Effects of Different Corticosteroid Doses in Elderly Unvaccinated Patients with Severe to Critical COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. Biochemical and Clinical Measurements
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Prednisone Equivalent Administration Determines the Time to Negative Swab
3.3. The Risk of Death Is Not Related to Prednisone Equivalent Administration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arabi, Y.M.; Murthy, S.; Webb, S. COVID-19: A novel coronavirus and a novel challenge for critical care. Intensive Care Med. 2020, 46, 833–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Garibaldi, B.T.; Fiksel, J.; Muschelli, J.; Robinson, M.L.; Rouhizadeh, M.; Perin, J.; Schumock, G.; Nagy, P.; Gray, J.H.; Malapati, H.; et al. Patient Trajectories Among Persons Hospitalized for COVID-19: A Cohort Study. Ann. Intern. Med. 2021, 174, 33–41. [Google Scholar] [CrossRef]
- Perrotta, F.; Corbi, G.; Mazzeo, G.; Boccia, M.; Aronne, L.; D’Agnano, V.; Komici, K.; Mazzarella, G.; Parrella, R.; Bianco, A. COVID-19 and the elderly: Insights into pathogenesis and clinical decision-making. Aging Clin. Exp. Res. 2020, 32, 1599–1608. [Google Scholar] [CrossRef]
- Ambrosino, P.; Bachetti, T.; D’Anna, S.E.; Galloway, B.; Bianco, A.; D’Agnano, V.; Papa, A.; Motta, A.; Perrotta, F.; Maniscalco, M. Mechanisms and Clinical Implications of Endothelial Dysfunction in Arterial Hypertension. J. Cardiovasc. Dev. Dis. 2022, 9, 136. [Google Scholar] [CrossRef]
- Libertini, G.; Corbi, G.; Cellurale, M.; Ferrara, N. Age-Related Dysfunctions: Evidence and Relationship with Some Risk Factors and Protective Drugs. Biochemistry 2019, 84, 1442–1450. [Google Scholar] [CrossRef]
- Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017, 39, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Solinas, C.; Perra, L.; Aiello, M.; Migliori, E.; Petrosillo, N. A critical evaluation of glucocorticoids in the management of severe COVID-19. Cytokine Growth Factor Rev. 2020, 54, 8–23. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [PubMed]
- Rochwerg, B.; Siemieniuk, R.A.; Agoritsas, T.; Lamontagne, F.; Askie, L.; Lytvyn, L.; Agarwal, A.; Leo, Y.-S.; Macdonald, H.; Zeng, L.; et al. A living WHO guideline on drugs for covid-19. BMJ 2020, 370, m3379. [Google Scholar]
- Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Lavergne, V.; Baden, L.; Cheng, V.C.-C.; Edwards, K.M.; Gandhi, R.; Muller, W.J.; O’Horo, J.C.; et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 27, ciaa478. [Google Scholar] [CrossRef]
- Jung, C.; Wernly, B.; Fjølner, J.; Bruno, R.R.; Dudzinski, D.; Artigas, A.; Pinto, B.B.; Schefold, J.C.; Wolff, G.; Kelm, M.; et al. Steroid use in elderly critically ill COVID-19 patients. Eur. Respir. J. 2021, 58, 2100979. [Google Scholar] [CrossRef]
- Luzzati, R.; De Luca, M.; Sanson, G.; Borelli, M.; Biolo, G.; Giacomazzi, D.; Zerbato, V.; Di Bella, S. Potential of outpatient steroid therapy in elderly patients with early COVID-19. Aging Clin. Exp. Res. 2022, 34, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Piniella-Ruiz, E.; Bellver-Álvarez, M.T.; Mestre-Gómez, B.; Escolano-Fernández, B.; Vinat-Prado, S.; Cabezas-Olea, R. Impact of Systemic Corticosteroids on Mortality in Older Adults with Critical COVID-19 Pneumonia. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2021, 76, e127–e132. [Google Scholar] [CrossRef]
- Duarte-Millán, M.A.; Mesa-Plaza, N.; Guerrero-Santillán, M.; Morales-Ortega, A.; Bernal-Bello, D.; Farfán-Sedano, A.I.; de Viedma-García, V.G.; Velázquez-Ríos, L.; Frutos-Pérez, B.; De Ancos-Aracil, C.L.; et al. Prognostic factors and combined use of tocilizumab and corticosteroids in a Spanish cohort of elderly COVID-19 patients. J. Med. Virol. 2022, 94, 1540–1549. [Google Scholar] [CrossRef]
- Rosenberg, E.S.; Dufort, E.M.; Udo, T.; Wilberschied, L.A.; Kumar, J.; Tesoriero, J.; Weinberg, P.; Kirkwood, J.; Muse, A.; DeHovitz, J.; et al. Association of Treatment with Hydroxychloroquine or Azithromycin with In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA 2020, 323, 2493–2502. [Google Scholar] [CrossRef]
- Mager, D.E.; Lin, S.X.; Blum, R.A.; Lates, C.D.; Jusko, W.J. Dose equivalency evaluation of major corticosteroids: Pharmacokinetics and cell trafficking and cortisol dynamics. J. Clin. Pharmacol. 2003, 43, 1216–1227. [Google Scholar] [CrossRef]
- Mollica, M.; Nicolai, A.; Maffucci, R.; Gioia, M.R.; Paoli, G.; Grella, E.; Calabrese, C.; Forzano, I.; Perrotta, F. Obstructive sleep apnea and cardiovascular risks in the elderly population. J. Gerontol. Geriatr. 2018, 66, 149–155. [Google Scholar]
- Aw, D.; Silva, A.B.; Palmer, D.B. Immunosenescence: Emerging challenges for an ageing population. Immunology 2007, 120, 435–446. [Google Scholar] [CrossRef] [PubMed]
- AlGhatrif, M.; Cingolani, O.; Lakatta, E.G. The Dilemma of Coronavirus Disease 2019, Aging, and Cardiovascular Disease: Insights From Cardiovascular Aging Science. JAMA Cardiol. 2020, 5, 747–748. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.C.; Chan, K.N.; Hu, W.H.; Lam, W.K.; Zheng, L.; Tipoe, G.L.; Sun, J.; Leung, R.; Tsang, K.W. The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia. Am. J. Respir. Crit. Care Med. 2001, 163, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Maláska, J.; Stašek, J.; Duška, F.; Balík, M.; Máca, J.; Hruda, J.; Vymazal, T.; Klementová, O.; Zatloukal, J.; Gabrhelík, T.; et al. Effect of dexamethasone in patients with ARDS and COVID-19-prospective, multi-centre, open-label, parallel-group, randomised controlled trial (REMED trial): A structured summary of a study protocol for a randomised controlled trial. Trials 2021, 22, 172. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Chan, K.C.A.; Hui, D.S.; Ng, E.K.O.; Wu, A.; Chiu, R.W.K.; Wong, V.W.S.; Chan, P.K.S.; Wong, K.T.; Wong, E.; et al. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2004, 31, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Arabi, Y.M.; Mandourah, Y.; Al-Hameed, F.; Sindi, A.A.; Almekhlafi, G.A.; Hussein, M.A.; Jose, J.; Pinto, R.; Al-Omari, A.; Kharaba, A.; et al. Corticosteroid Therapy for Critically Ill Patients with Middle East Respiratory Syndrome. Am. J. Respir. Crit. Care Med. 2018, 197, 757–767. [Google Scholar] [CrossRef]
- Brun-Buisson, C.; Richard, J.-C.M.; Mercat, A.; Thiébaut, A.C.M.; Brochard, L. Early corticosteroids in severe influenza A/H1N1 pneumonia and acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2011, 183, 1200–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, D.S. Systemic Corticosteroid Therapy May Delay Viral Clearance in Patients with Middle East Respiratory Syndrome Coronavirus Infection. Am. J. Respir. Crit. Care Med. 2018, 197, 700–701. [Google Scholar] [CrossRef]
- Yasir, M.; Goyal, A.; Sonthalia, S. Corticosteroid Adverse Effects; StatPearls: Tampa, FL, USA, 2022. [Google Scholar]
- Gensler, L.S. Glucocorticoids: Complications to anticipate and prevent. Neurohospitalist 2013, 3, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Gao, D.; Ma, X.; Guo, Y.; Wang, R.; Jiang, W.; Gong, S. Corticosteroids in diabetes patients infected with COVID-19. Ir. J. Med. Sci. 2021, 190, 29–31. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.S.; Clinger, B.N.; Donahue, E.E.; Celi, F.S.; Golladay, G.J. Dexamethasone and postoperative hyperglycemia in diabetics undergoing elective hip or knee arthroplasty: A case control study in 238 patients. Patient Saf. Surg. 2018, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Lukins, M.B.; Manninen, P.H. Hyperglycemia in patients administered dexamethasone for craniotomy. Anesth. Analg. 2005, 100, 1129–1133. [Google Scholar] [CrossRef] [PubMed]
- Codo, A.C.; Davanzo, G.G.; de Brito Monteiro, L.; de Souza, G.F.; Muraro, S.P.; Virgilio-da-Silva, J.V.; Prodonoff, J.S.; Carregari, V.C.; de Biagi Junior, C.A.O.; Crunfli, F.; et al. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Cell Metab. 2020, 32, 437–446.e5. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, J.E.; Geller, D.S. Glucocorticoid-induced hypertension. Pediatr. Nephrol. 2012, 27, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Ong SL, H.; Zhang, Y.; Sutton, M.; Whitworth, J.A. Hemodynamics of dexamethasone-induced hypertension in the rat. Hypertens. Res. 2009, 32, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Soto-Piña, A.E.; Franklin, C.; Rani, C.S.S.; Fernandez, E.; Cardoso-Peña, E.; Benítez-Arciniega, A.D.; Gottlieb, H.; Hinojosa-Laborde, C.; Strong, R. Dexamethasone Causes Hypertension in Rats Even Under Chemical Blockade of Peripheral Sympathetic Nerves. Front. Neurosci. 2019, 13, 1305. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Mahawar, K.; Xia, Z.; Yang, W.; El-Hasani, S. Obesity and mortality of COVID-19. Meta-analysis. Obes. Res. Clin. Pract. 2020, 14, 295–300. [Google Scholar] [CrossRef]
- Kassir, R. Risk of COVID-19 for patients with obesity. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2020, 21, e13034. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-Y.; Li, L.; Zhang, Y.; Wang, X.-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty 2020, 9, 45. [Google Scholar] [CrossRef]
- Rojas-Osornio, S.A.; Cruz-Hernández, T.R.; Drago-Serrano, M.E.; Campos-Rodríguez, R. Immunity to influenza: Impact of obesity. Obes. Res. Clin. Pract. 2019, 13, 419–429. [Google Scholar] [CrossRef]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Asselta, R.; Paraboschi, E.M.; Mantovani, A.; Duga, S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging 2020, 12, 10087–10098. [Google Scholar] [CrossRef]
- Flanagan, K.L.; Fink, A.L.; Plebanski, M.; Klein, S.L. Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annu. Rev. Cell Dev. Biol. 2017, 33, 577–599. [Google Scholar] [CrossRef] [PubMed]
- Cook, I.F. Sexual dimorphism of humoral immunity with human vaccines. Vaccine 2008, 26, 3551–3555. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Zhang, J.; Wang, T.; Cui, P.; Chen, Z.; Jiang, J.; Zhou, S.; Dai, J.; Wang, B.; Yuan, S.; et al. A multi-hospital study in Wuhan, China: Protective effects of non-menopause and female hormones on SARS-CoV-2 infection. Medrxiv 2020. [Google Scholar]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Guthrie, G.J.K.; Charles, K.A.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef]
- Walsh, S.R.; Cook, E.J.; Goulder, F.; Justin, T.A.; Keeling, N.J. Neutrophil-lymphocyte ratio as a prognostic factor in colorectal cancer. J. Surg. Oncol. 2005, 91, 181–184. [Google Scholar] [CrossRef]
- Hong, X.; Cui, B.; Wang, M.; Yang, Z.; Wang, L.; Xu, Q. Systemic Immune-inflammation Index, Based on Platelet Counts and Neutrophil-Lymphocyte Ratio, Is Useful for Predicting Prognosis in Small Cell Lung Cancer. Tohoku J. Exp. Med. 2015, 236, 297–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forget, P.; Khalifa, C.; Defour, J.P.; Latinne, D.; Van Pel, M.C.; De Kock, M. What is the normal value of the neutrophil-to-lymphocyte ratio? BMC Res. Notes 2017, 10, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imtiaz, F.; Shafique, K.; Mirza, S.S.; Ayoob, Z.; Vart, P.; Rao, S. Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. Int. Arch. Med. 2012, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Urbistondo, D.; Beltran, A.; Beloqui, O.; Huerta, A. El indice neutrofilo/linfocito como marcador de disfuncion sistemica endotelial en sujetos asintomaticos. Nefrologia 2016, 36, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Djaballah-Ider, F.; Touil-Boukoffa, C. Effect of combined colchicine-corticosteroid treatment on neutrophil/lymphocyte ratio: A predictive marker in Behçet disease activity. Inflammopharmacology 2020, 28, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Wakabayashi, M.; Yamaji, T.; Chopra, N.; Mikami, T.; Miyashita, H.; Miyashita, S. Value of leukocytosis and elevated C-reactive protein in predicting severe coronavirus 2019 (COVID-19): A systematic review and meta-analysis. Clin. Chim. Acta. 2020, 509, 235–243. [Google Scholar] [CrossRef]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [Green Version]
- Jose, R.J.; Manuel, A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet. Respir. Med. 2020, 8, e46–e47. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H.; Levi, M.; Connors, J.M.; Thachil, J. Coagulopathy of Coronavirus Disease 2019. Crit. Care Med. 2020, 48, 1358–1364. [Google Scholar] [CrossRef]
Prednisone Equivalent Use | |||
---|---|---|---|
<1 (mg/kg) (n = 14) | ≥1 (mg/kg) (n = 38) | p | |
Age | 68 (68–81.8) | 74.5 (70.3–78.8) | 0.185 |
Gender (Male) | 9 (64.2) | 18 (47.4) | 0.278 |
BMI | 27.7 (25.7–29) | 29.2 (26–35) | 0.235 |
Smoking | 5 (35.7) | 9 (23.7) | 0.485 |
Comorbidities | |||
Systemic Hypertension | 8 (57.1) | 24 (63.2) | - |
CHD | 2 (14.3) | 12 (31.6) | - |
Atrial Fibrillation | 2 (14.3) | 5 (13.2) | - |
Diabetes | 4 (28.6) | 12 (31.6) | - |
COPD | 2 (14.3) | 9 (23.7) | - |
Charlson Comorbidity Index | 3 (2.25–4) | 4 (3–4) | - |
Time to Negative Swab (d) | 22 (16–23) | 27 (19.8–31.8) | 0.027 |
LUS SCORE | 32 (27.3–33) | 30 (24–36 | 0.77 |
CHUNG SCORE | 15 (11.5–15) | 14 (12.3–15.8) | 0.942 |
Corticosteroids | |||
Methylprednisolone | 12 (85.7) | 38 (100) | - |
Dexamethasone | 2 (14.3) | - | - |
Anticoagulants | |||
Prophylactic LMWH | 9 (64.3) | 24 (63.2) | - |
Therapeutic LMWH | 3 (21.4) | 14 (36.8) | - |
NAO | 2 (14.3) | - | - |
Remdesivir | 6 (42.8) | 13 (34.2) | - |
Respiratory Support | |||
Venturi or Non-Rebreathing Mask | 2 (14.3) | 1 (2.6) | - |
HFNC | 2 (14.3) | 8 (21.0) | - |
CPAP | 6 (42.9) | 23 (60.5) | - |
NIV | 4 (28.6) | 6 (15.8) | - |
WBC | 7.05 (4.09-11.1) | 8.79 (6.9–12.6) | 0.111 |
Neutrophils | 6.13 (3.12–10.1) | 7.23 (6.31–11.4) | 0.104 |
Lymphocytes | 0.51 (0.44–0.82) | 0.73 (0.45–1.14) | 0.375 |
RBC | 4.5 (3.77–4.62) | 4.64 (4.33–5.1) | 0.434 |
HGB | 12.3 (11.1–13.8) | 12.8 (9.6–14.3) | 0.735 |
PLT | 247 (199–275) | 211 (159–243) | 0.078 |
D-Dimer | 525 (419–1440) | 456 (278–613) | 0.383 |
CRP | 6.2 (3.22–7.3) | 6.8 (2.25–10.9) | 0.542 |
Creatinine | 0.8 (0.6–0.87) | 0.7 (0.6–0.9) | 1 |
Na+ | 139 (136–144) | 138 (136–140) | 0.285 |
K+ | 4.25 (3.7–4.7) | 4.1 (3.77–4.63) | 0.853 |
AST | 61 (26.3-69.8) | 25 (18.3–43.8) | 0.024 |
ALT | 63 (20.5–89.5) | 27 (17.3–32) | 0.06 |
LDH | 386 (277–568) | 387 (292–509) | 0.754 |
Albumin | 4.1 (3.3–4.1) | 3.7 (3.2–4.2) | 0.693 |
IL-6 | 47.8 (20.6–151) | 71.4 (15.6–126) | 0.864 |
KL-6 | 668 (502–1017) | 931 (482–1750) | 0.57 |
NT-PRO-BNP | 139 (119–932) | 346 (85.3–454) | 0.527 |
P/F | 120 (85–138) | 91 (84–120) | 0.135 |
Lac | 1 (0.95–1.2) | 1.2 (1–1.33) | 0.094 |
Death | 5 (35.7) | 14 (36.8) | 0.94 |
Survivors (n = 33) | Deaths (n = 19) | p | |
---|---|---|---|
Gender (Male) | 14 (42.4) | 6 (31.6) | 0.558 |
Age | 73 (69–78) | 78 (67.5–84.5) | 0.233 |
BMI | 27.7 (25.1–29.4) | 32.5 (28.5–35.2) | 0.001 |
Charlson Comorbidity Index | 3 (3–4) | 4 (4–4) | 0.113 |
Smoking (Yes) | 9 (27.3) | 5 (26.3) | 1.000 |
CHUNG SCORE | 14(12–15) | 15 (12.5–16) | 0.060 |
Prednisone Equivalent (<1 mg/kg) | 9 (27.3) | 5 (26.3) | 1.000 |
WBC | 7.3 (5.9–9.5) | 11.3 (8.7–12.6) | 0.020 |
NLR | 9.1 (5.3–14.5) | 15.5 (10.4–15.6) | 0.017 |
D-Dimer | 426 (210–619) | 512 (456–936) | 0.061 |
P/F | 91 (84–127) | 100 (93–124) | 0.624 |
95% Confidence Interval | |||||
---|---|---|---|---|---|
Predictor | Estimate | Lower | Upper | SE | p |
Prednisone Equivalent Use | −1.947 | −44.272 | 0.532 | 12.652 | 0.124 |
BMI | 0.363 | 0.0892 | 0.636 | 0.1395 | 0.009 |
CHUNG-SCORE | 0.197 | −0.2270 | 0.621 | 0.2164 | 0.362 |
NLR | 0.137 | −0.0391 | 0.312 | 0.0897 | 0.128 |
D-Dimer | 1.14 × 10−5 | −1.98 × 10−4 | 2.21 × 10−4 | 1.07 × 10−4 | 0.915 |
Charlson Comorbidity Index | 1.198 | 0.0370 | 2.359 | 0.5922 | 0.043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scialò, F.; Mariniello, D.F.; Nigro, E.; Komici, K.; Allocca, V.; Bianco, A.; Perrotta, F.; D’Agnano, V. Effects of Different Corticosteroid Doses in Elderly Unvaccinated Patients with Severe to Critical COVID-19. Life 2022, 12, 1924. https://doi.org/10.3390/life12111924
Scialò F, Mariniello DF, Nigro E, Komici K, Allocca V, Bianco A, Perrotta F, D’Agnano V. Effects of Different Corticosteroid Doses in Elderly Unvaccinated Patients with Severe to Critical COVID-19. Life. 2022; 12(11):1924. https://doi.org/10.3390/life12111924
Chicago/Turabian StyleScialò, Filippo, Domenica Francesca Mariniello, Ersilia Nigro, Klara Komici, Valentino Allocca, Andrea Bianco, Fabio Perrotta, and Vito D’Agnano. 2022. "Effects of Different Corticosteroid Doses in Elderly Unvaccinated Patients with Severe to Critical COVID-19" Life 12, no. 11: 1924. https://doi.org/10.3390/life12111924
APA StyleScialò, F., Mariniello, D. F., Nigro, E., Komici, K., Allocca, V., Bianco, A., Perrotta, F., & D’Agnano, V. (2022). Effects of Different Corticosteroid Doses in Elderly Unvaccinated Patients with Severe to Critical COVID-19. Life, 12(11), 1924. https://doi.org/10.3390/life12111924