Bioactivity Potential of Bioceramic-Based Root Canal Sealers: A Scoping Review
Abstract
:1. Introduction
2. Methodology
2.1. Protocol Registration
2.2. Eligibility and Exclusion Criteria
2.3. Search Strategy
2.4. Selection Process
2.5. Data Collection Process
3. Results
Study Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kishen, A.; Peters, O.A.; Zehnder, M.; Diogenes, A.R.; Nair, M.K. Advances in endodontics: Potential applications in clinical practice. J. Conserv. Dent. 2016, 19, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Kapralos, V.; Rukke, H.V.; Ørstavik, D.; Koutroulis, A.; Camilleri, J.; Sunde, P.T. Antimicrobial and physicochemical characterization of endodontic sealers after exposure to chlorhexidine digluconate. Dent. Mater. 2020, 37, 249–263. [Google Scholar] [CrossRef]
- Marashdeh, M.; Stewart, C.; Kishen, A.; Levesque, C.; Finer, Y. Drug-Silica Coassembled Particles Improve Antimicrobial Properties of Endodontic Sealers. J. Endod. 2021, 47, 793–799. [Google Scholar] [CrossRef]
- Zordan-Bronzel, C.L.; Esteves Torres, F.F.; Tanomaru-Filho, M.; Chávez-Andrade, G.M.; Bosso-Martelo, R.; Guerreiro-Tanomaru, J.M. Evaluation of Physicochemical Properties of a New Calcium Silicate–based Sealer, Bio-C Sealer. J. Endod. 2019, 45, 1248–1252. [Google Scholar] [CrossRef]
- Debelian, G.; Trope, M. The use of premixed bioceramic materials in endodontics. G. Ital. Endod. 2016, 30, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Donnermeyer, D.; Bürklein, S.; Dammaschke, T.; Schäfer, E. Endodontic sealers based on calcium silicates: A systematic review. Odontology 2019, 107, 421–436. [Google Scholar] [CrossRef]
- Hench, L.L. Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef] [Green Version]
- Camilleri, J. Will Bioceramics be the Future Root Canal Filling Materials? Curr. Oral. Health Rep. 2017, 4, 228–238. [Google Scholar] [CrossRef]
- Silva Almeida, L.H.; Moraes, R.R.; Morgental, R.D.; Pappen, F.G. Are Premixed Calcium Silicate–based Endodontic Sealers Comparable to Conventional Materials? A Systematic Review of In Vitro Studies. J. Endod. 2017, 43, 527–535. [Google Scholar] [CrossRef]
- Aminoshariae, A.; Kulild, J.C. The impact of sealer extrusion on endodontic outcome: A systematic review with meta-analysis. Aust. Endod. J. 2020, 46, 123–129. [Google Scholar] [CrossRef]
- Zhang, X.; Williams, D. Definitions of Biomaterials for the Twenty-First Century; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–280. [Google Scholar]
- Hoppe, A.; Guldal, N.S.; Boccaccini, A.R. A review of the biological response to ionic dissolution products from bioactive glasses and glass–ceramics. Biomaterials 2011, 32, 2757–2774. [Google Scholar] [CrossRef]
- Vallittu, P.K.; Boccaccini, A.R.; Hupa, L.; Watts, D.C. Bioactive dental materials—Do they exist and what does bioactivity mean? Dent. Mater. 2018, 34, 693–694. [Google Scholar] [CrossRef]
- Carvalho, C.N.; Grazziotin-Soares, R.; de Miranda Candeiro, G.T.; Martinez, L.G.; de Souza, J.P.; Oliveira, P.S.; Bauer, J.; Gavini, G. Micro push-out bond strength and bioactivity analysis of a bioceramic root canal sealer. Iran Endod. J. 2017, 12, 343–348. [Google Scholar]
- Garrido, M.; Morales, D.; Saldías, M.P.; Fernández, C.; Villalobos, V.; Cerda, O.; Cáceres, M. Cellular response of human apical papilla cells to calcium hydroxide and tricalcium silicate-based cements. BMC Oral Health 2021, 21, 106. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.D.J.; Godfrey, C.M.; Khalil, H.; McInerney, P.; Parker, D.; Soares, C.B. Guidance for conducting systematic scoping reviews. Int. J. Evid. Based Healthc. 2015, 13, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Al-Haddad, A.; Aziz, Z.A.C.A. Bioceramic-Based Root Canal Sealers: A Review. Int. J. Biomater. 2016, 2016, 9753210. [Google Scholar] [CrossRef] [Green Version]
- Kebudi Benezra, M.; Schembri Wismayer, P.; Camilleri, J. Interfacial Characteristics and Cytocompatibility of Hydraulic Sealer Cements. J. Endod. 2018, 44, 1007–1017. [Google Scholar] [CrossRef]
- Han, L.; Okiji, T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int. Endod. J. 2013, 46, 808–814. [Google Scholar] [CrossRef]
- Jo, S.B.; Kim, H.K.; Lee, H.N.; Kim, Y.J.; Patel, K.D.; Knowles, J.C.; Lee, J.H.; Song, M. Physical properties and biofunctionalities of bioactive root canal sealers in vitro. Nanomaterials 2020, 10, 1750. [Google Scholar] [CrossRef]
- Oh, S.; Cho, S.I.; Perinpanayagam, H.; You, J.; Hong, S.H.; Yoo, Y.J.; Kum, K.Y. Novel calcium zirconate silicate cement biomineralize and seal root canals. Materials 2018, 11, 588. [Google Scholar] [CrossRef] [Green Version]
- Sanz, J.L.; López-García, S.; Lozano, A.; Pecci-Lloret, M.P.; Llena, C.; Guerrero-Gironés, J.; Rodríguez-Lozano, F.J.; Forner, L. Microstructural composition, ion release, and bioactive potential of new premixed calcium silicate–based endodontic sealers indicated for warm vertical compaction technique. Clin. Oral. Investig. 2021, 25, 1451–1462. [Google Scholar] [CrossRef]
- Siboni, F.; Taddei, P.; Zamparini, F.; Prati, C.; Gandolfi, M.G. Properties of bioroot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int. Endod. J. 2017, 50, e120–e136. [Google Scholar] [CrossRef] [Green Version]
- Tanomaru-Filho, M.; Prado, M.C.; Torres, F.F.E.; Viapiana, R.; Pivoto-João, M.M.B.; Guerreiro-Tanomaru, J.M. Physicochemical properties and bioactive potential of a new epoxy resin-based root canal sealer. Braz. Dent. J. 2019, 30, 563–568. [Google Scholar] [CrossRef]
- Viapiana, R.; Guerreiro-Tanomaru, J.M.; Hungaro-Duarte, M.A.; Tanomaru-Filho, M.; Camilleri, J. Chemical characterization and bioactivity of epoxy resin and Portland cement-based sealers with niobium and zirconium oxide radiopacifiers. Dent. Mater. 2014, 30, 1005–1020. [Google Scholar] [CrossRef]
- Wu, M.; Wang, T.; Zhang, Y. Premixed tricalcium silicate/sodium phosphate dibasic cements for root canal filling. Mater. Chem. Phys. 2021, 257, 123682. [Google Scholar] [CrossRef]
- Cardoso, O.S.; Meier, M.M.; Carvalho, E.M.; Ferreira, P.V.C.; Gavini, G.; Zago, P.M.W.; Bauer, J. Synthesis and characterization of experimental endodontic sealers containing bioactive glasses particles of NbG or 45S5. J. Mech. Behav. Biomed. Mater. 2022, 125, 104971. [Google Scholar] [CrossRef]
- Huang, G.; Liu, S.Y.; Wu, J.L.; Qiu, D.; Dong, Y.M. A novel bioactive glass-based root canal sealer in endodontics. J. Dent. Sci. 2022, 17, 217–224. [Google Scholar] [CrossRef]
- Bryan, T.E.; Khechen, K.; Brackett, M.G.; Messer, R.L.W.; El-Awady, A.; Primus, C.M.; Gutmann, J.L.; Tay, F.R. In vitro osteogenic potential of an experimental calcium silicate-based root canal sealer. J. Endod. 2010, 36, 1163–1169. [Google Scholar] [CrossRef]
- Camps, J.; Jeanneau, C.; El Ayachi, I.; Laurent, P.; About, I. Bioactivity of a calcium silicate–based endodontic cement (BioRoot RCS): Interactions with human periodontal ligament cells in vitro. J. Endod. 2015, 41, 1469–1473. [Google Scholar] [CrossRef]
- Chang, S.W.; Lee, S.Y.; Kang, S.K.; Kum, K.Y.; Kim, E.C. In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, sankin apatite root sealer, MTA Fillapex, and iroot SP root canal sealer. J. Endod. 2014, 40, 1642–1648. [Google Scholar] [CrossRef]
- Costa, F.; Sousa Gomes, P.; Fernandes, M.H. Osteogenic and Angiogenic Response to Calcium Silicate-based Endodontic Sealers. J. Endod. 2016, 42, 113–119. [Google Scholar] [CrossRef]
- Dimitrova-Nakov, S.; Uzunoglu, E.; Ardila-Osorio, H.; Baudry, A.; Richard, G.; Kellermann, O.; Goldberg, M. In vitro bioactivity of Bioroot™ RCS, via A4 mouse pulpal stem cells. Dent. Mater. 2015, 31, 1290–1297. [Google Scholar] [CrossRef]
- Giacomino, C.M.; Wealleans, J.A.; Kuhn, N.; Diogenes, A. Comparative Biocompatibility and Osteogenic Potential of Two Bioceramic Sealers. J. Endod. 2019, 45, 51–56. [Google Scholar] [CrossRef]
- Güven, E.P.; Taşli, P.N.; Yalvac, M.E.; Sofiev, N.; Kayahan, M.B.; Sahin, F. In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int. Endod. J. 2013, 46, 1173–1182. [Google Scholar] [CrossRef]
- Hakki, S.S.; Bozkurt, B.S.; Ozcopur, B.; Gandolfi, M.G.; Prati, C.; Belli, S. The response of cementoblasts to calcium phosphate resin-based and calcium silicate-based commercial sealers. Int. Endod. J. 2013, 46, 242–252. [Google Scholar] [CrossRef]
- Jing, Y.; Gong, T.; Duan, C.; Wang, H.; Zhang, C.; Neelakantan, P. In vitro cytocompatibility and osteogenic potential of calcium silicate-based dental cements in a root canal-filling model. J. Int. Med. Res. 2019, 48, 300060519894801. [Google Scholar]
- Lee, B.N.; Hong, J.U.; Kim, S.M.; Jang, J.H.; Chang, H.S.; Hwang, Y.C.; Hwang, I.N.; Oh, W.M. Anti-inflammatory and Osteogenic Effects of Calcium Silicate–based Root Canal Sealers. J. Endod. 2019, 45, 73–78. [Google Scholar] [CrossRef]
- López-García, S.; Pecci-Lloret, M.R.; Guerrero-Gironés, J.; Pecci-Lloret, M.P.; Lozano, A.; Llena, C.; Rodríguez-Lozano, F.J.; Forner, L. Comparative cytocompatibility and mineralization potential of Bio-C sealer and totalfill BC sealer. Materials 2019, 12, 3087. [Google Scholar] [CrossRef] [Green Version]
- López-García, S.; Myong-Hyun, B.; Lozano, A.; García-Bernal, D.; Forner, L.; Llena, C.; Rodríguez-Lozano, F.J. Cytocompatibility, bioactivity potential, and ion release of three premixed calcium silicate-based sealers. Clin. Oral Investig. 2020, 24, 1749–1759. [Google Scholar] [CrossRef]
- Mestieri, L.B.; Gomes-Cornélio, A.L.; Rodrigues, E.M.; Salles, L.P.; Bosso-Martelo, R.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M. Biocompatibility and bioactivity of calcium silicatebased endodontic sealers in human dental pulp cells. J. Appl. Oral Sci. 2015, 23, 467–471. [Google Scholar] [CrossRef]
- Oh, H.; Kim, E.; Lee, S.; Park, S.; Chen, D.; Shin, S.J.; Kim, E.; Kim, S. Comparison of biocompatibility of calcium silicate-based sealers and epoxy resin-based sealer on human periodontal ligament stem cells. Materials 2020, 13, 5242. [Google Scholar] [CrossRef]
- Rodríguez-Lozano, F.J.; Collado-González, M.; Tomás-Catalá, C.J.; García-Bernal, D.; López, S.; Oñate-Sánchez, R.E.; Moraleda, J.M.; Murcia, L. GuttaFlow Bioseal promotes spontaneous differentiation of human periodontal ligament stem cells into cementoblast-like cells. Dent. Mater. 2019, 35, 114–124. [Google Scholar] [CrossRef]
- Rodriguez-Lozano, F.J.; Lopez-Garcia, S.; Garcia-Bernal, D.; Tomas-Catal, C.J.; Santos, J.M.; Llena, C.; Lozano, A.; Murcia, L.; Forner, L. Chemical composition and bioactivity potential of the new Endosequence BC Sealer formulation HiFlow. Int. Endod. J. 2020, 53, 1216–1228. [Google Scholar] [CrossRef]
- Salles, L.P.; Gomes-Cornélio, A.L.; Guimarães, F.C.; Herrera, B.S.; Bao, S.N.; Rossa-Junior, C.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M. Mineral trioxide aggregate-based endodontic sealer stimulates hydroxyapatite nucleation in human osteoblast-like cell culture. J. Endod. 2012, 38, 971–976. [Google Scholar] [CrossRef]
- Seo, D.G.; Lee, D.; Kim, Y.M.; Song, D.; Kim, S.Y. Biocompatibility and mineralization activity of three calcium silicate-based root canal sealers compared to conventional resin-based sealer in human dental pulp stem cells. Materials 2019, 12, 2482. [Google Scholar] [CrossRef] [Green Version]
- Tanomaru-Filho, M.; Andrade, A.S.; Rodrigues, E.M.; Viola, K.S.; Faria, G.; Camilleri, J.; Guerreiro-Tanomaru, J.M. Biocompatibility and mineralized nodule formation of Neo MTA Plus and an experimental tricalcium silicate cement containing tantalum oxide. Int. Endod. J. 2017, 50, e31–e39. [Google Scholar] [CrossRef] [Green Version]
- Washington, J.T.; Schneiderman, E.; Spears, R.; Fernandez, C.R.; He, J.; Opperman, L.A. Biocompatibility and osteogenic potential of new generation endodontic materials established by using primary osteoblasts. J. Endod. 2011, 37, 1166–1170. [Google Scholar] [CrossRef]
- Wu, X.; Yan, M.; Lu, J.; Ge, X.; Li, Y.; Bian, M.; Fu, L.; Yu, J. IRoot SP Promotes Osteo/Odontogenesis of Bone Marrow Mesenchymal Stem Cells via Activation of NF- κ B and MAPK Signaling Pathways. Stem Cells Int. 2020, 2020, 6673467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, Z.; Peng, B. Effects of iRoot SP on mineralization-related genes expression in MG63 Cells. J. Endod. 2010, 36, 1978–1982. [Google Scholar] [CrossRef] [PubMed]
- Zordan-Bronzel, C.L.; Tanomaru-Filho, M.; Rodrigues, E.M.; Chávez-Andrade, G.M.; Faria, G.; Guerreiro-Tanomaru, J.M. Cytocompatibility, bioactive potential and antimicrobial activity of an experimental calcium silicate-based endodontic sealer. Int. Endod. J. 2019, 52, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Mann, A.; Zeng, Y.; Kirkpatrick, T.; van der Hoeven, R.; Silva, R.; Letra, A.; de Souza, L.C. Evaluation of the physicochemical and biological properties of EndoSequence BC Sealer HiFlow. J. Endod. 2022, 48, 123–131. [Google Scholar] [CrossRef]
- Castro-Jara, S.; Antilef, B.; Osbén, B.; Alcántara, R.; Fraga, M.; Nova-Lamperti, E.; Sánchez-Sanhueza, G. Bioactivity analysis of bioceramic sealers and repair cements on the phenotype and cytokine secretion profile of CD14+ monocytes: An ex-vivo study. Int. Endod. J. 2022. [Google Scholar] [CrossRef]
- Yong, D.; Choi, J.J.E.; Cathro, P.; Cooper, P.R.; Dias, G.; Huang, J.; Ratnayake, J. Development and Analysis of a Hydroxyapatite Supplemented Calcium Silicate Cement for Endodontic Treatment. Materials 2022, 15, 1176. [Google Scholar] [CrossRef]
- Petrović, V.; Opačić-Galić, V.; Jokanović, V.; Sopta, J.; Prokić Bogomir, B.; Živković, S. Histological Evaluation of Periradicular Tissue Inflammatory Reactions and Calcified Tissue Formations after Implantation of Experimental Calcium Silicate and Hydroxyapatite Based Nanostructural Cements into Root Canals of Rabbits Teeth. Acta Vet. Brno. 2021, 71, 85–97. [Google Scholar]
- Almeida, L.H.; Gomes, A.P.N.; Gastmann, A.H.; Pola, N.M.; Moraes, R.R.; Morgental, R.D.; Cava, S.S.; Felix, A.O.C.; Pappen, F.G. Bone tissue response to an MTA-based endodontic sealer, and the effect of the addition of calcium aluminate and silver particles. Int. Endod. J. 2019, 52, 1446–1456. [Google Scholar] [CrossRef]
- Delfino, M.M.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M.; Sasso-Cerri, E.; Cerri, P.S. Immunoinflammatory response and bioactive potential of GuttaFlow bioseal and MTA Fillapex in the rat subcutaneous tissue. Sci. Rep. 2020, 10, 7173. [Google Scholar] [CrossRef]
- Gomes-Filho, J.E.; Watanabe, S.; Bernabé, P.F.E.; de Moraes Costa, M.T. A Mineral Trioxide Aggregate Sealer Stimulated Mineralization. J. Endod. 2009, 35, 256–260. [Google Scholar] [CrossRef]
- Gomes, J.E.; Queiroz, I.O.D.; Watanabe, S.; Cintra, L.T.A.; Ervolino, E. Influence of diabetes mellitus on the mineralization ability of two endodontic materials. Braz. Oral Res. 2016, 30, e25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshino, R.A.; Delfino, M.M.; da Silva, G.F.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M.; Sasso-Cerri, E.; Cerri, P.S. Biocompatibility and bioactive potential of the NeoMTA Plus endodontic bioceramic-based sealer. Restor. Dent. Endod. 2021, 46, e4. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.M.; Coelho, C.M.; Sequeira, D.B.; Marques, J.A.; Pereira, J.F.; Sousa, V.; Palma, P.J.; Santos, A.C. Subcutaneous implantation assessment of new calcium-silicate based sealer for warm obturation. Biomedicines 2021, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Alves Silva, E.C.; Tanomaru-Filho, M.; da Silva, G.F.; Delfino, M.M.; Cerri, P.S.; Guerreiro-Tanomaru, J.M. Biocompatibility and Bioactive Potential of New Calcium Silicate–based Endodontic Sealers: Bio-C Sealer and Sealer Plus BC. J. Endod. 2020, 46, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.C.A.; Tanomaru-Filho, M.; Silva, G.F.; Lopes, C.S.; Cerri, P.S.; Guerreiro Tanomaru, J.M. Evaluation of the biological properties of two experimental calcium silicate sealers: An in vivo study in rats. Int. Endod. J. 2021, 54, 100–111. [Google Scholar] [CrossRef]
- Viana Viola, N.; Maria Guerreiro-Tanomaru, J.; Ferreira Da Silva, G.; Sasso-Cerri, E.; Tanomaru-Filho, M.; Cerri, P.S. Biocompatibility of an experimental MTA sealer implanted in the rat subcutaneous: Quantitative and immunohistochemical evaluation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1773–1781. [Google Scholar] [CrossRef]
- Assmann, E.; Böttcher, D.E.; Hoppe, C.B.; Grecca, F.S.; Kopper, P.M.P. Evaluation of bone tissue response to a sealer containing mineral trioxide aggregate. J. Endod. 2015, 41, 62–66. [Google Scholar] [CrossRef]
- Gomes-Filho, J.E.; Watanabe, S.; Lodi, C.S.; Cintra, L.T.A.; Nery, M.J.; Filho, J.A.O.; Bernabé, P.F.E. Rat tissue reaction to MTA FILLAPEX®. Dent. Traumatol. 2012, 28, 452–456. [Google Scholar] [CrossRef]
- Okamura, T.; Chen, L.; Tsumano, S.; Ikeda, C.; Komasa, S.; Tominaga, K.; Hashimoto, Y. Biocompatibility of a high-plasticity, calcium silicate-based, ready-to-use material. Materials 2020, 13, 4770. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, B. Tissue reactions after subcutaneous and intraosseous implantation of iRoot SP, MTA and AH Plus. Dent. Mater. J. 2015, 34, 774–780. [Google Scholar] [CrossRef] [Green Version]
- Zmener, O.; Pameijer, C.H.; Della Porta, R. Comportamiento biológico de dos selladores endodónticos biocerámicos en el tejido óseo de la rata. Un ensayo in vivo. Rev. De La Asoc. Odontológica Argent. 2020, 108, 113–118. [Google Scholar]
- Belal, R.S.I.; Edanami, N.; Yoshiba, K.; Yoshiba, N.; Ohkura, N.; Takenaka, S.; Noiri, Y. Comparison of calcium and hydroxyl ion release ability and in vivo apatite-forming ability of three bioceramic-containing root canal sealers. Clin. Oral Investig. 2022, 26, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Nejatian, T.; Khurshid, Z.; Zafar, M.S.; Najeeb, S.; Zohaib, S.; Mazafari, M.; Hopkinson, L.; Sefat, F. Dental biocomposites. In Biomaterials for Oral and Dental Tissue Engineering; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Miguez-Pacheco, V.; Hench, L.L.; Boccaccini, A.R. Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues. Acta Biomater. 2015, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- BS ISO 23317:2014; Implants for Surgery—In vitro Evaluation for Apatite-Forming Ability of Implant Materials. Internation Organization for Standardization: Geneva, Switzerland, 2014; pp. 1–20.
- Sarian, M.N.; Iqbal, N.; Sotoudehbagha, P.; Razavi, M.; Ahmed, Q.U.; Sukotjo, C.; Hermawan, H. Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioact. Mater. 2022, 12, 42–63. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, W.L.O.; Cocco, A.R.; Silva, T.M.d.; Mesquita, L.C.; Galarça, A.D.; Silva, A.F.d.; Piva, E. Current trends and future perspectives of dental pulp capping materials: A systematic review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 1358–1368. [Google Scholar] [CrossRef]
- Nie, E.; Yu, J.; Jiang, R.; Liu, X.; Li, X.; Islam, R.; Alam, M.K. Effectiveness of direct pulp capping bioactive materials in dentin regeneration: A review. Materials 2021, 14, 6811. [Google Scholar] [CrossRef]
- Par, M.; Gubler, A.; Attin, T.; Tarle, Z.; Tarle, A.; Tauböck, T.T. Experimental bioactive glass-containing composites and commercial restorative materials: Anti-demineralizing protection of dentin. Biomedicines 2021, 9, 1616. [Google Scholar] [CrossRef]
- Darvell, B.W.; Smith, A.J. Inert to bioactive—A multidimensional spectrum. Dent. Mater. 2022, 38, 2–6. [Google Scholar] [CrossRef]
- Darvell, B. Bioactivity—Symphony or Cacophony? A Personal View of a Tangled Field. Prosthesis 2021, 3, 75–84. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Mocquot, C.; Attik, N.; Pradelle-Plasse, N.; Grosgogeat, B.; Colon, P. Bioactivity assessment of bioactive glasses for dental applications: A critical review. Dent. Mater. 2020, 36, 1116–1143. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.L.; Rodríguez-Lozano, F.J.; Llena, C.; Sauro, S.; Forner, L. Bioactivity of bioceramic materials used in the dentin-pulp complex therapy: A systematic review. Materials 2019, 12, 1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, M.; Jung, C.; Shin, D.H.; Cho, Y.B.; Song, M. Calcium silicate-based root canal sealers: A literature review. Restor. Dent. Endod. 2020, 45, e35. [Google Scholar] [CrossRef]
- Niu, L.N.; Jiao, K.; Zhang, W.; Camilleri, J.; Bergeron, B.E.; Feng, H.L.; Mao, J.; Chen, J.H.; Pashley, D.H.; Tay, F.R. A review of the bioactivity of hydraulic calcium silicate cements. J. Dent. 2014, 42, 517–533. [Google Scholar] [CrossRef]
- Queiroz, M.B.; Torres, F.F.E.; Rodrigues, E.M.; Viola, K.S.; Bosso-Martelo, R.; Chavez-Andrade, G.M.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M. Physicochemical, biological, and antibacterial evaluation of tricalcium silicate-based reparative cements with different radiopacifiers. Dent. Mater. 2021, 37, 311–320. [Google Scholar] [CrossRef]
- Bonewald, L.F.; Harris, S.E.; Rosser, J.; Dallas, M.R.; Dallas, S.L.; Camacho, N.P.; Boyan, B.; Boskey, A. Von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif. Tissue Int. 2003, 72, 537–547. [Google Scholar] [CrossRef]
- Wataha, J.C. Predicting clinical biological responses to dental materials. Dent. Mater. 2012, 28, 23–40. [Google Scholar] [CrossRef] [PubMed]
Author and Year | Journal | Population | Tested Material | Objective | Bioactivity Analysis | Sample per Group | Duration | Main Results |
---|---|---|---|---|---|---|---|---|
[21] Benezra et al., 2018 | Journal of Endodontics | Filled root canal | AH Plus (Dentsply DeTrey GmbH, Konstanz, Germany), MTA Fillapex (Angelus, Londrina, Brazil), BioRoot RCS (Septodont, Saint-Maur-des-Fossés, France), and Endoseal (Maruchi, Wonju-si, Gangwon-do, South Korea) | Evaluate the material-dentin interface of 3 bioceramic root canal sealers. | Immersion in Hank’s balanced saline solution and observation of the interface with confocal laser microscopy. Immersion in HBS a + FE/SEM b and EDS c (morphology and composition) | 8 | 28 days | Root canal sealer penetration and interface characteristics were different for the materials tested. Confocal microscopy analysis showed a significant interfacial zone on the BioRoot RCS sealer. MTA Fillapex and BioRoot RCS exhibited the best cytocompatibility. |
[14] Carvalho et al., 2017 | Iranian Endodontic Journal | Dentin discs | AH-Plus (Dentsply) e Endo Sequence BC sealer (Endo Sequence, Brassler, Savannah, GA, USA) | Bioactivity through XRD e and demonstrate by SEM f/EDS c with material immersed in SBF. | Immersion in SBF d + analysis by XRD e and demonstration by SEM f and EDS c (morphology and composition) | 12 | 30 days | SEMf/EDSc analysis showed surface precipitates containing calcium and phosphorus. XRD analysis showed precipitates of Ca, Zr, Mg, Si, P, and Cl, suggesting bioactivity of BC sealer. |
[22] Han et al., 2013 | International Endodontic Journal | Dentin discs | White ProRoot MTA, (Dentsply), Bio dentine (Septodont, Saint, Maur des Fossés, France), Endo Sequence BC Sealer (Brasseler, Savannah) | Compare ProRoot MTA, Endo Sequence BC Sealer, and Bio dentine for their ability to produce apatite and cause Ca and Si incorporation into root dentin. | Immersion in PBS g + SEM-EPMA h (morphology and composition) | 5 | 1, 7, 30, and 90 days | Formation of superficial precipitates of acicular morphology for Endo Sequence BC sealer with Ca/P 1.6 ratio. |
[23] Jo et al., 2020 | Nanomaterials | Sealer discs | AH Plus Jet (Dentsply), Well-Root ST (Vericom, Anyang, South Korea; WST), Endo Seal MTA (Maruchi, Won-ju, South Korea; EDS) and Nishika-BG (Nippon Shika Yakuhin, Shimonoseki, Japan; NBG) | Evaluate the acellular bioactivity of root canal sealers. | Immersion in HBSS or deionized water + FE-SEM b and analysis by EDX c. (morphology and composition) | 3 | 28 days | High amounts of calcium and phosphorus in the Well Root-ST groups indicated phosphate and calcium mineralization |
[24] Oh et al., 2018 | Materials | Filled root canal | New root canal sealer containing calcium zirconate and calcium silicate | Evaluate the sealing of materials through the dentin/sealer material interface. | Bacterial incubation + HBS a + FE-SEM b (morphology) | 12 | 21 days | The canals filled with zirconate and calcium silicate cement had mineralization inside the dentinal tubules over 21 days. No significant differences were found between groups regarding endotoxin leakage. |
[25] Sanz et al., 2021 | Clinical Oral Investigations | Sealer discs | Bio-C Sealer ION+ (Angelus, Londrina, PR, Brazil), Endo Sequence BC Sealer HiFlow (Brasseler, Savannah), AH Plus (Dentsply) | Assess the mineralization potential of the root canal sealers. | HBSS a + SEM f and EDS c (morphology and composition) | 3 | 48 h | Bio-C Sealer ION+ and BCHiF exhibited an irregular prismatic crystal structure on the surface. |
[26] Siboni et al., 2017 | International Endodontic Journal | Sealer discs | MTA Fillapex (Angelus), BioRoot RCS (Septodont, Saint-Maur-des Fosses, France), AH Plus (Dentsply), Pulp Canal Sealer (Kerr, Italy) | Evaluate the physicochemical properties of root canal sealers. | Immersion in HBSS a + SEM f/EDX c and micro-Raman spectroscopy (morphology and composition) | 10 | 28 days | BioRoot RCS and MTA Fillapex showed a layer of calcium phosphate |
[27] Tanomaru-Filho et al., 2019 | Brazilian Dental Journal | Sealer discs | MTA Fillapex® (Angelus), Seal Apex (SybronEndo-Sybron Dental Specialties, Glendona, CA, USA), Sealer Plus (MKLife, Porto Alegre, RS, Brazil), AH Plus (Dentsply) | Evaluate the physicochemical properties and bioactive potential of Sealer Plus compared with MTA Fillapex, Seal apex, and AH Plus. | Immersion in PBS g + SEM f (morphology) | 30 days | MTA Fillapex was the only material to demonstrate bioactive potential, with the formation of structures that suggest the presence of calcium phosphate | |
[28] Viapiana et al., 2014 | Dental Materials | Sealer discs | S-Zr-micro (Araraquara Dental School, São Paulo State University, Brazil), ES-Zr-nano (Araraquara Dental School), ES-Nb-micro (Araraquara Dental School), ES-Nb-nano (Araraquara Dental School), AH Plus (Dentsply) | Characterize and evaluate the bioactivity potential of experimental materials. | Immersion in HBSS a + SEM f after setting and 28 days after EDS c/XRD e and FT-IR i (morphology and composition) | 1, 7, 14, 21, and 28 days | The experimental root canal sealers showed deposition of crystalline spherical structures of phosphate in calcium | |
[29] Wu et al., 2021 | Materials Chemistry and Physics | Sealer discs | 100TCS/0SPD, 90TCS/10SPD, 80TCS/20SPD, 60TCS/40SPD | Assess the apatite formation capacity. | SBF d + SEM f/ EDS c (morphology and composition) | 3 | 7 days | The root canal sealers tested induced the formation of apatite on the surface |
[30] Cardoso et al., 2022 | Journal of the Mechanical Behavior of Biomedical Materials | Sealer discs | Experimental bioactive sealer with bio glass. Experimental bioactive sealer with niobophosphate. MTA Fillapex (Angelus), AH Plus (Dentsply), Endo sequence BC Sealer (Brasseler), and Endofill (Dentsply) | Characterize and compare the bioactivity potential of the experimental bioactive sealers. | SEM-EDS, FTIR/ATR and XRD | 2 | 28 days | The findings of this study showed that all sealers were somehow bioactive through the observation of hydroxyapatite precursors, with the exception of AH Plus and Endofill |
[31] Huang et al., 2022 | Journal of Dental Science | Filled root canal | Experimental bioactive sealer with bio glass, iRoot SP (Innovative Bioceramix Inc., Vancouver, BC, Canada) | Evaluate the biological properties of a novel bioceramic sealer. | Immersion in SBF for 28 days and analyzed through SEM | 16 | 28 days | Dense hemispherical and plate-like hydroxyapatite crystals were observed on the surface of both the experimental sealer and iRoot SP |
Author and Year | Journal | Cell Type | Material Used | Dilution | Objective | Bioactivity Analysis | Sample (n) | Duration | Main Results |
---|---|---|---|---|---|---|---|---|---|
[21] Benezra et al., 2018 | Journal of Endodontics | HGFs (human gingival fibroblasts cells) | AH Plus (Dentsply), MTA Fillapex (Angelus), BioRoot™ RCS (Septodont), and Endo Seal (Maruchi)) | eluate 1:32 | Evaluation of the activity of the ALP a | ALP a activity | 3 | 1 and 28 days | MTA Fillapex showed the highest value for alkaline phosphatase activity after 1 day of exposure and reduced after 28 days, and AH Plus and BioRoot RCS exhibited decreased bioactivity when compared with Endo Seal and MTA Fillapex. |
[32] Bryan et al., 2010 | Journal of Endodontics | MCT3-E1 Calvaria rat’s preosteoblast | Experimental calcium-silicate-based root canal sealer, AH Plus (Dentsply) Pulp Canal Sealer (SybronEndo, Orange, CA, USA); ProRoot White MTA (Dentsply) | 1:10, 1:100, and 1:1000 aged for 6 weeks | Assess osteogenic potential | ALP a activity QuantiChrom ALP a assay kit (Bio-assay Systems, Hayward, CA, USA) | 6 | 0, 4, 8, 12, 16 min | The activity of ALP on the AH Plus sealer was higher than the experimental silicate-based root canal sealer and higher than the pulp canal sealer. The formation of calcification nodules was observed for the experimental root canal sealer through observation of the presence of clusters of needle-shaped crystals |
Staining with von Kossa (mineralization of the extracellular matrix) | 1 h silver nitrate and exposed 30 min in light | ||||||||
TEM b + stained for MCT-3E1 cells (experimental silicate-based root canal sealer group only) | 28 days | ||||||||
[33] Camps et al., 2015 | Journal of Endodontics | hPDLCs (human periodontal ligament cells) | BioRoot RCS; (Septodont), Pulp Canal Sealer (SybronEndo) | Indirect contact with filled teeth immersed in culture medium | Evaluate the interactions with periodontal ligament bioactivity cells. | ELISA c (VEGF d, FGF-2 e and BMP-2 f) | 3 | 2, 5, and 7 days | BioRoot RCS has fewer toxic effects on PDL cells and induced a higher secretion of angiogenic and osteogenic growth factors than Pulp Canal Sealer. |
[34] Chang et al., 2014 | Journal of Endodontics | hPDLCs (human periodontal ligament cells) | Apatite root canal sealer (Dentsply), iRoot SP (Innovative BioCreamix), MTA Fillapex (Angelus), Sealapex (SybronEndo) | Root canal sealer disc immersed in culture medium for 24 h | Assess the osteogenic potential and the signaling mechanism of biological activities | ALP a Activity Enzyme Assay ARS g + optical microscope Markers RT-PCR s (ON h, OPN i, OCN j, RUNX2 k, Osterix l, β-actin m) | 4 | 7 and 14 days | Alkaline phosphatase activity on MTA Fillapex, Apatite Root Sankin, and iRoot SP increased at 7 and 14 days. Osteogenic potential at 7 days was higher on the tested bioceramic root canal sealers, and the formation of mineralized nodules was observed. |
[35] Costa et al., 2016 | Journal of Endodontics | hMSCs (human mesenchymal stem cells) Ex vivo Parietal bone of neonatal rats | ProRoot MTA (Dentsply), Bio dentine (Septodont), MTA Fillapex (Angelus), MTA Plus (Prevest Denpro Limited, Jammu City, India) | 1:2, 1:20 dilution 21 days hMSCs and 7 days HUVECs | Assess the angiogenic and osteogenic responses. | ELISA c-Activity of ALP a | 6 | 7, 14, and 21 days | Pro Root MTA and MTA Plus showed evident stimulatory effects on the proliferation of hMSCs, alkaline phosphatase activity, and ex vivo regeneration of bone defects when compared with the control groups |
1:20 | Stained ALP a + SEM q | ||||||||
1:5 and 1:20 dilutions | SEM q | ||||||||
[36] Dimitrova-Nakov et al., 2015 | Dental Materials | A4 cells from the dental pulp (E 18 rats) | BioRoot RCS (Septodont), Pulp Canal Sealer (SybronEndo) | Root canal sealer discs | Evaluate the osteoinductive properties of BioRoot RCS compared with the pulp canal sealer | Immunocitycochemics BSP n, COL-1 o, and DMP-1 p. Rabbit polyclonal primary antibodies and secondary antibodies were analyzed by broad-field indirect immunofluorescence | 4 | 3, 7, and 10 days | BioRoot RCS promoted greater expression of BSP and DMP-1 on the cell surface. BioRoot RCS does not compromise mineralization potential in tested cells. BioRoot RCS was Von Kossa positive. However, the pulp canal sealer has not detected precipitated mineralization. |
Von Kossa to detect matrix mineralization | |||||||||
[15] Garrido et al., 2021 | BMC Oral Health | human apical papillary cells | UltraCal® XS (Ultradent, South Jordan, UT, USA) ProRoot® MTA (Dentsply) BioRoot RCS and Bio dentine (Septodont) | Root canal sealer discs | Assess the biological response of human apical papilla cells to the materials tested. | Cell adhesion assessed by SEM q | 5 | 24 h | Human apical papilla cells adhered to calcium silicate and calcium hydroxide-based materials, which is a good indicator of bioactivity. |
[37] Giacomino et al., 2019 | Journal of Endodontics | Murine osteoblast precursor cell line (IDG-SW3) | Endo Sequence BC Sealer (Brasseler), ProRoot ES (Dentsply), Roth (Roth International, Chicago, IL) and AH Plus (Dentsply) | Subtoxic concentrations | Evaluate the bioactivity of 2 bioceramic-based root canal sealers | ARS g+ optical microscope | 6 | 21 days | Endo Sequence BC Sealer and ProRoot ES were significantly more biocompatible and promoted osteoblastic differentiation. No signs of bioactivity were observed on the AH Plus and Roth sealers. |
Quantification of DMP-1p (Only DMP-1p) Cell Expression by Green Fluorescent Protein and Epifluorescence Microscopy RT-PCR s (DMP-1p, ALP a, Phex r) | 12 | 7 days | |||||||
[38] Güven et al., 2013. | International Endodontic Journal | Human tooth germ stem cells (hTGSCs). | ProRoot MTA (Dentsply), iRoot SP (Innovative BioCreamix), Dycal (Dentsply) | Material in culture medium for 14 days | To compare the effect of MTA and iRoot SP on hard tissue deposition and odontogenic differentiation in human tooth germ stem cells. | Activity of ALP a | 6 | 14 days | MTA and iRoot SP induced hTGSC differentiation into odontoblast-like cells, but MTA might provide more inductive potential and hard tissue deposition compared with iRoot SP. |
enzyme assay | |||||||||
Immunocytochemistry (COL1 o and DSP a2) with antibodies and fluorescence microscope | |||||||||
RT-qPCR t (COL1 o e DSPP a2) | |||||||||
Von Kossa + optical microscope | |||||||||
[39] Hakki et al., 2013 | International Endodontic Journal | Immortalized murine cementoblast cell line (OCCM-30) | AH Plus (Dentsply), Hybrid Root Seal (Sun Medical Co. Shiga, Japan), Real Seal (SybronEndo), SimpliSeal (DiscusDental, LLC, Culver City, CA, USA), TECH Bio sealer Endo (Isasan, Italy) | 1:1, 1:2, 1:4 | To investigate the gene expression of proteins associated with mineralized tissue formation in cementoblasts | RT-qPCR t (BSP n, OCN j, Runx2 k, COL1 o, ALP a) | 6 | 24 h | Tech Biossealer Endo decreased mRNA expression for COL1, ALP, BSP, and OCN. SimpliSeal and AH Plus resulted in a more favorable response to cementoblasts because of their regulation potential on the mineralized tissue-associated protein’s mRNA expressions. |
[40] Jing et al., 2019 | Journal of International Medical Research | hPDLSCs (human periodontal ligament cells) | BioRoot RCS (Septodont), AH-Plus (Dentsply), C-Root (experimental material) | Apical third of roots in cell culture medium | Evaluate the osteogenic potential of an experimental silicate-based root canal sealer | ARS g test + phase contrast microscope. | 6 | 14 days | The experimental root canal-filling material C-Root has similar in vitro cytocompatibility to BioRoot RCS and better osteogenic potential than AH Plus. |
ALP a (staining assay) | 14 days | ||||||||
RT-qPCR t (ALP a, OCN j, RUNX2 k, DMP-1p) | 7 and 14 days | ||||||||
[23] Jo et al., 2020 | Nanomaterials | hPDLCs (cells of the human periodontal ligament) HUVECs (human umbilical cord endothelial cells) | AH Plus Jet (Dentsply), Well-Root ST (Vericom, Anyang, South Korea; WST), Endoseal MTA (Maruchi) and Nishika-BG (Nippon Shika Yakuhin, Shimonoseki, Japan) | 1:2 diluted Dilution (50%) Dilution (25%) | cell bioactivity Angiogenic gene expression. Angiogenic Tube Formation Assay | ALP a (Staining Assay) | 3 | 3, 7, and 21 days | All bioactive root canal sealers released calcium ions, while Nishika Canal Sealer BG released 10 times more silicon ions than the other bioactive root canal sealers. Under the cytocompatible extraction range, Nishika BG showed prominent cytocompatibility, osteogenecity, and angiogenecity compared with other sealers in vitro. |
ARS g (Alizarin Red staining) | 21 days | ||||||||
RT-PCR s (DMP-1p, RUNX2 k and OSX l) | 3, 7, and 21 days | ||||||||
RT-PCR s (VEGF d, PDGF-BB u, bFGF v) | 3, 7, and 21 days | ||||||||
Number of nodules and circles kit | 3, 7, and 21 days | ||||||||
[41] Lee et al., 2019 | Journal of Endodontics | MC3T3-E1 cells. | AH Plus (Dentsply), MTA Fillapex (Angelus), and Endo Sequence BC Sealer (Brasseler) | 1/10 culture medium extract and LPS (100ng/mL) | Evaluation of the osteogenic potential of AH Plus, MTA Fillapex and Endo Sequence BC Sealer | RT-PCR s and real-time PCR (+Escherichia coli LPS) for osteogenic markers ALP a and OCN j | 6 | 0, 1, and 2 days. | MTA Fillapex and Endo Sequence BC showed strong cell viability compared with AH Plus. AH Plus, MTA Fillapex, and Endo Sequence BC decreased the levels of LPS-induced inflammatory mediators. The expression of osteogenic marker genes, alkaline phosphatase activity, and mineralized nodule formation decreased with LPS treatment. However, AH Plus and bioceramic-based sealers increased the osteogenic potential reduced by LPS treatment |
ALP a Staining + photographed + spectrophotometer | 6 | 7 days | |||||||
ARS g | 6 | 14 days | |||||||
[42] López-García et al., 2019 | Materials | hPDLSCs (Human Periodontal Ligament Cells) | Bio-C Sealer (Angelus), Total Fill BC Sealer (FKG Dentaire SA, La-Chaux-de-fonds, Switzerland) e AH Plus (Dentsply) | 1:1 dilution | Assess mineralization potential | ARS g (Alizarin Red Assay) | 21 days | Bio-C Sealer and Total Fill BC Sealer demonstrated better cytocompatibility in terms of cell viability, migration, cell morphology, cell attachment, and mineralization capacity than AH Plus. | |
[43] Lopez-Garcia et al., 2020 | Clinical Oral Investigations | hPDLSCs (human periodontal ligament cells) | Endo Sequence BC Sealer (Brasseler USA, Savannah, GA, USA), Endo Seal MTA (Maruchi), CeraSeal (Meta Biomed Co., Cheongju, Korea) | Evaluate the biological properties of 3 calcium-silicate-based root canal sealers | RT-qPCR t for (CEMP-1 w, CAP x, and ALP a) | 3 | 3, 7, 14, and 21 days | ALP-3 and 7 days Endo Sequence BC Sealer and Ceraseal displayed higher cell viability, cell attachment, cell migration rates, and ion release rates than Endoseal. Ceraseal and Endo Sequence BC Sealer exhibited significantly more gene expression and mineralization capacity than Endoseal. | |
ARS g + spectrophotometer | 6 | 21 days | |||||||
[44] Mestieri et al., 2015 | Journal of Applied Oral Science | hDPCs (human dental pulp cells) | MTA Fillapex (Angelus, Londrina, PR, Brazil) and MTA Plus (Avalon Biomed Inc., Sarasota, FL, USA) and FillCanal (Technew, Rio de Janeiro, RJ, Brasil) | 1:2, 1:3, and 1:4 | Assess biocompatibility and bioactivity | Atividade da ALP a kit (Labtest Diagnóstica, Lagoa Santa, MG, Brazil). | 3 | 1 and 3 days | >In the MTA Plus group, the cells’ ALP activity was similar to positive control in one and three days of exposure to the material. MTA Fillapex and Fill Canal sealer groups demonstrated a decrease in ALP activity when compared with positive control at both periods of cell exposure. |
[45] Oh et al., 2020 | Materials | hPLCs (human periodontal ligament stem cells) | CeraSeal (MetaBiomed, Cheongju, Korea), Endo Seal TCS (Maruchi), and AH-Plus (Dentsply) | Eluate-disc of material in culture medium | Assess osteogenic potential, gene expression. | RT-qPCR t, (ALP a, RUNX2 k, and OCN j) | 4 | 1, 3, 7, and 14 days | Endo Seal TCS showed better osteogenic potential than the other tested materials. |
ARS g + ALS + optical microscope | 14 days | ||||||||
SEM q (cell adhesion) | |||||||||
[46] Rodríguez-Lozano et al., 2019 | Dental Materials | Human periodontal ligament stem cells (hPLSCs) | GuttaFlow Bio seal (Coltène, Altstatten, Switzerland), GuttaFlow2 (Coltène), MTA Fillapex (Angelus), AH Plus (Dentsply) | Undiluted, 1:2, and 1:4 | Potential cementogenic in contact with human periodontal ligament stem cells (hPDLSCs) | Through RT-qPCR t and CEMP1 w, CAP x, BSP y, AMBN z, AMELX a1, ALP a) | 5 | 7 and 21 days | When hPDLSCs were cultured with GuttaFlow Bio seal-conditioned media, qPCR assays and IF showed a higher level of AMELX, AMBN, CEMP1, and CAP expression than the control, whereas no such expression was observed in the other sealers. |
Immunofluorescence analysis of protein expression (CP1 w and CAP x) and observation by confocal laser microscopy | |||||||||
[47] Rodríguez-Lozano et al., 2020 | International Endodontic Journal | Periodontal ligament stem cells (hPLSCs) | Endo Sequence BC Sealer HiFlow (Brasseler), Endo Sequence BC Sealer (Brasseler) and AH Plus (Dentsply) | Undiluted, 1:2, and 1:4 | To evaluate the biological effects of Endo Sequence BC HiFlow compared with Endo Sequence BC Sealer and an AH Plus epoxy resin-based root canal sealer. | ARS g | 3 | 7 and 21 days | Endo Sequence BC HiFlow, Endo Sequence BC Sealer, and Osteodiff produced significantly more calcium deposits than the control group alone after 21 days of culture. The greatest mineralization capacity was seen with the Endo sequence BC group compared with Endo sequence BC Sealer HiFlow and Osteodiff. |
RT-qPCR t (ALP a, CEMP-1 w, and CAP x) | 7 days | ||||||||
[48] Salles et al., 2012 | Journal of Endodontics | Human osteoblast cells (Saos-2 line ATCC HTB-85) | MTA Fillapex (Angelus), Epiphany SE (SybronEndo), Zinc oxide–eugenol root canal sealer | Assess bioactivity | Activity of ALP a | 6 | 21 days | The ALP activity increase was significant in the MTA Fillapex group. MTA Fillapex presented the highest percentage of ARS-stained nodules. SEM/EDS analysis showed hydroxyapatite crystals only in the MTA Fillapex and control groups. However, crystallite morphology and chemical composition were different from the control group. | |
ARS g | |||||||||
[25] Sanz et al., 2021 | Clinical Oral Investigations | Human periodontal ligament cells (hPDLCs) | Bio-C Sealer ION+ (Angelus), Endo Sequence BC Sealer HiFlow (Brasseler), AH Plus (Dentsply) | 1:2 e 1:4 | Assess mineralization potential | HBSS (Hank’s balanced salt solution) + SEM q and EDS (energy-dispersive spectroscopy), | 3 | 21 days | The inconsequence BC HiFlow group showed an upregulation of CAP (p < 0.01), CEMP1, ALP, and RUNX2 (p < 0.001) compared with the negative control, while the Bio-C Sealer ION+ group showed an upregulation of CEMP1 (p < 0.01), CAP, and RUNX2 (p < 0.001). Both groups also exhibited a greater mineralization potential than the negative and positive controls |
ARS g | 21 days | ||||||||
RT- qPCR t (CEMP1 w, CAP x, ALP a, RUNX2 k) | 21 days | ||||||||
[49] Seo et al., 2019 | Materials | Human stem cells 3 hDPSCs | AH Plus (Dentsply), Endo Sequence BC Sealer (Brasseler), BioRoot RCS (Septodont) Endoseal MTA (Maruchi) | Evaluate cytotoxic effects and mineralization activity | ARS g | 4 | 15 days | Endo Sequence BC Sealer, BioRoot RCS and Endo Seal MTA exhibited increased mineralization activity compared with AH Plus | |
[50] Tanomaru-Filho et al., 2017 | International Endodontic Journal | Saos-2 human osteoblast-like cells (ATCC HTB-85) | experimental TSC/Ta2O5, Neo MTA Plus (Avalon Biomed Inc.), MTA (Angelus) | 1: 8 dilution | Assess biocompatibility and formation of mineralized nodules | ALP a (kit comercial) | (18 per group) | 1, 3, and 7 days | All materials induced the production of mineralized nodules, being higher with MTA Plus. |
ARS g | (12 per group) | 21 days | |||||||
[51] Washington et al., 2011 | Journal of Endodontics | Rats primary osteoblasts | Generex A e Generex B (calcium silicate based), Capasio (calcium-phospho-alumino silicate based), Ceramicrete-D (magnesium phosphate based) | Assess osteogenic potential | Nodules mineralized by SEM q | 5 | 7 and 14 days | Generex A was the only material that supported the growth of primary osteoblasts. | |
[52] Wu et al., 2020 | Stem Cells International | BMSCs—bone marrow mesenchymal stem cells (rats) | iRoot® SP (Innovative BioCeramix Inc.) | 20mg/mL Culture medium | Effect of iRoot SP on BMSCs and the molecular mechanisms of any identified effects. | ALP a- ELISA c | 3 | 0, 3, and 7 of exposure to the material | iRoot SP-conditioned medium significantly elevated osteo/odontogenic differentiation of BMSCs via the MAPK and NF-κB cascades |
ARS g + microscope | |||||||||
quantification ARS g | |||||||||
Western Blot (DSPP a2, OPN i, Runx2 k, OSX l) | |||||||||
Real-Time PCR and RT-qPCR t (OSX, ALP a, RUNX2 k, OPN j, DSPP a2) | |||||||||
Immunofluorescence staining (ALP a, RUNX2 k) | |||||||||
[53] Zhang et al. 2010 | Journal of Endodontics | Human osteoblasts (MG63 cells) | iRoot® SP (Innovative Bio-Creamix Inc.) | 1:1, 1:2, and 1:4 | Evaluate the effects of gene expression related to mineralization during hard tissue formation | ARS g | 6 | 1, 3, and 6 days | iRoot SP up-regulated COL I, OCN, and BSP messenger RNA expression after 3 and 6 days. In the presence of iRoot SP, MG63 cells can produce more mineralized matrix gene and protein expression. |
Elisa c (COL1 o, BSP n) | |||||||||
RT-PCR s (BSP n, COL1 o, OCN j, OPN i) | |||||||||
[54] Zordan-Bronzel et al. 2019 | International Endodontic Journal | Saos-2 human osteoblast-like cells (ATCC HTB-85) | Experimental (Araraquara Dental School, Brazil), Total Fill BC (FKG), AH Plus (Dentsply) | dilutions 1: 2, 1: 4, 1: 8, 1: 16, and 1: 32 | Assess the potential to induce mineralization | ALP a Kit test and ARS g | 3 | 7 days | Significantly greater mineralized nodule production was observed for Total Fill BC and the experimental sealer when compared with the control group. |
[55] Mann et al., 2022 | Journal of Endodontics | Human periodontal ligament (HPDL) fibroblasts | Endo sequence BC Sealer HiFlow (Brasseler), Endo sequence BC Sealer (Brasseler), and AH Plus (Dentsply) | Undiluted | Evaluate biological properties related to mineralization genes | Alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and osteocalcin (OC) | 3 | 24 h | No significant differences in the mRNA expression of the studied genes were found among the tested sealers. |
Author and Year | Journal | Population | Material | Objective | Bioactivity Analysis | Number per Period | Periods | Main Results |
---|---|---|---|---|---|---|---|---|
[59] Almeida, et al., 2019. | International Endodontic Journal | Wistar rats | MTA Fillapex (Angelus), MTA Fillapex C3A, MTA Fillapex C3A + Ag 1%, MTA Fillapex C3A + Ag 5%, Endo Sequence BC Sealer (Brasseler) | To evaluate the bone tissue reaction in rats to an MTA-based dental root sealer and the effect of adding calcium aluminate and silver particles at various concentrations. | Histological-bone tissue formation. Stained with hematoxylin–eosin | 5 | 7, 30, and 90 days | MTA Fill apex showed the partial formation of mineralized tissue barrier, but Endo Sequence BC Sealer had full formation. |
[68] Assmann et al., 2015. | Journal of Endodontics | Wistar rats | MTA Fillapex® (Angelus) | Evaluate bone tissue reaction to MTA Fillapex compared with an epoxy resin-based material in rat femurs. | Histological bone tissue formation. | 5 | 7, 30, and 90 days | Bone formation was similar to the control group and bone barrier formation was found in 90 days. |
[60] Delfino, et al., 2020. | Scientific reports | Wistar rats | GuttaFlow® bio seal (Coltene), MTA Fillapex® (Angelus) | Evaluation of the immunoinflammatory response and bioactive potential of materials tested in subcutaneous tissue and mineralization VEGF (endothelial growth factor) | Histochemical evaluation by the hematoxylin–eosin method + optical microscope and von Kossa + analysis with polarization microscope Immunohistochemistry | 5 | 7, 15, 30, and 60 days | The capsules of the materials evaluated were von Kossa positive and thinner than those of the Endo fill group. GuttaFlow Bio seal had lower values than MTA Fillapex and lower than Endo fill. |
5 | 7, 15, 30, 60, and 90 days | |||||||
[61] Gomes-Filho et al., 2009. | Journal of Endodontics | Wistar rats | Endo-CPM-Sealer (EGEO S.R.L.; Buenos Aires, Argentina), MTA (Angelus) | Assess tissue response and mineralization. | Histochemical reaction by the Von Kossa method and analysis with a Hematoxylin–eosin polarization microscope. | 6 | 7, 15, 30, 60, and 90 days | Mineralization and birefringent granulations under polarized light were detected in all materials. |
[69] Gomes-Filho et al., 2012 | Dental Traumatology | Wistar rats | MTA Fillapex® (Angelus) | Assess the reaction of the subcutaneous tissue and the ability to stimulate mineralization. | Histochemical reaction by the Von Kossa method and analysis with a Hematoxylin–eosin polarization microscope. | 6 | 7, 15, 30, 60, and 90 days | Mineralization and birefringent granulations under polarized light were observed with all materials. MTA Fillapex® was biocompatible and stimulated mineralization. |
[62] Gomes-Filho et al., 2016 | Brazilian Oral Research | Wistar rats | Sealapex® (SybronEndo) MTA Fillapex (Angelus) | Evaluate the influence of Diabetes Mellitus on tissue response and mineralization using MTA Fillapex® | von Kossa, Calcein fluorescent marker, ARS, and tetracycline hydrochloride | 6 | 7 and 30 days | MTA Fillapex was von Kossa positive in all groups at 7 and 30 days. Diabetes Mellitus did not influence tissue response or mineralization. |
[63] Hoshino et al., 2021 | Restorative Dentistry and Endodontics | Holtzman rats | NeoMTA Plus (Avalon Biomed Inc.) MTA Fillapex® (Angelus) | Evaluate tissue response induced by NeoMTA Plus compared to MTA Fillapex and bioactivity. | Histological observation using hematoxylin–eosin, von Kossa’s histochemical method, contrasted with Syrian red (picrosirius red), and observation with a polarized light microscope. | 5 | 7, 15, 30, and 60 days | The materials showed biocompatibility and bioactive potential. Positive von Kossa structures. |
[70] Okamura et al., 2020 | Materials | Dog teeth | Bio-C Sealer (Angelus) | Investigate the histological response in endodontically treated dog teeth | Hematoxylin–eosin staining protocol observed through polarized microscope and radiographic analysis. | 18 | 28 and 90 days | At 28 and 90 days, the presence of immature periodontal ligament fibers and a thick cementum layer at the apex was observed with the two materials, demonstrating bioactive potential. |
[58] Petrović et al., 2021 | Acta Veterinaria | Rabbits’ teeth | Experimental calcium silicate and Experimental calcium silicate + hydroxyapatite | Evaluate the periradicular inflammatory reaction and calcified tissue formation after root canal sealer implantation. | Hematoxylin–eosin staining protocol observed through a polarized microscope | 6 | 28 days | Hydroxyapatite–calcium Silicate >MTA and calcium silicate with respect to the continuity of neo formed calcified tissue. The experimental root canal sealers showed minimal tissue inflammatory response, similar to MTA. |
[64] Santos et al., 2021. | Biomedicines | Wistar rats | TotalFill BC Sealer (FKG), TotalFill BC Sealer HiFlow (FKG) | Evaluate the biocompatibility and bioactivity potential of two hydraulic calcium-silicate-based root canal sealers in subcutaneous tissue | Histochemical reaction by the Von Kossa method and analysis with hematoxylin–eosin staining protocol observed through a polarized microscope | 8 and 30 days | Mineralization potential was only observed with TotalFill BC Sealer and TotalFill BC Sealer HiFlow groups. When compared with the control, TotalFill BC Sealer and TotalFill BC Sealer HiFlow were considered biocompatible and showed potential for bioactivity when deployed in subcutaneous tissues. | |
[65] Silva et al., 2020. | Journal of Endodontics | Holtzman rats | Bio C-Sealer (Angelus), Sealer Plus BC (MK Life, Porto Alegre, Brazil) | Evaluate the biocompatibility and bioactive potential of 2 bioceramic-based dental root sealers with sealers based on epoxy resin. (Subcutaneous) | Von Kossa histochemical reaction and analysis with polarizing microscope Osteocalcin immunohistochemical detection Hematoxylin–eosin staining protocol observed through polarized microscope | 6 | 7, 15, 30, and 60 days | Sealer Plus BC and Bio C-sealer showed Von Kossa positive structures and osteocalcin immunopositive cells, demonstrating bioactivity potential. |
[66] Silva et al., 2021. | International Endodontic Journal | Holtzman rats | Two experimental dental root sealers (CE-1 and CE-2) | Biocompatibility and bioactive potential of two experimental dental root sealers (CE-1 and CE-2) and osteocalcin detection. (Subcutaneous) | von kossa histochemical reaction and analysis with hematoxylin–eosin polarization microscope and optical microscope immunohistochemical detection of osteocalcin | 6 | 7, 15, 30, and 60 days | Experimental dental root sealers had bioactive potential observed by the detection of osteocalcin. TotalFill BC Sealer, CE-1, and CE-2 showed positive Von Kossa structures. |
[67] Viola Viana et al., 2012. | Journal of Biomedical Materials Research | Holtzman rats | Experimental dental root sealers based on MTA (Angelus), Portland cement (Votorantin, MG, Brazil) | Subcutaneous tissue reaction by morphology, histochemistry, immunohistochemistry, and quantitative analysis of inflammatory cells. | Histochemical reaction by hematoxylin–eosin + Von Kossa optical microscope and analysis with polarization microscope. Immunohistochemistry for osteopontin | 5 | 7, 14, 30, and 60 days | Experimental MTA-based sealers exhibited similar biological response to MTA and Portland root canal sealers and showed osteopontin detection and positive Von Kossa. |
[71] Zhang et al., 2015 | Dental Materials Journal | Wistar rats | AH Plus (Dentsply), ProRoot MTA (Dentsply), iRoot SP (Innovative BioCreamix) | Evaluate the subcutaneous and bone reaction to iRoot SP in vivo. | Histological evaluation Hematoxylin–eosin and optical microscope | 12 | 7, 30, and 60 days | iRoot SP and MTA showed a similar inflammatory reaction and were considered biocompatible with subcutaneous and intraosseous tissues in rats. |
[72] Zmener et al., 2020 | Revista de la Asociación Odontológica Argentina | Wistar rats | Bio-C Sealer (Angelus), MTA Densell (Densell, Buenos Aires, Argentina) | Compare the biocompatibility of Bio-C Sealer and MTA Densell implanted in bone tissue of Wistar rats | Hematoxylin–eosin and optical microscope | 10 | 7, 30 and 90 days | Bio-C Sealer and MTA Densell behaved as biocompatible and osteoinductive. |
[73] Belal et al., 2022 | Clinical Oral Investigations | Wistar rats | Endo sequence BC Sealer (Brasseler), MTA Fillapex (Angelus), Nishika Canal Sealer BC (Nippon Shika Yakuhin, Japan) | Compare the three bioceramic-containing root canal sealers in terms of their in vivo apatite-forming ability | Ultrastructure and elemental composition using an electron probe microanalyzer (EPMA1601; Shimadzu) equipped with observation functions for scanning electron microscopy and wavelength-dispersive X-ray spectroscopy | 4 for each sealer | 28 days | The in-vivo-implanted Endo sequence BC displayed apatite-like spherulites on the surface, whereas the other bioceramic sealers displayed no spherulites. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estivalet, M.S.; de Araújo, L.P.; Immich, F.; da Silva, A.F.; Ferreira, N.d.S.; da Rosa, W.L.d.O.; Piva, E. Bioactivity Potential of Bioceramic-Based Root Canal Sealers: A Scoping Review. Life 2022, 12, 1853. https://doi.org/10.3390/life12111853
Estivalet MS, de Araújo LP, Immich F, da Silva AF, Ferreira NdS, da Rosa WLdO, Piva E. Bioactivity Potential of Bioceramic-Based Root Canal Sealers: A Scoping Review. Life. 2022; 12(11):1853. https://doi.org/10.3390/life12111853
Chicago/Turabian StyleEstivalet, Mauro Schmitz, Lucas Peixoto de Araújo, Felipe Immich, Adriana Fernandes da Silva, Nadia de Souza Ferreira, Wellington Luiz de Oliveira da Rosa, and Evandro Piva. 2022. "Bioactivity Potential of Bioceramic-Based Root Canal Sealers: A Scoping Review" Life 12, no. 11: 1853. https://doi.org/10.3390/life12111853
APA StyleEstivalet, M. S., de Araújo, L. P., Immich, F., da Silva, A. F., Ferreira, N. d. S., da Rosa, W. L. d. O., & Piva, E. (2022). Bioactivity Potential of Bioceramic-Based Root Canal Sealers: A Scoping Review. Life, 12(11), 1853. https://doi.org/10.3390/life12111853