: Key regulators of nitrogen responses and of gametophyte development. J. Exp. Bot. 2014, 65, 5577–5587. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-S.; Xia, J.-Q.; Alfatih, A.; Song, Y.; Huang, Y.-J.; Sun, L.-Q.; Wan, G.-Y.; Wang, S.-M.; Wang, Y.-P.; Hu, B.-H.; et al. Rice NIN-LIKE PROTEIN 3 modulates nitrogen use efficiency and grain yield under nitrate-sufficient conditions. Plant Cell Environ. 2022, 45, 1520–1536. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.-S.; Xia, J.-Q.; Alfatih, A.; Song, Y.; Huang, Y.-J.; Wan, G.-Y.; Sun, L.-Q.; Tang, H.; Liu, Y.; et al. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnol. J. 2021, 19, 448–461. [Google Scholar] [CrossRef] [PubMed]
- Alfatih, A.; Wu, J.; Zhang, Z.-S.; Xia, J.-Q.; Jan, S.U.; Yu, L.-H.; Xiang, C.-B. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency. J. Exp. Bot. 2020, 71, 6032–6042. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Jiang, Z.; Wang, W.; Qiu, Y.; Zhang, Z.; Liu, Y.; Li, A.; Gao, X.; Liu, L.; Qian, Y.; et al. Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 2019, 5, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Yihua, L.; Aidong, Z.; Sha, S.; An, Y.; Linli, H.; Imran, A.; Yu, L.; Brian, G.F.; Yinbo, G. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. PLoS ONE 2015, 10, e0135196. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xu, N.; Wu, Q.; Yu, B.; Chu, Y.; Li, X.; Huang, J.; Jin, L. OsMADS27 regulates the root development in a NO3−—Dependent manner and modulates the salt tolerance in rice (Oryza sativa L.). Plant Sci. 2018, 277, 20–32. [Google Scholar] [CrossRef]
- Huang, S.; Liang, Z.; Chen, S.; Sun, H.; Fan, X.; Wang, C.; Xu, G.; Zhang, Y. A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation. Plant Physiol. 2019, 180, 882–895. [Google Scholar] [CrossRef]
- Tabuchi, M.; Sugiyama, K.; Ishiyama, K.; Inoue, E.; Sato, T.; Takahashi, H.; Yamaya, T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J. 2005, 42, 641–651. [Google Scholar] [CrossRef]
- Funayama, K.; Kojima, S.; Tabuchi-Kobayashi, M.; Sawa, Y.; Nakayama, Y.; Hayakawa, T.; Yamaya, T. Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol. 2013, 54, 934–943. [Google Scholar] [CrossRef]
- Xiong, Y.; Ren, Y.; Li, W.; Wu, F.; Yang, W.; Huang, X.; Yao, J. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. J. Exp. Bot. 2019, 70, 3765–3780. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Xu, Z.; Zhang, L.; Li, S.; Wang, S.; Yang, H.; Liu, X.; Zeng, D.; Liu, Q.; Qian, Q.; et al. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nat. Commun. 2020, 11, 5219. [Google Scholar] [CrossRef]
- Lee, S.; Marmagne, A.; Park, J.; Fabien, C.; Yim, Y.; Kim, S.-j.; Kim, T.-H.; Lim, P.O.; Masclaux-Daubresse, C.; Nam, H.G. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. Plant J. 2020, 103, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Ali, J.; Zhou, S.; Ren, G.; Xie, H.; Xu, J.; Yu, X.; Zhou, F.; Peng, S.; Ma, L.; et al. From green super rice to green agriculture: Reaping the promise of functional genomics research. Mol. Plant 2022, 15, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Li, X.; Lu, Z.; Zhang, H.; Ye, X.; Zhou, Y.; Li, J.; Yan, Y.; Pei, H.; Duan, F.; et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science 2022, 377, eabi8455. [Google Scholar] [CrossRef] [PubMed]
Number | Terminology | Formulae | Definition | Comments | Ref |
---|---|---|---|---|---|
1 | Nitrogen use efficiency (yield) | NUE = NUpE × NUtE | Grain weight/N Supply (g per plant). | Consider yield only. High NUE crops will have a high yield but potentially a low N content in the biomass and in the grain. | [10,31,39] |
2 | Nitrogen uptake efficiency NUpE | UpE = Nt ÷ Ns | Nt = total nitrogen in plant, Ns = nitrogen supply (g per plant). | Measure efficiency of extracting N from soil. | [31,39] |
3 | Nitrogen utilization efficiency, NUtE | UtE = Gw ÷ Nt | Gw = grain weight, Nt = total nitrogen in plant. | Fraction of N converted to grain. | [31,39] |
4 | Agronomic efficiency | AE = (GwF − GwC) ÷ NF | NF = nitrogen fertilizer applied, GwF =grain weight with fertilizer, GwC =grain weight of unfertilized control. | Measures the efficiency of converting applied nitrogen to grain yield. | [31,39] |
5 | Apparent nitrogen recovery | AR = (NF uptake − NC uptake) ÷ NF × 100 | NF uptake = plant nitrogen (fertilizer), NC uptake = plant nitrogen (no fertilizer), NF = Nitrogen fertilizer applie. | Measures the efficiency of capture of nitrogen from soil | [10,39,40] |
6 | Physiological efficiency | PE = (GwF − GwC) ÷ (NF uptake − NC uptake) | GwF = grain weight (fertilizer), GwC = grain weight (no fertilizer). | Measures the efficiency of capture of plant nitrogen in grain yield. | [39,40,41] |
7 | Fertilizer recovery efficiency | FRE = (GN − EN)/FN | GN = N removed in grain, EN = N from soil + rain, FN = fertilizer N applied. | Grain N from fertilizer as a fraction of that applied as fertilizer. | [39] |
8 | Fertilizer use efficiency | FUE = GY ÷ AF | GY = Grain Yield, AF = Applied Fertilizer. | Reflects the recovery of N in the crop as a fraction of fertilizer applied. | [39] |
Category | Functions | Gene | Technology | References |
---|---|---|---|---|
Nitrogen-uptake genes | Nitrate transporters | NRT2.1 | Overexpression | [15,42,43] |
NAR2.1 | RNA interference | [42] | ||
PTR9 | Overexpression RNAi | [42,43] | ||
PTR6 | Overexpression | [42,43] | ||
NRT1.1B | Overexpression | [42,43] | ||
NRT2.3a or NRT2.3b | Overexpression | [15,42,43] | ||
NRT1.1a or NRT1.1b | Overexpression | [42] | ||
NPF7.3 (PTR6) | Overexpression RNAi | [15,42,43] | ||
NPF7.7-1 or NPF7.7-2 | Overexpression RNAi | [42,43] | ||
NPF6.1 | Overexpression CRISPR/Cas9 | [42] | ||
NPF4.5 | Overexpression CRISPR/Cas9 | [42,43] | ||
Ammonium transporters | AMT1.1 | Overexpression | [15,42] | |
AMT1-1 | Overexpression | [42] | ||
AMT1;1 | Overexpression | [42,43] | ||
AMT1-3 | Overexpression | [15,42,43] | ||
Nitrogen assimilation genes | Nitrate and nitrite reductases | NR2 | Overexpression RNAi | [42] |
Glutamine synthetase | GS1;1 GS1;2 | Overexpression | [15,42,43] | |
Glutamate synthase | NADH- GOGAT | Overexpression | [15,42] | |
AMT1;2 GOGAT1 | T-DNA tagging+ crossing | [42] | ||
Glutamate dehydrogenase | GDH | Overexpression | [42] | |
Nitrogen remobilization and translocation | Asparagine synthetase | ASN1 | Overexpression | [42,43] |
Alanine aminotransferase | AlaAT | Overexpression | [15,42,43] | |
AAT1, AAT2, AAT3 | Overexpression | [42] | ||
Amino acid transporters | AAP6a | Overexpression RNAi | [42] | |
AAP3 | Overexpression RNAi editing | [42,43] | ||
AAP5 | Overexpression RNAi editing | [42,43] | ||
LHT1 | Editing | [42] | ||
AAP4a or 4b AAP4 | Overexpression RNAi editing | [42] | ||
Transcription factors | -- | CPK12 | Overexpression | [42] |
ESL4 | Overexpression | [42] | ||
GRF4 | Overexpression RNAi editing | [42,43,49] | ||
NLP1 | Overexpression editing | [2,42] | ||
myb61 grf4 | Editing | [42] | ||
NLP4 | Overexpression editing | [2,42] | ||
MADS25 MADS27 MADS57 | Overexpressing | [39,50] | ||
MYB305 | Overexpressing | [39,50] | ||
RDD1 | Overexpressing | [15,50] | ||
BT | Repression expressing | [50,51] | ||
IDD10 | Overexpressing | [50,51] | ||
NAP | Overexpressing | [39,50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhou, G.; Guo, S.; Li, X.; Yuan, J.; Hu, A. Improving Nitrogen Use Efficiency in Rice for Sustainable Agriculture: Strategies and Future Perspectives. Life 2022, 12, 1653. https://doi.org/10.3390/life12101653
Wang B, Zhou G, Guo S, Li X, Yuan J, Hu A. Improving Nitrogen Use Efficiency in Rice for Sustainable Agriculture: Strategies and Future Perspectives. Life. 2022; 12(10):1653. https://doi.org/10.3390/life12101653
Chicago/Turabian StyleWang, Bo, Genyou Zhou, Shiyang Guo, Xiaohui Li, Jiaqi Yuan, and Anyong Hu. 2022. "Improving Nitrogen Use Efficiency in Rice for Sustainable Agriculture: Strategies and Future Perspectives" Life 12, no. 10: 1653. https://doi.org/10.3390/life12101653
APA StyleWang, B., Zhou, G., Guo, S., Li, X., Yuan, J., & Hu, A. (2022). Improving Nitrogen Use Efficiency in Rice for Sustainable Agriculture: Strategies and Future Perspectives. Life, 12(10), 1653. https://doi.org/10.3390/life12101653