Evaluation of the Ecological Environment Affected by Cry1Ah1 in Poplar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Field Design
2.2. Identification of Cry1Ah1 Expression Level and Insecticidal Activity
2.3. Determination of Rhizosphere Soil Physical and Chemical Indices
2.4. Rhizosphere Soil DNA Extraction and High-Throughput Sequencing
3. Results
3.1. Effects of CM Varieties on M. Troglodyta
3.2. Effects of CM Poplars on Rhizosphere Soil Chemistry Patterns
3.3. Data Quality Control and ASVs’ Analysis
3.4. Rhizosphere Bacterial Diversity
3.5. The Higher Cry1Ah1 Expression Level May Have Marginal Effects on Rhizosphere Bacteria of Field-Grown Poplars
4. Discussion
4.1. Changes in Rhizosphere Soil MBC, MBN, and MBP Content in NT and CM Varieties
4.2. Effects of Cry1Ah1 Expression on Native Rhizosphere Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boerjan, W. Biotechnology and the domestication of forest trees. Curr. Opin. Biotechnol. 2005, 16, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wei, H.; Wang, L.; Yin, T.; Zhuge, Q. Optimization of the cry1Ah1 Sequence Enhances the Hyper-Resistance of Transgenic Poplars to Hyphantria cunea. Front. Plant Sci. 2019, 10, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.; Niu, M.-X.; Feng, C.-H.; Li, H.-G.; Su, Y.; Su, W.-L.; Pang, H.; Yang, Y.; Yu, X.; Wang, H.-L.; et al. PeSTZ1 confers salt stress tolerance by scavenging the accumulation of ROS through regulating the expression of PeZAT12 and PeAPX2 in Populus. Tree Physiol. 2020, 40, 1292–1311. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Dong, Y.; Li, Y.; Huang, Y.; Ren, M.; Yang, M.; Wang, J. Dynamic monitoring of the impact of insect-resistant transgenic poplar field stands on arthropod communities. Forest Ecol. Manag. 2022, 505, 119921. [Google Scholar] [CrossRef]
- Gassmann, A.J.; Reisig, D.D. Management of Insect Pests with Bt Crops in the United States. Annu. Rev. Entomol. 2022, 68, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Dohrmann, A.B.; Küting, M.; Jünemann, S.; Jaenicke, S.; Schlüter, A.; Tebbe, C.C. Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional maize varieties. ISME J. 2013, 7, 37–49. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Y.; Yang, F.; Liu, Y.; Liu, B. Persistence of insecticidal Cry toxins in Bt rice residues under field conditions estimated by biological and immunological assays. Sci. Total Environ. 2019, 679, 45–51. [Google Scholar] [CrossRef]
- Zhaolei, L.; Naishun, B.; Jun, C.; Xueping, C.; Manqiu, X.; Feng, W.; Zhiping, S.; Changming, F. Effects of long-term cultivation of transgenic Bt rice (Kefeng-6) on soil microbial functioning and C cycling. Sci. Rep. 2017, 7, 4647. [Google Scholar] [CrossRef] [Green Version]
- Zhaolei, L.; Naishun, B.; Xueping, C.; Jun, C.; Manqiu, X.; Zhiping, S.; Ming, N.; Changming, F. Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities. Ecotoxicol. Environ. Saf. 2018, 152, 33–41. [Google Scholar] [CrossRef]
- Cotta, S.R.; Dias, A.C.F.; Marriel, I.E.; Andreote, F.D.; Seldin, L.; van Elsas, J.D. Different effects of transgenic maize and non-transgenic maize on nitrogen-transforming archaea and bacteria in tropical soils. Appl. Environ. Microbiol. 2014, 80, 6437–6445. [Google Scholar] [CrossRef]
- Shu, Y.; Du, Y.; Wang, J. Presence of Cry1Ab in the Bt maize—Aphid (Rhopalosiphum maidis)—Ladybeetle (Propylea japonica) system has no adverse effects on insect biological parameters. Entomol. Exp. Appl. 2019, 167, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Čerevková, A.; Miklisová, D.; Szoboszlay, M.; Tebbe, C.C.; Cagáň, Ľ. The responses of soil nematode communities to Bt maize cultivation at four field sites across Europe. Soil Biol. Biochem. 2018, 119, 194–202. [Google Scholar] [CrossRef]
- Li, P.; Li, Y.; Shi, J.; Yu, Z.; Pan, A.; Tang, X.; Ming, F. Impact of transgenic Cry1Ac+pTI cotton on diversity and dynamics of rhizosphere bacterial community of different root environments. Sci. Total Environ. 2018, 637, 233–243. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Neal Stewart, C.; Luo, Z.; Xiao, N. The effects of the presence of Bt-transgenic oilseed rape in wild mustard populations on the rhizosphere nematode and microbial communities. Sci. Total Environ. 2015, 530–531, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Ye, S.; Liu, H.; Pan, A.; Ming, F.; Tang, X. Cultivation of Drought-Tolerant and Insect-Resistant Rice Affects Soil Bacterial, but Not Fungal, Abundances and Community Structures. Front. Microbiol. 2018, 9, 1390. [Google Scholar] [CrossRef]
- Jansson, J.K.; Hofmockel, K.S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 2020, 18, 35–46. [Google Scholar] [CrossRef]
- Singh, A.K.; Rai, G.K.; Singh, M.; Dubey, S.K. Bacterial Community Structure in the Rhizosphere of a Cry1Ac Bt-Brinjal Crop and Comparison to Its Non-transgenic Counterpart in the Tropical Soil. Microb. Ecol. 2013, 66, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Xie, M.; Yu, Y.; Zhang, Q. Transgenic Bt cotton tissues have no apparent impact on soil microorganisms. Plant Soil Environ. 2018, 59, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Velmourougane, K.; Sahu, A. Impact of transgenic cottons expressing cry1Ac on soil biological attributes. Plant Soil Environ. 2013, 59, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Tan, F.; Hong, Z.; Cheng, K.; Xiao, W.; Lingxi, J.; Zhao, K.; Tang, X. Impact of Bt-transgenic rice (SHK601) on soil ecosystems in the rhizosphere during crop development. Plant Soil Environ. 2018, 58, 217–223. [Google Scholar] [CrossRef]
- Wu, N.; Shi, W.; Liu, W.; Gao, Z.; Han, L.; Wang, X. Differential impact of Bt-transgenic rice plantings on bacterial com-munity in three niches over consecutive years. Ecotox. Environ. Safe 2021, 223, 112569. [Google Scholar] [CrossRef]
- Mina, U. An approach for impact assessment of transgenic plants on soil ecosystem. Appl. Ecol. Env. Res. 2008, 6, 1–19. [Google Scholar] [CrossRef]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Sui, X.; Hu, Y.; Feng, F. Microbial community structure and the relationship with soil carbon and nitrogen in an original Korean pine forest of Changbai Mountain, China. BMC Microbiol. 2019, 19, 218. [Google Scholar] [CrossRef] [Green Version]
- DeBruyn, J.M.; Bevard, D.A.; Essington, M.E.; McKnight, J.Y.; Schaeffer, S.M.; Baxter, H.L.; Mazarei, M.; Mann, D.G.J.; Dixon, R.A.; Chen, F. Field-grown transgenic switchgrass (Panicum virgatum L.) with altered lignin does not affect soil chemistry, microbiology, and carbon storage potential. Glob. Change Biol. Bioenergy 2017, 9, 1100–1109. [Google Scholar] [CrossRef] [Green Version]
- Abdul Rahman, N.S.N.; Abdul Hamid, N.W.; Nadarajah, K. Effects of Abiotic Stress on Soil Microbiome. Int. J. Mol. Sci. 2021, 22, 9036. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, X.; Zhang, X.; Ju, W.; Duan, C.; Guo, X.; Wang, Y.; Fang, L. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol. Biochem. 2020, 147, 107814. [Google Scholar] [CrossRef]
- Gao, D.; Bai, E.; Li, M.; Zhao, C.; Yu, K.; Hagedorn, F. Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles: A meta-analysis. Soil Biol. Biochem. 2020, 148, 107896. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, S.; Lin, J.; Zhu, B. Responses of soil microbial biomass carbon and dissolved organic carbon to dry-ing-rewetting cycles: A meta-analysis. Catena 2021, 207, 105610. [Google Scholar] [CrossRef]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Dennis, K.L.; Wang, Y.; Blatner, N.R.; Wang, S.; Saadalla, A.; Trudeau, E.; Roers, A.; Weaver, C.T.; Lee, J.J.; Gilbert, J.A.; et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Res. 2013, 73, 5905–5913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Dillon, M.R.; Zhang, Y.; Rideout, J.R.; Bolyen, E.; Li, H.; Albert, P.S.; Caporaso, J.G. q2-longitudinal: Longitudinal and Paired-Sample Analyses of Microbiome Data. mSystems 2018, 3, e00219-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [Green Version]
- Amato, S.M.; Orman, M.A.; Brynildsen, M.P. Metabolic control of persister formation in Escherichia coli. Mol. Cell 2013, 50, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Librán-Embid, F.; Klaus, F.; Tscharntke, T.; Grass, I. Unmanned aerial vehicles for biodiversity-friendly agricultural land-scapes-A systematic review. Sci. Total Environ. 2020, 732, 139204. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Araki, M.; Higashi, T.; Komatsuzaki, M.; Kaneko, N.; Ohta, H. Responses of soil nematode community structure to soil carbon changes due to different tillage and cover crop management practices over a nine-year period in Kanto, Japan. Appl. Soil Ecol. 2015, 89, 50–58. [Google Scholar] [CrossRef]
- Hu, J.; Chen, G.; Hassan, W.M.; Lan, J.; Si, W.; Wang, W.; Li, G.; Du, G. The impact of fertilization intensity on soil nematode communities in a Tibetan Plateau grassland ecosystem. Appl. Soil Ecol. 2022, 170, 104258. [Google Scholar] [CrossRef]
- Mahnert, A.; Moissl-Eichinger, C.; Berg, G. Microbiome interplay: Plants alter microbial abundance and diversity within the built environment. Front. Microbiol. 2015, 6, 887. [Google Scholar] [CrossRef]
- Pickett, J.A. The essential need for GM crops. Nat. Plants 2016, 2, 16078. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.W.; Hahl, T.; van Moorsel, S.J.; Wagg, C.; de Deyn, G.B.; Schmid, B. Feedbacks of plant identity and diversity on the diversity and community composition of rhizosphere microbiomes from a long-term biodiversity experiment. Mol. Ecol. 2019, 28, 863–878. [Google Scholar] [CrossRef] [Green Version]
- Jat, H.S.; Datta, A.; Choudhary, M.; Sharma, P.C.; Yadav, A.K.; Choudhary, V.; Gathala, M.K.; Jat, M.L.; McDonald, A. Climate Smart Agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of North-West India. Catena 2019, 181, 104059. [Google Scholar] [CrossRef]
- Zhang, H.; Hobbie, E.A.; Feng, P.; Niu, L.; Hu, K. Can conservation agriculture mitigate climate change and reduce environmental impacts for intensive cropping systems in North China Plain? Sci. Total Environ. 2022, 806, 151194. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.S.; Gupta, V.K. Soil microbial biomass: A key soil driver in management of ecosystem functioning. Sci. Total Environ. 2018, 634, 497–500. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, X.; Chen, X.; Lin, Q.; Li, G. Seasonal changes of soil microbial C, N, P and associated nutrient dynamics in a semiarid grassland of north China. Appl. Soil Ecol. 2018, 128, 89–97. [Google Scholar] [CrossRef]
- Li, P.; Yang, Y.; Han, W.; Fang, J. Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems. Glob. Ecol. Biogeogr. 2014, 23, 979–987. [Google Scholar] [CrossRef]
- Xu, X.; Thornton, P.E.; Post, W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems: Concepts and applications. Glob. Ecol. Biogeogr. 2013, 22, 737–749. [Google Scholar] [CrossRef]
- Xu, Y.; Du, A.; Wang, Z.; Zhu, W.; Li, C.; Wu, L. Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity. Forest. Ecol. Manag. 2020, 456, 117683. [Google Scholar] [CrossRef]
- Gao, G.; Tuo, D.; Han, X.; Jiao, L.; Li, J.; Fu, B. Effects of land-use patterns on soil carbon and nitrogen variations along revegetated hillslopes in the Chinese Loess Plateau. Sci. Total Environ. 2020, 746, 141156. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.D.; Fernandes, M.F. Changes in microbial community structure and physiological profile in a kaolinitic tropical soil under different conservation agricultural practices. Appl. Soil Ecol. 2020, 152, 103545. [Google Scholar] [CrossRef]
- Liu, L.; Wu, L.; Knauth, S.; Eickhorst, T. Degradation of transgenic Bt-rice straw incorporated with two different paddy soils. J. Environ. Manag. 2019, 244, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zeng, G.; Liang, J.; Zhang, J.; Cai, Q.; Huang, L.; Li, X.; Zhu, H.; Hu, C.; Shen, S. Changes of soil microbial biomass and bacterial community structure in Dongting Lake: Impacts of 50,000 dams of Yangtze River. Ecol. Eng. 2013, 54, 72–78. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, M.; Yan, Z.; Yang, Y.; Niklas, K.J.; Huang, H.; Mipam, T.D.; He, X.; Hu, H.; Wright, S.J. Global patterns and predictors of soil microbial biomass carbon, nitrogen, and phosphorus in terrestrial ecosystems. Catena 2022, 211, 106037. [Google Scholar] [CrossRef]
- Hallama, M.; Pekrun, C.; Lambers, H.; Kandeler, E. Hidden Miners: The Roles of Cover Crops and Soil Microorganisms in Phosphorus Cycling through Agroecosystems; Universität Hohenheim: Hohenheim, Germany, 2019. [Google Scholar]
- Stange, M.; Barrett, R.D.H.; Hendry, A.P. The importance of genomic variation for biodiversity, ecosystems and people. Nat. Rev. Genet. 2021, 22, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Breed, M.F.; Harrison, P.A.; Blyth, C.; Byrne, M.; Gaget, V.; Gellie, N.J.C.; Groom, S.V.C.; Hodgson, R.; Mills, J.G.; Prowse, T.A.A.; et al. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 2019, 20, 615–628. [Google Scholar] [CrossRef]
- Wang, X.; Whalley, W.R.; Miller, A.J.; White, P.J.; Zhang, F.; Shen, J. Sustainable cropping requires adaptation to a hetero-geneous rhizosphere. Trends. Plant Sci. 2020, 25, 1194–1202. [Google Scholar] [CrossRef]
- Buee, M.; de Boer, W.F.; Martin, F.; van Overbeek, L.S.; Jurkevitch, E. The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 2009, 321, 189–212. [Google Scholar] [CrossRef]
- Ling, N.; Wang, T.; Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 2022, 13, 836. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, J.; Yu, P.; Zhang, W.; Lin, Y.; Ma, D. The rhizosphere bacterial community contributes to the nutritional competitive advantage of weedy rice over cultivated rice in paddy soil. BMC Microbiol. 2022, 22, 232. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Pampulha, M.E.; Bennett, J.P. A two-year field study with transgenic Bacillus thuringiensis maize: Effects on soil microorganisms. Sci. Total Environ. 2008, 405, 351–357. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, M.; Wu, G.; Peng, D.; Yu, W. A 3-year field investigation of impacts of Monsanto’s transgenic Bt-cotton NC 33B on rhizosphere microbial communities in northern China. Appl. Soil Ecol. 2015, 89, 18–24. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, L.; Gao, S.; Guo, J.; Luo, J.; You, Q.; Que, Y. Cry1Ac transgenic sugarcane does not affect the diversity of microbial communities and has no significant effect on enzyme activities in rhizosphere soil within one crop season. Front. Plant Sci. 2016, 7, 265. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.X.; Liu, W.; Lu, H.H.; Chen, Y.X.; Medha, D.; Janice, T. Use of 13C labeling to assess carbon partitioning in transgenic and non-transgenic (parental) rice and their rhizosphere soil microbial communities. FEMS Microbiol. Ecol. 2009, 67, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, A.; Karimi Dorcheh, E.; Li, R.; Rameshkumar, N.; Baldwin, I.T. Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field. eLife 2018, 7, e28715. [Google Scholar] [CrossRef] [PubMed]
ASV | Test-Statistic | p | FDR P | Bonferroni P | A5-0 Mean | NT Mean | A5-23 Mean | A4-6 Mean | A3-4 Mean | Z1-3 Mean |
---|---|---|---|---|---|---|---|---|---|---|
p__Ascomycota | 13.56156156 | 0.018647881 | 0.354309737 | 0.354309737 | 0.38735852 | 0.61138326 | 0.61042142 | 0.243904621 | 0.484990829 | 0.392447323 |
p__Basidiomycota | 10.16216216 | 0.070768701 | 0.391712711 | 1 | 0.227967163 | 0.135322999 | 0.253847358 | 0.417125218 | 0.331415246 | 0.198798819 |
p__Chlorophyta | 10.15615616 | 0.070929628 | 0.391712711 | 1 | 0.01805686 | 0.011899969 | 0.006559522 | 0.009774974 | 0.01853778 | 0.021434483 |
p__Chytridiomycota | 9.092451776 | 0.105432904 | 0.391712711 | 1 | 0.001884535 | 0.003696372 | 0.001263812 | 0.000542433 | 0.000810853 | 0.002152955 |
p__Cercozoa | 8.697065259 | 0.121774576 | 0.391712711 | 1 | 0.045888695 | 0.017676598 | 0.006710509 | 0.007348007 | 0.007040442 | 0.00904241 |
p__unidentified | 8.156156156 | 0.147836947 | 0.391712711 | 1 | 0.159939382 | 0.07572809 | 0.076952758 | 0.25286315 | 0.111400036 | 0.232972084 |
p__Entomophthoromycota | 7.806407963 | 0.167232549 | 0.391712711 | 1 | 0.000117434 | 0.000849998 | 0.000995392 | 6.15 × 10−5 | 6.15 × 10−5 | 3.36 × 10−5 |
p__Rozellomycota | 7.579196217 | 0.181002706 | 0.391712711 | 1 | 0.000380262 | 0.001314141 | 0.000665459 | 0.000687827 | 0.00061513 | 0.001101642 |
p__Mortierellomycota | 7.507507508 | 0.185548126 | 0.391712711 | 1 | 0.13757102 | 0.115996734 | 0.026478549 | 0.028184136 | 0.020472643 | 0.116136536 |
p__Blastocladiomycota | 6.846918489 | 0.232276395 | 0.44132515 | 1 | 0.003265781 | 0.001213484 | 4.47 × 10−5 | 0.003282557 | 0.00246052 | 0.001302957 |
p__Olpidiomycota | 5.728450555 | 0.333544833 | 0.537634093 | 1 | 0.000866774 | 5.03 × 10−5 | 7.83 × 10−5 | 0.000111842 | 0.000117434 | 0.000123026 |
p__Zoopagomycota | 5.322944896 | 0.377751263 | 0.537634093 | 1 | 0.000715788 | 0.002024337 | 0.000419407 | 0.000726972 | 0.000726972 | 0.001588154 |
p__Glomeromycota | 5.162162162 | 0.396412153 | 0.537634093 | 1 | 0.01409766 | 0.021809153 | 0.014824632 | 0.034631817 | 0.017508836 | 0.021311457 |
p__Entorrhizomycota | 5 | 0.415880187 | 0.537634093 | 1 | 0 | 0 | 1.12 × 10−5 | 0 | 0 | 0 |
p__Monoblepharomycota | 4.930281072 | 0.424447968 | 0.537634093 | 1 | 0.000352302 | 0.000335525 | 6.71 × 10−5 | 4.47 × 10−5 | 0.000173355 | 0.000313157 |
p__Ciliophora | 3.628726784 | 0.60400532 | 0.61504672 | 1 | 0.000363486 | 1.12 × 10−5 | 4.47 × 10−5 | 5.59 × 10−6 | 0.002829598 | 0.000184539 |
p__GS19 | 3.627922155 | 0.604125841 | 0.61504672 | 1 | 2.80 × 10−5 | 0 | 2.24 × 10−5 | 0 | 3.91 × 10−5 | 5.59 × 10−6 |
p__Kickxellomycota | 3.615658975 | 0.605963711 | 0.61504672 | 1 | 0.00096184 | 0.000548025 | 0.00048092 | 0.000570393 | 0.000609538 | 0.00072138 |
p__Mucoromycota | 3.555235853 | 0.61504672 | 0.61504672 | 1 | 0.000184539 | 0.000139802 | 0.000111842 | 0.00013421 | 0.000190131 | 0.000329933 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Movahedi, A.; Wei, H.; Alhassan, A.R.; Dzinyela, R.; Wang, P.; Sun, W.; Zhuge, Q.; Xu, C. Evaluation of the Ecological Environment Affected by Cry1Ah1 in Poplar. Life 2022, 12, 1830. https://doi.org/10.3390/life12111830
Movahedi A, Wei H, Alhassan AR, Dzinyela R, Wang P, Sun W, Zhuge Q, Xu C. Evaluation of the Ecological Environment Affected by Cry1Ah1 in Poplar. Life. 2022; 12(11):1830. https://doi.org/10.3390/life12111830
Chicago/Turabian StyleMovahedi, Ali, Hui Wei, Abdul Razak Alhassan, Raphael Dzinyela, Pu Wang, Weibo Sun, Qiang Zhuge, and Chen Xu. 2022. "Evaluation of the Ecological Environment Affected by Cry1Ah1 in Poplar" Life 12, no. 11: 1830. https://doi.org/10.3390/life12111830
APA StyleMovahedi, A., Wei, H., Alhassan, A. R., Dzinyela, R., Wang, P., Sun, W., Zhuge, Q., & Xu, C. (2022). Evaluation of the Ecological Environment Affected by Cry1Ah1 in Poplar. Life, 12(11), 1830. https://doi.org/10.3390/life12111830