Analysis of Human Clinical Mutations of Mitochondrial ND1 in a Bacterial Model System for Complex I
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mutagenesis
2.3. Plasmids and Strains
2.4. Growth and Membrane Preparation
2.5. SDS Electrophoresis and Immunoblotting
2.6. Blue-Native Gel Electrophoresis and NADH Dehydrogenase Activity Assay
2.7. Deamino-NADH Oxidase Activity Assay
3. Results
3.1. Mutations of Residues That Contact Subunits NDUFS7 and NDUFS8 (NuoB and NuoI)
3.1.1. Description of the Human Mutations
3.1.2. Effect of R37, L42, R46, and N50 Substitutions on Function of Complex I
3.2. Mutations of Residues That Contact Subunit ND3 (NuoA)
3.2.1. Description of the Human Mutations
3.2.2. Effect of E71 and E228 Substitutions on Function of Complex I
3.3. Mutation of a Residue That Contacts NDUFS2 (NuoCD)
3.3.1. Description of the Human Mutation
3.3.2. Effect of R291 Substitutions on Function of Complex I
3.4. Mutations of Residues in ND1 Previously Proposed to Be Interacting
3.4.1. Description of the Human Mutations
3.4.2. Effect of Substitutions on Function of Complex I
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chomyn, A.; Mariottini, P.; Cleeter, M.W.; Ragan, C.I.; Matsuno-Yagi, A.; Hatefi, Y.; Doolittle, R.F.; Attardi, G. Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 1985, 314, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Chomyn, A.; Cleeter, M.W.; Ragan, C.I.; Riley, M.; Doolittle, R.F.; Attardi, G. URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 1986, 234, 614–618. [Google Scholar] [CrossRef]
- Scheffler, I.E. Mitochondrial disease associated with complex I (NADH-CoQ oxidoreductase) deficiency. J. Inherit. Metab. Dis. 2015, 38, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Mayr, J.A.; Haack, T.B.; Freisinger, P.; Karall, D.; Makowski, C.; Koch, J.; Feichtinger, R.G.; Zimmermann, F.A.; Rolinski, B.; Ahting, U.; et al. Spectrum of combined respiratory chain defects. J. Inherit. Metab. Dis. 2015, 38, 629–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, O.M.; Gorman, G.S.; Lightowlers, R.N.; Turnbull, D.M. Mitochondrial Diseases: Hope for the Future. Cell 2020, 181, 168–188. [Google Scholar] [CrossRef] [PubMed]
- Yu-Wai-Man, P.; Chinnery, P.F. Leber Hereditary Optic Neuropathy. In GeneReviews®; University of Washington: Seattle, WA, USA, 2021. [Google Scholar]
- El-Hattab, A.W.; Adesina, A.M.; Jones, J.; Scaglia, F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol. Genet. Metab. 2015, 116, 4–12. [Google Scholar] [CrossRef]
- Forte, M.; Palmerio, S.; Bianchi, F.; Volpe, M.; Rubattu, S. Mitochondrial complex I deficiency and cardiovascular diseases: Current evidence and future directions. J. Mol. Med. 2019, 97, 579–591. [Google Scholar] [CrossRef]
- Bakare, A.B.; Lesnefsky, E.J.; Iyer, S. Leigh Syndrome: A Tale of Two Genomes. Front. Physiol. 2021, 12, 693734. [Google Scholar] [CrossRef]
- Kampjut, D.; Sazanov, L.A. Structure of respiratory complex I—An emerging blueprint for the mechanism. Curr. Opin. Struct. Biol. 2022, 74, 102350. [Google Scholar] [CrossRef]
- Padavannil, A.; Ayala-Hernandez, M.G.; Castellanos-Silva, E.A.; Letts, J.A. The Mysterious Multitude: Structural Perspective on the Accessory Subunits of Respiratory Complex I. Front. Mol. Biosci. 2021, 8, 798353. [Google Scholar] [CrossRef]
- Dang, Q.L.; Phan, D.H.; Johnson, A.N.; Pasapuleti, M.; Alkhaldi, H.A.; Zhang, F.; Vik, S.B. Analysis of Human Mutations in the Supernumerary Subunits of Complex I. Life 2020, 10, 296. [Google Scholar] [CrossRef] [PubMed]
- Parey, K.; Wirth, C.; Vonck, J.; Zickermann, V. Respiratory complex I—Structure, mechanism and evolution. Curr. Opin. Struct. Biol. 2020, 63, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Agip, A.A.; Blaza, J.N.; Fedor, J.G.; Hirst, J. Mammalian respiratory Complex I through the lens of cryo-EM. Annu. Rev. Biophys. 2019, 48, 165–184. [Google Scholar] [CrossRef]
- Lott, M.T.; Leipzig, J.N.; Derbeneva, O.; Xie, H.M.; Chalkia, D.; Sarmady, M.; Procaccio, V.; Wallace, D.C. mtDNA Variation and Analysis Using Mitomap and Mitomaster. Curr. Protoc. Bioinform. 2013, 44, 1.23.1–1.23.26. [Google Scholar] [CrossRef] [Green Version]
- Henrie, A.; Hemphill, S.E.; Ruiz-Schultz, N.; Cushman, B.; DiStefano, M.T.; Azzariti, D.; Harrison, S.M.; Rehm, H.L.; Eilbeck, K. ClinVar Miner: Demonstrating utility of a Web-based tool for viewing and filtering ClinVar data. Hum. Mutat. 2018, 39, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Klink, G.V.; O’Keefe, H.; Gogna, A.; Bazykin, G.A.; Elson, J.L. A broad comparative genomics approach to understanding the pathogenicity of Complex I mutations. Sci. Rep. 2021, 11, 19578. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.C.; Chen, T.; Schmitt, E.S.; Wang, J.; Tang, S.; Landsverk, M.; Li, F.; Zhang, S.; Wang, Y.; Zhang, V.W.; et al. Clinical and laboratory interpretation of mitochondrial mRNA variants. Hum. Mutat. 2020, 41, 1783–1796. [Google Scholar] [CrossRef]
- Wei, W.; Gomez-Duran, A.; Hudson, G.; Chinnery, P.F. Background sequence characteristics influence the occurrence and severity of disease-causing mtDNA mutations. PLoS Genet. 2017, 13, e1007126. [Google Scholar] [CrossRef]
- Ratnaike, T.E.; Greene, D.; Wei, W.; Sanchis-Juan, A.; Schon, K.R.; van den Ameele, J.; Raymond, L.; Horvath, R.; Turro, E.; Chinnery, P.F. MitoPhen database: A human phenotype ontology-based approach to identify mitochondrial DNA diseases. Nucleic Acids Res. 2021, 49, 9686–9695. [Google Scholar] [CrossRef]
- Jun, A.S.; Trounce, I.A.; Brown, M.D.; Shoffner, J.M.; Wallace, D.C. Use of transmitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14459 that causes Leber hereditary optic neuropathy and dystonia. Mol. Cell Biol. 1996, 16, 771–777. [Google Scholar] [CrossRef]
- Mok, B.Y.; de Moraes, M.H.; Zeng, J.; Bosch, D.E.; Kotrys, A.V.; Raguram, A.; Hsu, F.; Radey, M.C.; Peterson, S.B.; Mootha, V.K.; et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020, 583, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Zickermann, V.; Barquera, B.; Wikstrom, M.; Finel, M. Analysis of the pathogenic human mitochondrial mutation ND1/3460, and mutations of strictly conserved residues in its vicinity, using the bacterium Paracoccus Denitrificans. Biochemistry 1998, 37, 11792–11796. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Liu, T.; Guo, R.; Zhang, L.; Yang, M. The coupling mechanism of mammalian mitochondrial complex I. Nat. Struct. Mol. Biol. 2022, 29, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wu, M.; Guo, R.; Yan, K.; Lei, J.; Gao, N.; Yang, M. The architecture of the mammalian respirasome. Nature 2016, 537, 639–643. [Google Scholar] [CrossRef]
- Letts, J.A.; Fiedorczuk, K.; Degliesposti, G.; Skehel, M.; Sazanov, L.A. Structures of Respiratory Supercomplex I+III2 Reveal Functional and Conformational Crosstalk. Mol. Cell 2019, 75, 1131–1146.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaza, J.N.; Vinothkumar, K.R.; Hirst, J. Structure of the deactive state of mammalian respiratory Complex I. Structure 2018, 26, 312–319.e3. [Google Scholar] [CrossRef] [Green Version]
- Grba, D.N.; Blaza, J.N.; Bridges, H.R.; Agip, A.A.; Yin, Z.; Murai, M.; Miyoshi, H.; Hirst, J. Cryo-electron microscopy reveals how acetogenins inhibit mitochondrial respiratory complex I. J. Biol. Chem. 2022, 298, 101602. [Google Scholar] [CrossRef]
- Bridges, H.R.; Fedor, J.G.; Blaza, J.N.; Di Luca, A.; Jussupow, A.; Jarman, O.D.; Wright, J.J.; Agip, A.A.; Gamiz-Hernandez, A.P.; Roessler, M.M.; et al. Structure of inhibitor-bound mammalian complex I. Nat. Commun. 2020, 11, 5261. [Google Scholar] [CrossRef]
- Agip, A.A.; Blaza, J.N.; Bridges, H.R.; Viscomi, C.; Rawson, S.; Muench, S.P.; Hirst, J. Cryo-EM structures of Complex I from mouse heart mitochondria in two biochemically defined states. Nat. Struct. Mol. Biol. 2018, 25, 548–556. [Google Scholar] [CrossRef]
- Grba, D.N.; Hirst, J. Mitochondrial complex I structure reveals ordered water molecules for catalysis and proton translocation. Nat. Struct. Mol. Biol. 2020, 27, 892–900. [Google Scholar] [CrossRef]
- Parey, K.; Brandt, U.; Xie, H.; Mills, D.J.; Siegmund, K.; Vonck, J.; Kuhlbrandt, W.; Zickermann, V. Cryo-EM structure of respiratory Complex I at work. eLife 2018, 7, e39213. [Google Scholar] [CrossRef]
- Parey, K.; Lasham, J.; Mills, D.J.; Djurabekova, A.; Haapanen, O.; Yoga, E.G.; Xie, H.; Kuhlbrandt, W.; Sharma, V.; Vonck, J.; et al. High-resolution structure and dynamics of mitochondrial complex I-Insights into the proton pumping mechanism. Sci. Adv. 2021, 7, eabj3221. [Google Scholar] [CrossRef] [PubMed]
- Kolata, P.; Efremov, R.G. Structure of Escherichia coli respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation. eLife 2021, 10, e68710. [Google Scholar] [CrossRef] [PubMed]
- Schimpf, J.; Oppermann, S.; Gerasimova, T.; Santos Seica, A.F.; Hellwig, P.; Grishkovskaya, I.; Wohlwend, D.; Haselbach, D.; Friedrich, T. Structure of the peripheral arm of a minimalistic respiratory complex I. Structure 2022, 30, 80–94. [Google Scholar] [CrossRef]
- Gutiérrez-Fernandez, J.; Kaszuba, K.; Minhas, G.S.; Baradaran, R.; Tambalo, M.; Gallagher, D.T.; Sazanov, L.A. Key role of quinone in the mechanism of respiratory complex I. Nat. Commun. 2020, 11, 4135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Vik, S.B. Analysis of the assembly pathway for membrane subunits of Complex I reveals that subunit L (ND5) can assemble last in E. coli. BBA Adv. 2021, 1, 100027. [Google Scholar] [CrossRef]
- Amarneh, B.; De Leon-Rangel, J.; Vik, S.B. Construction of a deletion strain and expression vector for the Escherichia coli NADH:ubiquinone oxidoreductase (Complex I). Biochim. Biophys. Acta 2006, 1757, 1557–1560. [Google Scholar] [CrossRef] [Green Version]
- Pohl, T.; Uhlmann, M.; Kaufenstein, M.; Friedrich, T. Lambda Red-mediated mutagenesis and efficient large scale affinity purification of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochemistry 2007, 46, 10694–10702. [Google Scholar] [CrossRef]
- Schägger, H.; von Jagow, G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 1991, 199, 223–231. [Google Scholar] [CrossRef]
- Torres-Bacete, J.; Nakamaru-Ogiso, E.; Matsuno-Yagi, A.; Yagi, T. Characterization of the NuoM (ND4) subunit in Escherichia coli NDH-1: Conserved charged residues essential for energy-coupled activities. J. Biol. Chem. 2007, 282, 36914–36922. [Google Scholar] [CrossRef]
- Michel, J.; DeLeon-Rangel, J.; Zhu, S.; Van Ree, K.; Vik, S.B. Mutagenesis of the L, M, and N subunits of Complex I from Escherichia coli indicates a common role in function. PLoS ONE 2011, 6, e17420. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, K.; Ohnishi, T.; Kaback, H.R. NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry 1987, 26, 7732–7737. [Google Scholar] [CrossRef] [PubMed]
- Efremov, R.G.; Baradaran, R.; Sazanov, L.A. The architecture of respiratory complex I. Nature 2010, 465, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Horváth, R.; Reilmann, R.; Holinski-Feder, E.; Ringelstein, E.B.; Klopstock, T. The role of complex I genes in MELAS: A novel heteroplasmic mutation 3380G>A in ND1 of mtDNA. Neuromuscul. Disord. 2008, 18, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Chamkha, I.; Mkaouar-Rebai, E.; Aloulou, H.; Chabchoub, I.; Kifagi, C.; Fendri-Kriaa, N.; Kammoun, T.; Hachicha, M.; Fakhfakh, F. A novel m.3395A>G missense mutation in the mitochondrial ND1 gene associated with the new tRNA(Ile) m.4316A>G mutation in a patient with hypertrophic cardiomyopathy and profound hearing loss. Biochem. Biophys. Res. Commun. 2011, 404, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Jia, X.; Zhang, A.M.; Wang, W.Z.; Li, S.; Guo, X.; Kong, Q.P.; Zhang, Q.; Yao, Y.G. The MT-ND1 and MT-ND5 genes are mutational hotspots for Chinese families with clinical features of LHON but lacking the three primary mutations. Biochem. Biophys. Res. Commun. 2010, 399, 179–185. [Google Scholar] [CrossRef]
- Liang, M.; Guan, M.; Zhao, F.; Zhou, X.; Yuan, M.; Tong, Y.; Yang, L.; Wei, Q.P.; Sun, Y.H.; Lu, F.; et al. Leber’s hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation. Biochem. Biophys. Res. Commun. 2009, 383, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Puomila, A.; Hamalainen, P.; Kivioja, S.; Savontaus, M.L.; Koivumaki, S.; Huoponen, K.; Nikoskelainen, E. Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. Eur. J. Hum. Genet. 2007, 15, 1079–1089. [Google Scholar] [CrossRef]
- Gutiérrez Cortés, N.; Pertuiset, C.; Dumon, E.; Borlin, M.; Da Costa, B.; Le Guedard, M.; Stojkovic, T.; Loundon, N.; Rouillon, I.; Nadjar, Y.; et al. Mutation m.3395A > G in MT-ND1 leads to variable pathologic manifestations. Hum. Mol. Genet. 2020, 29, 980–989. [Google Scholar] [CrossRef]
- Prasad, G.N.; Vanniarajan, A.; Emmanuel, C.; Cherian, K.M.; Singh, L.; Thangaraj, K. Novel mitochondrial DNA mutations in a rare variety of hypertrophic cardiomyopathy. Int. J. Cardiol. 2006, 109, 432–433. [Google Scholar] [CrossRef]
- Bandelt, H.J.; Yao, Y.G.; Salas, A. The search of ‘novel’ mtDNA mutations in hypertrophic cardiomyopathy: MITOMAPping as a risk factor. Int. J. Cardiol. 2008, 126, 439–442. [Google Scholar] [CrossRef]
- van der Walt, E.M.; Smuts, I.; Taylor, R.W.; Elson, J.L.; Turnbull, D.M.; Louw, R.; van der Westhuizen, F.H. Characterization of mtDNA variation in a cohort of South African paediatric patients with mitochondrial disease. Eur. J. Hum. Genet. 2012, 20, 650–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccoli, C.; Ripoli, M.; Scrima, R.; Stanziale, P.; Di Ianni, M.; Moretti, L.; Biscottini, B.; Carella, M.; Boffoli, D.; Tabilio, A.; et al. MtDNA mutation associated with mitochondrial dysfunction in megakaryoblastic leukaemic cells. Leukemia 2008, 22, 1938–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, S.; Wang, J.; Zhang, V.W.; Li, F.Y.; Landsverk, M.; Cui, H.; Truong, C.K.; Wang, G.; Chen, L.C.; Graham, B.; et al. Transition to next generation analysis of the whole mitochondrial genome: A summary of molecular defects. Hum. Mutat. 2013, 34, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Howell, N.; Kubacka, I.; Xu, M.; McCullough, D.A. Leber hereditary optic neuropathy: Involvement of the mitochondrial ND1 gene and evidence for an intragenic suppressor mutation. Am. J. Hum. Genet. 1991, 48, 935–942. [Google Scholar] [PubMed]
- Wallace, D.C. A new manifestation of Leber’s disease and a new explanation for the agency responsible for its unusual pattern of inheritance. Brain 1970, 93, 121–132. [Google Scholar] [CrossRef]
- Malfatti, E.; Bugiani, M.; Invernizzi, F.; de Souza, C.F.; Farina, L.; Carrara, F.; Lamantea, E.; Antozzi, C.; Confalonieri, P.; Sanseverino, M.T.; et al. Novel mutations of ND genes in complex I deficiency associated with mitochondrial encephalopathy. Brain 2007, 130, 1894–1904. [Google Scholar] [CrossRef]
- Kirby, D.M.; McFarland, R.; Ohtake, A.; Dunning, C.; Ryan, M.T.; Wilson, C.; Ketteridge, D.; Turnbull, D.M.; Thorburn, D.R.; Taylor, R.W. Mutations of the mitochondrial ND1 gene as a cause of MELAS. J. Med. Genet. 2004, 41, 784–789. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Lin, Y.; Li, Y.; Zhang, X.; Wang, W.; Xu, X.; Ji, K.; Zhao, Y.; Yan, C. Leber’s hereditary optic neuropathy plus dystonia caused by the mitochondrial ND1 gene m.4160 T > C mutation. Neurol. Sci. 2022, 43, 5581–5592. [Google Scholar] [CrossRef]
- Sinha, P.K.; Torres-Bacete, J.; Nakamaru-Ogiso, E.; Castro-Guerrero, N.; Matsuno-Yagi, A.; Yagi, T. Critical roles of subunit NuoH (ND1) in the assembly of peripheral subunits with the membrane domain of Escherichia coli NDH-1. J. Biol. Chem. 2009, 284, 9814–9823. [Google Scholar] [CrossRef]
- Guo, R.; Zong, S.; Wu, M.; Gu, J.; Yang, M. Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2. Cell 2017, 170, 1247–1257.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danhelovska, T.; Kolarova, H.; Zeman, J.; Hansikova, H.; Vaneckova, M.; Lambert, L.; Kucerova-Vidrova, V.; Berankova, K.; Honzik, T.; Tesarova, M. Multisystem mitochondrial diseases due to mutations in mtDNA-encoded subunits of complex I. BMC Pediatr. 2020, 20, 41. [Google Scholar] [CrossRef]
- Kervinen, M.; Hinttala, R.; Helander, H.M.; Kurki, S.; Uusimaa, J.; Finel, M.; Majamaa, K.; Hassinen, I.E. The MELAS mutations 3946 and 3949 perturb the critical structure in a conserved loop of the ND1 subunit of mitochondrial complex I. Hum. Mol. Genet. 2006, 15, 2543–2552. [Google Scholar] [CrossRef] [Green Version]
- Fiedorczuk, K.; Sazanov, L.A. Mammalian mitochondrial Complex I structure and disease-causing mutations. Trends Cell Biol. 2018, 28, 835–867. [Google Scholar] [CrossRef]
- Pereira, C.; Souza, C.F.d.; Vedolin, L.; Vairo, F.; Lorea, C.; Sobreira, C.; Nogueira, C.; Vilarinho, L. Leigh Syndrome Due to mtDNA Pathogenic Variants. J. Inborn Errors Metab. Screen. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Soldath, P.; Wegener, M.; Sander, B.; Rosenberg, T.; Duno, M.; Wibrand, F.; Vissing, J. Leber hereditary optic neuropathy due to a new ND1 mutation. Ophthalmic Genet. 2017, 38, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.K.; Kalyakulina, A.; Giuliani, C.; Shinde, P.; Kachhvah, A.D.; Ivanchenko, M.; Jalan, S. Analysis of human mitochondrial genome co-occurrence networks of Asian population at varying altitudes. Sci. Rep. 2021, 11, 133. [Google Scholar] [CrossRef]
- You, X.; Huang, X.; Bi, L.; Li, R.; Zheng, L.; Xin, C. Clinical and molecular features of two diabetes families carrying mitochondrial ND1 T3394C mutation. Ir. J. Med. Sci. 2021, 191, 749–758. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, J.; Yu, J.; Wang, Y.; Lu, Y.; Liang, M.; Li, Q.; Jin, X.; Wei, Y.; Meng, F.; et al. Contribution of mitochondrial ND1 3394T>C mutation to the phenotypic manifestation of Leber’s hereditary optic neuropathy. Hum. Mol. Genet. 2019, 28, 1515–1529. [Google Scholar] [CrossRef]
- Parker, W.D., Jr.; Oley, C.A.; Parks, J.K. A defect in mitochondrial electron-transport activity (NADH-coenzyme Q oxidoreductase) in Leber’s hereditary optic neuropathy. N. Engl. J. Med. 1989, 320, 1331–1333. [Google Scholar] [CrossRef]
- La Morgia, C.; Achilli, A.; Iommarini, L.; Barboni, P.; Pala, M.; Olivieri, A.; Zanna, C.; Vidoni, S.; Tonon, C.; Lodi, R.; et al. Rare mtDNA variants in Leber hereditary optic neuropathy families with recurrence of myoclonus. Neurology 2008, 70, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Torroni, A.; Petrozzi, M.; D’Urbano, L.; Sellitto, D.; Zeviani, M.; Carrara, F.; Carducci, C.; Leuzzi, V.; Carelli, V.; Barboni, P.; et al. Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am. J. Hum. Genet. 1997, 60, 1107–1121. [Google Scholar] [PubMed]
- Maliniemi, P.; Kervinen, M.; Hassinen, I.E. Modeling of human pathogenic mutations in Escherichia coli complex I reveals a sensitive region in the fourth inside loop of NuoH. Mitochondrion 2009, 9, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Hartzog, P.E.; Cain, B.D. The aleu207-->arg mutation in F1Fo-ATP synthase from Escherichia coli. A model for human mitochondrial disease. J. Biol. Chem. 1993, 268, 12250–12252. [Google Scholar] [CrossRef]
- Hartzog, P.E.; Gardner, J.L.; Cain, B.D. Modeling the Leigh syndrome nt8993 T-->C mutation in Escherichia coli F1Fo ATP synthase. Int. J. Biochem. Cell Biol. 1999, 31, 769–776. [Google Scholar] [CrossRef]
Category 1 | Human Mutation | Analysis of Human Complex I | E. coli Substitution | Expression of nuoH 2 | Assembly of Complex I 3 | dNADH Oxidase Activity 4 |
---|---|---|---|---|---|---|
1 | N38D (A3418G) | Disrupted assembly [54] | NuoH_N50D | - | - | <1% |
1 | R34H (G3407A) | Complex I activity was in the normal range [53] | NuoH_R46H | - | - | 4% |
2 | E59K (G3481A) | Very low Complex I activity [58] | NuoH_E71K | + | +/− | 7 ± 3% |
2 | E214K (G3946A) | Very low Complex I activity [59] | NuoH_E228K | + | +/− | <1% |
3 | R25Q (G3380A) | Complex I activity was in the normal range [45] | NuoH_R37Q | + | + | <1% |
4 | R279Q (G4142A) | No information on Complex I activity [55] | NuoH_R291Q | + | + | 50 ± 7% |
4 | Y30C (A3395G) | Decrease in quantity and activity of Complex I, but no sub-assembly was detected [50] | NuoH_L42S | + | + | 66% |
4 | Y277C (A4136G) | Asymptomatic in homoplasmic individuals [60] | NuoH_L289S | + | + | 53 ± 6% |
4 | L285P (T4160C) | Was not analyzed in the homoplasmic state. | NuoH_V297P | + | + | 76 ± 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhaldi, H.A.; Phan, D.H.; Vik, S.B. Analysis of Human Clinical Mutations of Mitochondrial ND1 in a Bacterial Model System for Complex I. Life 2022, 12, 1934. https://doi.org/10.3390/life12111934
Alkhaldi HA, Phan DH, Vik SB. Analysis of Human Clinical Mutations of Mitochondrial ND1 in a Bacterial Model System for Complex I. Life. 2022; 12(11):1934. https://doi.org/10.3390/life12111934
Chicago/Turabian StyleAlkhaldi, Hind A., Duong H. Phan, and Steven B. Vik. 2022. "Analysis of Human Clinical Mutations of Mitochondrial ND1 in a Bacterial Model System for Complex I" Life 12, no. 11: 1934. https://doi.org/10.3390/life12111934
APA StyleAlkhaldi, H. A., Phan, D. H., & Vik, S. B. (2022). Analysis of Human Clinical Mutations of Mitochondrial ND1 in a Bacterial Model System for Complex I. Life, 12(11), 1934. https://doi.org/10.3390/life12111934