Prognostic Factors of In-Hospital Mortality in Patients with Acute Myocardial Infarction Complicated by Cardiogenic Shock
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definitions
2.3. Outcomes and Statistical Analysis
3. Results
4. Discussion
4.1. Type of MI and Cardiogenic Shock
4.2. Ejection Fraction in Cardiogenic Shock
4.3. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puymirat, E.; Simon, T.; Cayla, G.; Cottin, Y.; Elbaz, M.; Coste, P.; Lemesle, G.; Motreff, P.; Popovic, B.; Khalife, K.; et al. Acute Myocardial Infarction: Changes in Patient Characteristics, Management, and 6-Month Outcomes Over a Period of 20 Years in the FAST-MI Program (French Registry of Acute ST-Elevation or Non-ST-Elevation Myocardial Infarction) 1995 to 2015. Circulation 2017, 136, 1908–1919. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Oyama, K.; Tsujita, K.; Yasuda, S.; Kobayashi, Y. Treatment strategies of acute myocardial infarction: Updates on revascularization, pharmacological therapy, and beyond. J. Cardiol. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- de Vreede, J.J.; Gorgels, A.P.; Verstraaten, G.M.; Vermeer, F.; Dassen, W.R.; Wellens, H.J. Did prognosis after acute myocardial infarction change during the past 30 years? A meta-analysis. J. Am. Coll. Cardiol. 1991, 18, 698–706. [Google Scholar] [CrossRef] [Green Version]
- Samsky, M.D.; Morrow, D.A.; Proudfoot, A.G.; Hochman, J.S.; Thiele, H.; Rao, S.V. Cardiogenic Shock After Acute Myocardial Infarction: A Review. JAMA 2021, 326, 1840–1850. [Google Scholar] [CrossRef]
- Hochman, J.S.; Sleeper, L.A.; White, H.D.; Dzavik, V.; Wong, S.C.; Menon, V.; Webb, J.G.; Steingart, R.; Picard, M.H.; Menegus, M.A.; et al. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. One-year survival following early revascularization for cardiogenic shock. JAMA 2001, 285, 190–192. [Google Scholar] [CrossRef] [Green Version]
- Ouazani Chahdi, H.; Berbach, L.; Boivin-Proulx, L.A.; Hillani, A.; Noiseux, N.; Matteau, A.; Mansour, S.; Gobeil, F.; Nauche, B.; Jolicoeur, E.M.; et al. Percutaneous Mechanical Circulatory Support in Post-Myocardial Infarction Cardiogenic Shock: A Systematic Review and Meta-analysis. Can. J. Cardiol. 2022, 38, 1525–1538. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiele, H.; Zeymer, U.; Thelemann, N.; Neumann, F.J.; Hausleiter, J.; Abdel-Wahab, M.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Hambrecht, R.; et al. IABP-SHOCK II Investigators. Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial. Circulation 2019, 139, 395–403. [Google Scholar] [CrossRef]
- Amin, A.P.; Spertus, J.A.; Curtis, J.P.; Desai, N.; Masoudi, F.A.; Bach, R.G.; McNeely, C.; Al-Badarin, F.; House, J.A.; Kulkarni, H.; et al. The Evolving Landscape of Impella Use in the United States Among Patients Undergoing Percutaneous Coronary Intervention With Mechanical Circulatory Support. Circulation 2020, 141, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.E.; Bromfield, S.G.; Ma, Q.; Crawford, G.; Whitney, J.; DeVries, A.; Desai, N.R. Clinical Outcomes and Cost Associated With an Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic Balloon Pump in Patients Presenting With Acute Myocardial Infarction Complicated by Cardiogenic Shock. JAMA Intern. Med. 2022, 182, 926–933. [Google Scholar] [CrossRef]
- Acharya, D. Predictors of Outcomes in Myocardial Infarction and Cardiogenic Shock. Cardiol. Rev. 2018, 26, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shen, B.; Feng, X.; Zhang, Z.; Liu, J.; Wang, Y. A Review of Prognosis Model Associated With Cardiogenic Shock After Acute Myocardial Infarction. Front. Cardiovasc. Med. 2021, 8, 754303. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Saito, Y.; Matsumoto, T.; Yamashita, D.; Saito, K.; Wakabayashi, S.; Kitahara, H.; Sano, K.; Kobayashi, Y. Impact of CADILLAC and GRACE risk scores on short- and long-term clinical outcomes in patients with acute myocardial infarction. J. Cardiol. 2021, 78, 201–205. [Google Scholar] [CrossRef]
- Matsumoto, T.; Saito, Y.; Yamashita, D.; Sato, T.; Wakabayashi, S.; Kitahara, H.; Sano, K.; Kobayashi, Y. Impact of Active and Historical Cancer on Short- and Long-Term Outcomes in Patients With Acute Myocardial Infarction. Am. J. Cardiol. 2021, 159, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, D.; Saito, Y.; Sato, T.; Matsumoto, T.; Saito, K.; Wakabayashi, S.; Kitahara, H.; Sano, K.; Kobayashi, Y. Impact of PARIS and CREDO-Kyoto Thrombotic and Bleeding Risk Scores on Clinical Outcomes in Patients With Acute Myocardial Infarction. Circ. J. 2022, 86, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Saito, Y.; Matsumoto, T.; Yamashita, D.; Saito, K.; Wakabayashi, S.; Kitahara, H.; Sano, K.; Kobayashi, Y. In-hospital adverse events in low-risk patients with acute myocardial infarction—Potential implications for earlier discharge. J. Cardiol. 2022, 79, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Saito, Y.; Sato, T.; Yamashita, D.; Suzuki, S.; Saito, K.; Wakabayashi, S.; Kitahara, H.; Sano, K.; Kobayashi, Y. Validation of the Domestic High Bleeding Risk Criteria for Japanese Patients with Acute Myocardial Infarction. J. Atheroscler. Thromb. 2022; in press. [Google Scholar] [CrossRef]
- Suzuki, S.; Saito, Y.; Yamashita, D.; Matsumoto, T.; Sato, T.; Wakabayashi, S.; Kitahara, H.; Sano, K.; Kobayashi, Y. Clinical Characteristics and Prognosis of Patients With No Standard Modifiable Risk Factors in Acute Myocardial Infarction. Heart Lung Circ. 2022, 31, 1228–1233. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar]
- Sakamoto, K.; Sato, R.; Tabata, N.; Ishii, M.; Yamashita, T.; Nagamatsu, S.; Motozato, K.; Yamanaga, K.; Hokimoto, S.; Sueta, D.; et al. Temporal trends in coronary intervention strategies and the impact on one-year clinical events: Data from a Japanese multi-center real-world cohort study. Cardiovasc. Interv. Ther. 2022, 37, 66–77. [Google Scholar] [CrossRef]
- Yamashita, T.; Sakamoto, K.; Tabata, N.; Ishii, M.; Sato, R.; Nagamatsu, S.; Motozato, K.; Yamanaga, K.; Sueta, D.; Araki, S.; et al. Imaging-guided PCI for event suppression in Japanese acute coronary syndrome patients: Community-based observational cohort registry. Cardiovasc. Interv. Ther. 2021, 36, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kobayashi, Y.; Fujii, K.; Sonoda, S.; Tsujita, K.; Hibi, K.; Morino, Y.; Okura, H.; Ikari, Y.; Honye, J. Clinical expert consensus document on intravascular ultrasound from the Japanese Association of Cardiovascular Intervention and Therapeutics (2021). Cardiovasc. Interv. Ther. 2022, 37, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Kubo, T.; Otake, H.; Nakazawa, G.; Sonoda, S.; Hibi, K.; Shinke, T.; Kobayashi, Y.; Ikari, Y.; Akasaka, T. Expert consensus statement for quantitative measurement and morphological assessment of optical coherence tomography: Update 2022. Cardiovasc. Interv. Ther. 2022, 37, 248–254. [Google Scholar] [CrossRef]
- Saito, Y.; Kobayashi, Y. Contemporary coronary drug-eluting and coated stents: A mini-review. Cardiovasc. Interv. Ther. 2021, 36, 20–22. [Google Scholar] [CrossRef]
- Killip, T., 3rd; Kimball, J.T. Treatment of myocardial infarction in a coronary care unit. A two year experience with 250 patients. Am. J. Cardiol. 1967, 20, 457–464. [Google Scholar] [CrossRef]
- Sawano, M.; Yamaji, K.; Kohsaka, S.; Inohara, T.; Numasawa, Y.; Ando, H.; Iida, O.; Shinke, T.; Ishii, H.; Amano, T. Contemporary use and trends in percutaneous coronary intervention in Japan: An outline of the J-PCI registry. Cardiovasc. Interv. Ther. 2020, 35, 218–226. [Google Scholar] [CrossRef]
- Harjola, V.P.; Lassus, J.; Sionis, A.; Køber, L.; Tarvasmäki, T.; Spinar, J.; Parissis, J.; Banaszewski, M.; Silva-Cardoso, J.; Carubelli, V.; et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur. J. Heart Fail. 2015, 17, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Megaly, M.; Buda, K.; Alaswad, K.; Brilakis, E.S.; Dupont, A.; Naidu, S.; Ohman, M.; Napp, L.C.; O’Neill, W.; Basir, M.B. Comparative Analysis of Patient Characteristics in Cardiogenic Shock Studies: Differences Between Trials and Registries. JACC Cardiovasc. Interv. 2022, 15, 297–304. [Google Scholar] [CrossRef]
- Hochman, J.S.; Sleeper, L.A.; Webb, J.G.; Sanborn, T.A.; White, H.D.; Talley, J.D.; Buller, C.E.; Jacobs, A.K.; Slater, J.N.; Col, J.; et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N. Engl. J. Med. 1999, 341, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.L.; Peterson, E.D.; Peng, S.A.; Wang, T.Y.; Ohman, E.M.; Bhatt, D.L.; Saucedo, J.F.; Roe, M.T. Differences in the profile, treatment, and prognosis of patients with cardiogenic shock by myocardial infarction classification: A report from NCDR. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 708–715. [Google Scholar] [CrossRef] [Green Version]
- Holmes, D.R., Jr.; Berger, P.B.; Hochman, J.S.; Granger, C.B.; Thompson, T.D.; Califf, R.M.; Vahanian, A.; Bates, E.R.; Topol, E.J. Cardiogenic shock in patients with acute ischemic syndromes with and without ST-segment elevation. Circulation 1999, 100, 2067–2073. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, Y.; Hara, H.; Onuma, Y.; Katagiri, Y.; Amano, T.; Kobayashi, Y.; Muramatsu, T.; Ishii, H.; Kozuma, K.; Tanaka, N.; et al. CVIT expert consensus document on primary percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) update 2022. Cardiovasc. Interv. Ther. 2022, 37, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Oguri, M.; Ishii, H.; Shigematsu, T.; Fujita, R.; Koyama, Y.; Katagiri, T.; Ikai, Y.; Fujikawa, Y.; Takahashi, H.; Suzuki, Y.; et al. Safety of clinical engineer-assisted percutaneous coronary intervention. Cardiovasc. Interv. Ther. 2022, 9, 1–8. [Google Scholar] [CrossRef]
- Otake, H.; Ishida, M.; Nakano, S.; Higuchi, Y.; Hibi, K.; Kuriyama, N.; Iwasaki, M.; Kataoka, T.; Kubo, T.; Tsujita, K.; et al. Comparison of MECHANISM of early and late vascular responses following treatment of ST-elevation acute myocardial infarction with two different everolimus-eluting stents: A randomized controlled trial of biodegradable versus durable polymer stents. Cardiovasc. Interv. Ther. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Koeda, Y.; Ishida, M.; Sasaki, K.; Kikuchi, S.; Yamaya, S.; Tsuji, K.; Ishisone, T.; Goto, I.; Kimura, T.; Shimoda, Y.; et al. Periprocedural and 30-day outcomes of robotic-assisted percutaneous coronary intervention used in the intravascular imaging guidance. Cardiovasc. Interv. Ther. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, H.; Oda, E.; Kaneko, K.; Matsubayashi, K. Duration and clinical outcome of dual antiplatelet therapy after percutaneous coronary intervention: A retrospective cohort study using a medical information database from Japanese hospitals. Cardiovasc. Interv. Ther. 2022, 37, 465–474. [Google Scholar] [CrossRef]
- Watanabe, Y.; Sakakura, K.; Taniguchi, Y.; Yamamoto, K.; Seguchi, M.; Tsukui, T.; Jinnouchi, H.; Wada, H.; Fujita, H. Long-term outcomes of the modest stent expansion strategy for the culprit lesion of acute myocardial infarction. Cardiovasc. Interv. Ther. 2022, 37, 660–669. [Google Scholar] [CrossRef]
- Ito, R.; Ishii, H.; Oshima, S.; Nakayama, T.; Sakakibara, T.; Kakuno, M.; Murohara, T. Comparison between biodegradable- and durable-polymer everolimus-eluting stents in hemodialysis patients with coronary artery disease. Cardiovasc. Interv. Ther. 2022, 37, 475–482. [Google Scholar] [CrossRef]
- Tsukizawa, T.; Fujihara, M. Relationship between in-hospital event rates and high bleeding risk score in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. Cardiovasc. Interv. Ther. 2022, 37, 490–496. [Google Scholar] [CrossRef]
- Garcia-Alvarez, A.; Arzamendi, D.; Loma-Osorio, P.; Kiamco, R.; Masotti, M.; Sionis, A.; Betriu, A.; Brugada, J.; Bosch, X. Early risk stratification of patients with cardiogenic shock complicating acute myocardial infarction who undergo percutaneous coronary intervention. Am. J. Cardiol. 2009, 103, 1073–1077. [Google Scholar] [CrossRef]
- De Luca, G.; Suryapranata, H.; Zijlstra, F.; van’t Hof, A.W.; Hoorntje, J.C.; Gosselink, A.T.; Dambrink, J.H.; de Boer, M.J.; ZWOLLE Myocardial Infarction Study Group. Symptom-onset-to-balloon time and mortality in patients with acute myocardial infarction treated by primary angioplasty. J. Am. Coll. Cardiol. 2003, 42, 991–997. [Google Scholar] [CrossRef]
- Milcent, C.; Dormont, B.; Durand-Zaleski, I.; Steg, P.G. Gender differences in hospital mortality and use of percutaneous coronary intervention in acute myocardial infarction: Microsimulation analysis of the 1999 nationwide French hospitals database. Circulation 2007, 115, 833–839. [Google Scholar] [CrossRef] [PubMed]
Variable | All (n = 196) | Survivors (n = 119) | Non-Survivors (n = 77) | p Value |
---|---|---|---|---|
Age (years) | 67.2 ± 11.5 | 66.8 ± 11.6 | 67.8 ± 11.3 | 0.58 |
Men | 153 (78.1%) | 89 (74.8%) | 64 (83.1%) | 0.16 |
Body mass index (kg/m2) | 24.1 ± 3.6 | 24.2 ± 3.5 | 23.9 ± 4.0 | 0.59 |
Hypertension | 125 (64.1%) | 83 (69.8%) | 42 (55.3%) | 0.04 |
Diabetes | 87 (44.4%) | 53 (44.5%) | 34 (44.2%) | 0.96 |
Dyslipidemia | 81 (41.5%) | 59 (49.6%) | 22 (29.0%) | 0.004 |
Current smoker | 67 (34.5%) | 47 (39.8%) | 20 (26.3%) | 0.05 |
Prior MI | 20 (10.3%) | 13 (10.9%) | 7 (9.2%) | 0.70 |
Prior PCI | 17 (8.7%) | 9 (7.6%) | 8 (10.5%) | 0.48 |
Prior CABG | 2 (1.0%) | 1 (0.8%) | 1 (1.3%) | 0.75 |
Prior heart failure | 8 (4.1%) | 2 (1.7%) | 6 (8.0%) | 0.03 |
Hemodialysis | 8 (4.1%) | 3 (2.5%) | 5 (6.6%) | 0.17 |
Creatinine (mg/dL) | 1.47 ± 1.3 | 1.27 ± 0.9 | 1.78 ± 1.6 | 0.006 |
Hemoglobin (g/dL) | 13.3 ± 2.4 | 13.6 ± 2.1 | 12.9 ± 2.7 | 0.03 |
Clinical presentation | 0.02 | |||
STEMI | 147 (75.0%) | 96 (80.7%) | 51 (66.2%) | |
NSTEMI | 49 (25.0%) | 23 (19.3%) | 26 (33.8%) | |
Cardiac arrest | 117 (59.7%) | 69 (58.0%) | 48 (62.3%) | 0.54 |
Variable | All (n = 196) | Survivors (n = 119) | Non-Survivors (n = 77) | p Value |
---|---|---|---|---|
Culprit vessel | <0.001 | |||
RCA | 56 (28.6%) | 46 (38.7%) | 10 (13.0%) | |
LMT/LAD | 110 (56.1%) | 57 (47.9%) | 53 (68.8%) | |
LCX | 18 (9.2%) | 11 (9.2%) | 7 (9.1%) | |
Undetermined | 12 (6.1%) | 5 (4.2%) | 7 (9.1%) | |
Three vessel disease | 59 (30.1%) | 35 (29.4%) | 24 (31.2%) | 0.79 |
Intravascular ultrasound | 191 (98.0%) | 115 (97.5%) | 76 (98.7%) | 0.59 |
Drug-eluting stents | 171 (87.2%) | 103 (86.6%) | 68 (88.3%) | 0.76 |
Mechanical circulatory support | 111 (56.6%) | 52 (43.7%) | 59 (76.6%) | <0.001 |
IABP | 90 (45.9%) | 45 (37.8%) | 45 (58.4%) | 0.005 |
ECMO | 60 (30.6%) | 21 (17.7%) | 39 (50.7%) | <0.001 |
Intravascular microaxial LVAD | 3 (1.5%) | 3 (2.5%) | 0 (0%) | 0.08 |
Intubation | 156 (79.6%) | 84 (70.6%) | 72 (93.5%) | <0.001 |
Final TIMI flow grade | 0.04 | |||
0 | 1 (0.5%) | 0 (0%) | 1 (1.3%) | |
1 | 2 (1.0%) | 1 (0.8%) | 1 (1.3%) | |
2 | 52 (26.5%) | 24 (20.2%) | 28 (36.4%) | |
3 | 141 (71.9%) | 94 (79.0%) | 47 (61.0%) |
Variable | Univariable | Multivariable | |||
---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | ||
Age (years) | 1.01 (0.98–1.03) | 0.57 | 1.02 (0.98–1.07) | 0.28 | |
Men | 1.66 (0.80–3.43) | 0.16 | 2.23 (0.74–6.72) | 0.15 | |
Body mass index (kg/m2) | 0.98 (0.90–1.06) | 0.59 | 1.03 (0.91–1.17) | 0.65 | |
Hypertension | 0.54 (0.29–0.97) | 0.04 | 0.75 (0.29–1.97) | 0.56 | |
Diabetes | 0.98 (0.55–1.75) | 0.96 | |||
Dyslipidemia | 0.41 (0.22–0.76) | 0.004 | 0.61 (0.25–1.48) | 0.28 | |
Current smoker | 0.54 (0.29–1.01) | 0.05 | 0.42 (0.15–1.13) | 0.08 | |
Prior MI | 0.83 (0.31–2.18) | 0.69 | |||
Prior heart failure | 5.09 (0.999–25.90) | 0.03 | 1.50 (0.19–11.80) | 0.70 | |
LVEF (%) | 0.92 (0.89–0.94) | <0.001 | 0.92 (0.89–0.96) | <0.001 | |
Hemodialysis | 2.72 (0.63–11.74) | 0.17 | |||
Creatinine | 1.43 (1.07–1.88) | 0.005 | 1.12 (0.79–1.59) | 0.50 | |
Hemoglobin | 0.87 (0.77–0.99) | 0.03 | 0.89 (0.74–1.09) | 0.26 | |
NSTEMI presentation | 2.13 (1.1.0–4.10) | 0.02 | 2.71 (1.01–7.33) | 0.048 | |
Cardiac arrest | 1.20 (0.67–2.16) | 0.54 | |||
Culprit in the LMT/LAD | 2.40 (1.32–4.38) | 0.004 | 2.01 (0.83–4.87) | 0.12 | |
Three vessel disease | 1.09 (0.58–2.03) | 0.79 | |||
Final TIMI flow grade 0–2 | 2.40 (1.27–4.53) | 0.007 | 2.33 (0.88–6.13) | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, T.; Saito, Y.; Suzuki, S.; Matsumoto, T.; Yamashita, D.; Saito, K.; Wakabayashi, S.; Kitahara, H.; Sano, K.; Kobayashi, Y. Prognostic Factors of In-Hospital Mortality in Patients with Acute Myocardial Infarction Complicated by Cardiogenic Shock. Life 2022, 12, 1672. https://doi.org/10.3390/life12101672
Sato T, Saito Y, Suzuki S, Matsumoto T, Yamashita D, Saito K, Wakabayashi S, Kitahara H, Sano K, Kobayashi Y. Prognostic Factors of In-Hospital Mortality in Patients with Acute Myocardial Infarction Complicated by Cardiogenic Shock. Life. 2022; 12(10):1672. https://doi.org/10.3390/life12101672
Chicago/Turabian StyleSato, Takanori, Yuichi Saito, Sakuramaru Suzuki, Tadahiro Matsumoto, Daichi Yamashita, Kan Saito, Shinichi Wakabayashi, Hideki Kitahara, Koichi Sano, and Yoshio Kobayashi. 2022. "Prognostic Factors of In-Hospital Mortality in Patients with Acute Myocardial Infarction Complicated by Cardiogenic Shock" Life 12, no. 10: 1672. https://doi.org/10.3390/life12101672
APA StyleSato, T., Saito, Y., Suzuki, S., Matsumoto, T., Yamashita, D., Saito, K., Wakabayashi, S., Kitahara, H., Sano, K., & Kobayashi, Y. (2022). Prognostic Factors of In-Hospital Mortality in Patients with Acute Myocardial Infarction Complicated by Cardiogenic Shock. Life, 12(10), 1672. https://doi.org/10.3390/life12101672