Phylogenetic Relationships and Disturbance Explain the Resistance of Different Habitats to Plant Invasions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design and Species Survey
2.3. Response Variable and Explanatory Variables
2.3.1. Response Variable
2.3.2. Explanatory Variables
2.4. Data Analyses
3. Results
3.1. Species in Different Habitats
3.2. Species Diversity in Different Habitats
3.3. Invasibility in Different Habitats
3.4. Model Results of Habitat Invasibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M.; et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef] [PubMed]
- Pyšek, P.; Richardson, D.M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 2010, 35, 25–55. [Google Scholar] [CrossRef] [Green Version]
- Strayer, D.L. Eight questions about invasions and ecosystem functioning. Ecol. Lett. 2012, 15, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Park, D.S.; Potter, D. A test of Darwin’s naturalization hypothesis in the thistle tribe shows that close relatives make bad neighbors. Proc. Natl. Acad. Sci. USA 2013, 110, 17915–17920. [Google Scholar] [CrossRef] [Green Version]
- Gallien, L.; Carboni, M. The community ecology of invasive species: Where are we and what’s next? Ecography 2017, 40, 335–352. [Google Scholar] [CrossRef] [Green Version]
- Alpert, P.; Bone, E.; Holzapfel, C. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect. Plant Ecol. Evol. Syst. 2000, 3, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Funk, J.L.; Cleland, E.E.; Suding, K.N.; Zavaleta, E.S. Restoration through reassembly: Plant traits and invasion resistance. Trends Ecol. Evol. 2008, 23, 695–703. [Google Scholar] [CrossRef]
- Enders, M.; Havemann, F.; Ruland, F.; Bernard-Verdier, M.; Catford, J.A.; Gómez-Aparicio, L.; Haider, S.; Heger, T.; Kueffer, C.; Kühn, I.; et al. A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Glob. Ecol. Biogeogr. 2020, 29, 978–991. [Google Scholar] [CrossRef] [Green Version]
- Elton, C.S. The Ecology of Invasions by Animals and Plants; Chapman and Hall: London, UK, 1958. [Google Scholar]
- Fargione, J.E.; Tilman, D. Diversity decreases invasion via both sampling and complementarity effects. Ecol. Lett. 2005, 8, 604–611. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Gómez-Aparicio, L.; Haider, S.; Heger, T.; Lortie, C.J.; Pyšek, P.; Strayer, D. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 2012, 14, 1–20. [Google Scholar] [CrossRef]
- Tomasetto, F.; Duncan, R.P.; Hulme, P.E. Environmental gradients shift the direction of the relationship between native and alien plant species richness. Divers. Distrib. 2013, 19, 49–59. [Google Scholar] [CrossRef]
- Dong, L.; Yu, H.; He, W. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness? Sci. Rep. 2015, 5, 16804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomasetto, F.; Duncan, R.P.; Hulme, P.E. Resolving the invasion paradox: Pervasive scale and study dependence in the native-alien species richness relationship. Ecol. Lett. 2019, 22, 1038–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozon, J.D.; Macisaac, H.J. Biological invasions: Are they dependent on disturbance? Environ. Rev. 1997, 5, 131–144. [Google Scholar] [CrossRef]
- Darwin, C. On the Origin of Species; John Murray: London, UK, 1859. [Google Scholar]
- Rejmánek, M. A theory of seed plant invasiveness: The first sketch. Biol. Conserv. 1996, 78, 171–181. [Google Scholar] [CrossRef]
- Ricciardi, A.; Mottiar, M. Does Darwin’s naturalization hypothesis explain fish invasions? Biol. Invasions 2006, 8, 1403–1407. [Google Scholar] [CrossRef]
- Thuiller, W.; Gallien, L.; Boulangeat, I.; De Bello, F.; Münkemüller, T.; Roquet, C.; Lavergne, S. Resolving Darwin’s naturalization conundrum: A quest for evidence. Divers. Distrib. 2010, 16, 461–475. [Google Scholar] [CrossRef]
- Diez, J.M.; Sullivan, J.J.; Hulme, P.E.; Edwards, G.; Duncan, R.P. Darwin’s naturalization conundrum: Dissecting taxonomic patterns of species invasions. Ecol. Lett. 2008, 11, 674–681. [Google Scholar] [CrossRef]
- Jiang, L.; Tan, J.; Pu, Z. An experimental test of Darwin’s naturalization hypothesis. Am. Nat. 2010, 175, 415–423. [Google Scholar] [CrossRef]
- Ma, C.; Li, S.P.; Pu, Z.; Tan, J.; Liu, M.; Zhou, J.; Li, H.; Jiang, L. Different effects of invader-native phylogenetic relatedness on invasion success and impact: A meta-analysis of Darwin’s naturalization hypothesis. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160663. [Google Scholar]
- Cadotte, M.W.; Campbell, S.E.; Li, S.; Sodhi, D.S.; Mandrak, N.E. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu. Rev. Plant Biol. 2018, 69, 661–684. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Fouqueray, T.D.; van Kleunen, M. Linking Darwin’s naturalisation hypothesis and Elton’s diversity–invasibility hypothesis in experimental grassland communities. J. Ecol. 2019, 107, 794–805. [Google Scholar] [CrossRef] [Green Version]
- Park, D.S.; Feng, X.; Maitner, B.S.; Ernst, K.C.; Enquist, B.J. Darwin’s naturalization conundrum can be explained by spatial scale. Proc. Natl. Acad. Sci. USA 2020, 117, 10904–10910. [Google Scholar] [CrossRef] [PubMed]
- Pellock, S.; Thompson, A.; He, K.S.; Mecklin, C.J.; Yang, J. Validity of Darwin’s naturalization hypothesis relates to the stages of invasion. Community Ecol. 2013, 14, 172–179. [Google Scholar] [CrossRef]
- Foxcroft, L.C.; Richardson, D.M.; Pyšek, P.; Genovesi, P. Invasive Alien Plants in Protected Areas: Threats, Opportunities, and the Way Forward. In Plant Invasions in Protected Areas: Patterns, Problems and Challenges; Foxcroft, L.C., Pyšek, P., Richardson, D.M., Genovesi, P., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 621–639. [Google Scholar]
- Liu, X.; Blackburn, T.M.; Song, T.; Wang, X.; Huang, C.; Li, Y. Animal invaders threaten protected areas worldwide. Nat. Commun. 2020, 11, 2892. [Google Scholar] [CrossRef]
- Braun, M.; Schindler, S.; Essl, F. Distribution and management of invasive alien plant species in protected areas in Central Europe. J. Nat. Conserv. 2016, 33, 48–57. [Google Scholar] [CrossRef]
- Baard, J.A.; Kraaij, T. Alien flora of the Garden Route National Park, South Africa. S. Afr. J. Bot. 2012, 94, 51–63. [Google Scholar] [CrossRef] [Green Version]
- De Poorter, M. Invasive Alien Species and Protected Areas: A Scoping Report. Part 1. Scoping the Scale and Nature of Invasive Alien Species Threats to Protected Areas, Impediments to Invasive Alien Species Management and Means to Address Those Impediments. Global Invasive Species Programme, Invasive Species Specialist Group. 2007. Available online: http://www.issg.org/gisp_publications_reports.htm (accessed on 17 May 2022).
- Foxcroft, L.C.; Pyšek, P.; Richardson, D.M.; Genovesi, P.; MacFadyen, S. Plant invasion science in protected areas: Progress and priorities. Biol. Invasions 2017, 19, 1353–1378. [Google Scholar] [CrossRef]
- Dimitrakopoulos, P.G.; Koukoulas, S.; Galanidis, A.; Delipetrou, P.; Gounaridis, D.; Touloumi, K.; Arianoutsou, M. Factors shaping alien plant species richness spatial patterns across Natura 2000 Special Areas of Conservation of Greece. Sci. Total Environ. 2017, 601–602, 461–468. [Google Scholar] [CrossRef]
- Li, W.H.; Song, Q.C.; Huang, R.; Zhao, J.X.; Li, Y.B.; Zhou, Q.H. Current status and conservation of Francois’ langurs (Trachypithecus francoisi) in Encheng National Nature Reserve in Guangxi, China. Acta Theriol. Sin. 2019, 39, 623–629. [Google Scholar]
- Ma, J.S.; Li, H.R. The Checklist of the Alien lnvasive Plants in China; Higher Education Press: Beijing, China, 2018. [Google Scholar]
- Chai, Z.; Sun, C.; Wang, D.; Liu, W. Interspecific associations of dominant tree populations in a virgin old-growth oak forest in the Qinling Mountains, China. Bot. Stud. 2016, 57, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, C.O.; Ackerly, D.D.; Kembel, S.W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 2008, 24, 2098–2100. [Google Scholar] [CrossRef] [PubMed]
- Carvallo, G.O.; Teillier, S.; Castro, S.A.; Figueroa, J.A. The phylogenetic properties of native- and exotic-dominated plant communities. Austral Ecol. 2014, 39, 304–312. [Google Scholar] [CrossRef]
- Kuraku, Z.; Katoh, N. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 2013, 41, W22–W28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Lososová, Z.; de Bello, F.; Chytrý, M.; Kühn, I.; Pyšek, P.; Sádlo, J.; Winter, M.; Zelený, D. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 2015, 24, 786–794. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Borer, E.T.; Seabloom, E.W.; Cavender-Bares, J.; Harpole, W.S.; Cleland, E.; Davies, K. Phylogenetic patterns differ for native and exotic plant communities across a richness gradient in Northern California. Divers. Distrib. 2010, 16, 892–901. [Google Scholar] [CrossRef]
- Wang, J.; Shen, J.; Wu, Y.; Tu, C.; Soininen, J.; Stegen, J.C.; He, J.; Liu, X.; Zhang, L.; Zhang, E. Phylogenetic beta diversity in bacterial assemblages across ecosystems: Deterministic versus stochastic processes. ISME J. 2013, 7, 1310–1321. [Google Scholar] [CrossRef] [Green Version]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauss, S.Y.; Webb, C.O.; Salamin, N. Exotic taxa less related to native species are more invasive. Proc. Natl. Acad. Sci. USA 2006, 103, 5841–5845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package Version 2.4.0. 2016. Available online: https://CRAN.R-project.org/package=vegan (accessed on 17 May 2022).
- Shiferaw, H.; Bewket, W.; Eckert, S. Performances of machine learning algorithms for mapping fractional cover of an invasive plant species in a dryland ecosystem. Ecol. Evol. 2019, 9, 2562–2574. [Google Scholar] [CrossRef]
- Higgins, S.I.; Clark, J.S.; Nathan, R.; Hovestadt, T.; Schurr, F.; Fragoso, J.M.V.; Aguiar, M.R.; Ribbens, E.; Lavorel, S. Forecasting plant migration rates: Managing uncertainty for risk assessment. J. Ecol. 2003, 91, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Lepš, J. Scale- and time-dependent effects of fertilization, mowing and dominant removal on a grassland community during a 15-year experiment. J. Appl. Ecol. 2014, 51, 978–987. [Google Scholar] [CrossRef]
- Yan, G.H.; Chen, X.; Zhang, Y. Shrinking cities distribution pattern and influencing factors in northeast China based on random forest model. Sci. Geogr. Sin. 2021, 41, 880–889. [Google Scholar] [CrossRef]
- Yessoufou, K.; Bezeng, B.S.; Gaoue, O.G.; Bengu, T.; van der Bank, M. Phylogenetically diverse native systems are more resistant to invasive plant species on Robben Island, South Africa. Genome 2019, 62, 217–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Violle, C.; Nemergut, D.R.; Pu, Z.; Jiang, L. Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett. 2011, 14, 782–787. [Google Scholar] [CrossRef]
- Ketola, T.; Saarinen, K.; Lindström, L. Propagule pressure increase and phylogenetic diversity decrease community’s susceptibility to invasion. BMC Ecol. 2017, 17, 15. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, G.Y.; Peng, P.H.; Li, J.J.; Shi, S.L.; Zhang, T.B. Effects of taxonomic and phylogenetic diversity of resident Pinus yunnanensis communities on Ageratina adenophora invasion in the Panxi region, Sichuan Province. Biodivers. Sci. 2021, 29, 865–874. [Google Scholar] [CrossRef]
- Swenson, N.G. Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS ONE. 2009, 4, e4390. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y. Phylogenetic Diversity and Structure of Avian Communities in Fragmented Habitats, Thousand-Island Lake. Master’s Thesis, Zhejiang University, Hangzhou, China, 2012. [Google Scholar]
- Williams, E.W.; Barak, R.S.; Kramer, M.; Hipp, A.L.; Larkin, D.J. In tallgrass prairie restorations, relatedness influences neighborhood-scale plant invasion while resource availability influences site-scale invasion. Basic Appl. Ecol. 2018, 33, 37–48. [Google Scholar] [CrossRef]
- Daniels, M.K.; Iacona, G.D.; Armsworth, P.R.; Larson, E.R. Do roads or streams explain plant invasions in forested protected areas? Biol. Invasions 2019, 21, 3121–3134. [Google Scholar] [CrossRef]
- Kocián, P. The first records of along motorways in Poland and Slovakia. Acta Musei Sil. Sci. Nat. 2016, 65, 129–133. [Google Scholar]
- Deferrari, C.M.; Naiman, R.J. A multi-scale assessment of the occurrence of exotic plants on the Olympic Peninsula, Washington. J. Veg. Sci. 1994, 5, 247–258. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in Tropical Rain Forests and Coral Reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulleri, F.; Benedetti-Cecchi, L.; Jaklin, A.; Iveša, L. Linking disturbance and resistance to invasion via changes in biodiversity: A conceptual model and an experimental test on rocky reefs. Ecol. Evol. 2016, 6, 2010–2021. [Google Scholar] [CrossRef]
Habitat | Longitude | Latitude | Altitude | Functional Zone | Land-Use |
---|---|---|---|---|---|
EP | 107.228 | 22.663 | 217 | Experimental | The trees are 5 years old, planted at a density of 0.288 trees/m2, and the only other trees are Ficus auriculata Lour. |
106.979 | 22.793 | 368 | Experimental | The trees are 7 years old, with a density of 0.188 trees/m2, and the other trees are mainly Vernicia fordii (Hemsl.) Airy Shaw and Litsea monopetala (Roxb.) Pers. | |
106.978 | 22.798 | 378.53 | Experimental | The trees are 8 years old, with a density of 0.342 trees/m2, and the understory shrubs are mainly Mussaenda pubescens W. T. Aiton. | |
AL | 107.224 | 22.720 | 219.82 | Experimental | Originally a reservoir, then planted with rice, abandoned for 2 years, no trees and shrubs, with grazing activities. |
107.094 | 22.778 | 229 | Experimental | Originally planted with sugar cane crops, the abandonment time is unknown, without trees and shrubs, with grazing activities. | |
107.088 | 22.756 | 132.63 | Core | Gardenia jasminoides Ellis was planted before abandonment and abandoned for 3 years without trees and shrubs. | |
NF | 107.060 | 22.789 | 267.7 | Experimental | The trees are mainly Litsea pungens Hemsl. and Maesa balansae Mez. |
107.088 | 22.756 | 168.19 | Core | Shrubs are mainly Fordia cauliflora Hemsl., and trees include Micromelum integerrimum (Buch.-Ham.) Roem. | |
107.121 | 22.758 | 178.88 | Experimental | The trees are mostly Cipadessa baccifera (Roth.) Miq, which were sparse. |
Family | Species | Life Form | Origin | Distribution |
---|---|---|---|---|
Asteraceae | Chromolaena odorata (L.) R. M. King & H. Robinson | Herbs, perennial | America | AL, EP, NF |
Bidens Pilosa L. | Herbs, annual | America | AL, EP, NF | |
Ageratum conyzoides L. | Herbs, annual | Tropical America | AL, EP | |
Synedrella nodiflora (L.) Gaertn. | Herbs, annual | South America | EP | |
Erigeron canadensis L. | Herbs, annual | North America | AL | |
Fabaceae | Mimosa bimucronata (DC.) Kuntze | Shrubs, deciduous | Tropical America | EP |
Oxalidaceae | Oxalis corymbosa DC. | Herbs, perennial | Tropical America | EP |
Malvaceae | Sida acuta Burm. F. | Subshrubs or herbs erect | Tropical America | NF |
Rubiaceae | Spermacoce alata Aublet | Herbs, perennial | Tropical America | EP |
Poaceae | Paspalum conjugatum Berg. | Herbs, perennial | Tropical America | AL, EP |
Solanaceae | Solanum torvum Swartz | Shrubs | Caribbean | NF |
Euphorbiaceae | Euphorbia hypericifolia L. | Herbs, annual | America | NF |
Habitat | Stepwise Regression Equation | R2 | p | MSE | AIC |
---|---|---|---|---|---|
AL | 0.852 | <0.001 | 0.019 | −132.522 | |
EP | - | 0.588 | <0.001 | 0.038 | −109.739 |
NF | 0.339 | <0.001 | 0.011 | −154.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Zhao, C.; Li, F.; Huang, J. Phylogenetic Relationships and Disturbance Explain the Resistance of Different Habitats to Plant Invasions. Life 2022, 12, 1785. https://doi.org/10.3390/life12111785
Guo C, Zhao C, Li F, Huang J. Phylogenetic Relationships and Disturbance Explain the Resistance of Different Habitats to Plant Invasions. Life. 2022; 12(11):1785. https://doi.org/10.3390/life12111785
Chicago/Turabian StyleGuo, Chaodan, Caiyun Zhao, Feifei Li, and Jianfeng Huang. 2022. "Phylogenetic Relationships and Disturbance Explain the Resistance of Different Habitats to Plant Invasions" Life 12, no. 11: 1785. https://doi.org/10.3390/life12111785
APA StyleGuo, C., Zhao, C., Li, F., & Huang, J. (2022). Phylogenetic Relationships and Disturbance Explain the Resistance of Different Habitats to Plant Invasions. Life, 12(11), 1785. https://doi.org/10.3390/life12111785