A Rationalization of the Effect That TMAO, Glycine, and Betaine Exert on the Collapse of Elastin-like Polypeptides
Abstract
:1. Introduction
2. Theory Section
= ΔΔGc − T·ΔSconf + ΔEa
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Urry, D.W. Entropic Elastic Processes in Protein Mechanisms. I. Elastic Structure Due to an Inverse Temperature Transition and Elasticity Due to Internal Chain Dynamics. J. Protein Chem. 1988, 7, 1–34. [Google Scholar] [CrossRef]
- Nath, N.; Chilkoti, A. Interfacial Phase Transition of an Environmentally Responsive Elastin Biopolymer Adsorbed on Functionalized Gold Nanoparticles Studied by Colloidal Surface Plasmon Resonance. J. Am. Chem. Soc. 2001, 123, 8197–8202. [Google Scholar] [CrossRef]
- Cho, Y.; Zhang, Y.; Christensen, T.; Sagle, L.B.; Chilkoti, A.; Cremer, P.S. Effects of Hofmeister Anions on the Phase Transition Temperature of Elastin-like Polypeptides. J. Phys. Chem. B 2008, 112, 13765–13771. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.-T.; Manson, A.C.; DeLyser, M.R.; Noid, W.G.; Cremer, P.S. Trimethylamine N -Oxide Stabilizes Proteins via a Distinct Mechanism Compared with Betaine and Glycine. Proc. Natl. Acad. Sci. USA 2017, 114, 2479–2484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auton, M.; Rösgen, J.; Sinev, M.; Holthauzen, L.M.F.; Bolen, D.W. Osmolyte Effects on Protein Stability and Solubility: A Balancing Act between Backbone and Side-Chains. Biophys. Chem. 2011, 159, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Record, M.T.; Guinn, E.; Pegram, L.; Capp, M. Introductory Lecture: Interpreting and Predicting Hofmeister Salt Ion and Solute Effects on Biopolymer and Model Processes Using the Solute Partitioning Model. Faraday Discuss. 2013, 160, 9–44. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Kauzmann, W. Some Factors in the Interpretation of Protein Denaturation. Adv. Protein Chem. 1959, 14, 1–63. [Google Scholar] [CrossRef]
- Otzen, D. Protein–Surfactant Interactions: A Tale of Many States. Biochim. Biophys. Acta Proteins Proteom. 2011, 1814, 562–591. [Google Scholar] [CrossRef]
- Pica, A.; Graziano, G. On the Effect of Sodium Salts on the Coil-to-Globule Transition of Poly(N-Isopropylacrylamide). Phys. Chem. Chem. Phys. 2015, 17, 27750–27757. [Google Scholar] [CrossRef]
- Pica, A.; Graziano, G. An Alternative Explanation of the Cononsolvency of Poly(N-Isopropylacrylamide) in Water-Methanol Solutions. Phys. Chem. Chem. Phys. 2016, 18, 25601–25608. [Google Scholar] [CrossRef] [PubMed]
- Pica, A.; Graziano, G. On urea’s ability to stabilize the globule state of poly(N-Isopropylacrylamide). Phys. Chem. Chem. Phys. 2016, 18, 14426–14433. [Google Scholar] [CrossRef]
- Pica, A.; Graziano, G. Why Does TMAO Stabilize the Globule State of PNIPAM? Polymer 2017, 124, 101–106. [Google Scholar] [CrossRef]
- Pica, A.; Graziano, G. Why Does Urea Have a Different Effect on the Collapse Temperature of PDEAM and PNIPAM? J. Mol. Liq. 2019, 285, 204–212. [Google Scholar] [CrossRef]
- Pohorille, A.; Pratt, L.R. Cavities in Molecular Liquids and the Theory of Hydrophobic Solubilities. J. Am. Chem. Soc. 1990, 112, 5066–5074. [Google Scholar] [CrossRef]
- Reiss, H. Scaled Particle Methods in the Statistical Thermodynamics of Fluids. Adv. Chem. Phys. 2007, 9, 1–84. [Google Scholar] [CrossRef]
- Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
- Lee, B. A Procedure for Calculating Thermodynamic Functions of Cavity Formation from the Pure Solvent Simulation Data. J. Chem. Phys. 1985, 83, 2421–2425. [Google Scholar] [CrossRef]
- Graziano, G. On the Mechanism of Cold Denaturation. Phys. Chem. Chem. Phys. 2014, 16, 21755–21767. [Google Scholar] [CrossRef]
- Lee, B.; Richards, F.M. The Interpretation of Protein Structures: Estimation of Static Accessibility. J. Mol. Biol. 1971, 55, 379-IN4. [Google Scholar] [CrossRef]
- Graziano, G. Contrasting the Hydration Thermodynamics of Methane and Methanol. Phys. Chem. Chem. Phys. 2019, 21, 21418–21430. [Google Scholar] [CrossRef]
- Graziano, G. Shedding Light on the Hydrophobicity Puzzle. Pure Appl. Chem. 2016, 88, 177–188. [Google Scholar] [CrossRef]
- Pica, A.; Graziano, G. Effect of Sodium Thiocyanate and Sodium Perchlorate on Poly(N-Isopropylacrylamide) Collapse. Phys. Chem. Chem. Phys. 2020, 22, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Ashbaugh, H.S.; Pratt, L.R. Contrasting Nonaqueous against Aqueous Solvation on the Basis of Scaled-Particle Theory. J. Phys. Chem. B 2007, 111, 9330–9336. [Google Scholar] [CrossRef] [PubMed]
- Graziano, G. On the Temperature-Induced Coil to Globule Transition of Poly-N-Isopropylacrylamide in Dilute Aqueous Solutions. Int. J. Biol. Macromol. 2000, 27, 89–97. [Google Scholar] [CrossRef]
- Tamura, T.; Yamaoka, T.; Kunugi, S.; Panitch, A.; Tirrell, D.A. Effects of Temperature and Pressure on the Aggregation Properties of an Engineered Elastin Model Polypeptide in Aqueous Solution. Biomacromolecules 2000, 1, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, T.; Tamura, T.; Seto, Y.; Tada, T.; Kunugi, S.; Tirrell, D.A. Mechanism for the Phase Transition of a Genetically Engineered Elastin Model Peptide (VPGIG)40 in Aqueous Solution. Biomacromolecules 2003, 4, 1680–1685. [Google Scholar] [CrossRef]
- Ben-Naim, A. Hydrophobic Interaction and Structural Changes in the Solvent. Biopolymers 1975, 14, 1337–1355. [Google Scholar] [CrossRef]
- Yu, H.; Karplus, M. A Thermodynamic Analysis of Solvation. J. Chem. Phys. 1988, 89, 2366–2379. [Google Scholar] [CrossRef]
- Lee, B. Enthalpy-Entropy Compensation in the Thermodynamics of Hydrophobicity. Biophys. Chem. 1994, 51, 271–278. [Google Scholar] [CrossRef]
- Dunitz, J.D. Win Some, Lose Some: Enthalpy-Entropy Compensation in Weak Intermolecular Interactions. Chem. Biol. 1995, 2, 709–712. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, J.D.; Olteanu, A.; Tripathy, A.; Pielak, G.J. Impact of Protein Denaturants and Stabilizers on Water Structure. J. Am. Chem. Soc. 2004, 126, 1958–1961. [Google Scholar] [CrossRef] [PubMed]
- Graziano, G.; Lee, B. On the Intactness of Hydrogen Bonds around Nonpolar Solutes Dissolved in Water. J. Phys. Chem. B 2005, 109, 8103–8107. [Google Scholar] [CrossRef]
- Li, B.; Alonso, D.O.V.; Daggett, V. The Molecular Basis for the Inverse Temperature Transition of Elastin11Edited by A. R. Fersht. J. Mol. Biol. 2001, 305, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Liquori, A.M.; Sadun, C. Close Packing of Amino Acid Residues in Globular Proteins: Specific Volume and Site Binding of Water Molecules. Int. J. Biol. Macromol. 1981, 3, 56–59. [Google Scholar] [CrossRef]
- Wallqvist, A.; Berne, B.J. Molecular Dynamics Study of the Dependence of Water Solvation Free Energy on Solute Curvature and Surface Area. J. Phys. Chem. 1995, 99, 2885–2892. [Google Scholar] [CrossRef] [Green Version]
- Graziano, G. The Gibbs Energy Cost of Cavity Creation Depends on Geometry. J. Mol. Liq. 2015, 211, 1047–1051. [Google Scholar] [CrossRef]
- Lebowitz, J.L.; Helfand, E.; Praestgaard, E. Scaled Particle Theory of Fluid Mixtures. J. Chem. Phys. 1965, 43, 774–779. [Google Scholar] [CrossRef]
- Graziano, G. Contrasting the Denaturing Effect of Guanidinium Chloride with the Stabilizing Effect of Guanidinium Sulfate. Phys. Chem. Chem. Phys. 2011, 13, 12008. [Google Scholar] [CrossRef] [PubMed]
- Graziano, G. On the Cavity Size Distribution in Water and N-Hexane. Biophys. Chem. 2003, 104, 393–405. [Google Scholar] [CrossRef]
- Graziano, G. Scaled Particle Theory Study of the Length Scale Dependence of Cavity Thermodynamics in Different Liquids. J. Phys. Chem. B 2006, 110, 11421–11426. [Google Scholar] [CrossRef] [PubMed]
- Apelblat, A. A New Two-Parameter Equation for Correlation and Prediction of Densities as a Function of Concentration and Temperature in Binary Aqueous Solutions. J. Mol. Liq. 2016, 219, 313–331. [Google Scholar] [CrossRef]
- Graziano, G. How Does Sucrose Stabilize the Native State of Globular Proteins? Int. J. Biol. Macromol. 2012, 50, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, S.; Oliva, R.; Graziano, G.; del Vecchio, P. Counteraction of Denaturant-Induced Protein Unfolding Is a General Property of Stabilizing Agents. Phys. Chem. Chem. Phys. 2018, 20, 29389–29398. [Google Scholar] [CrossRef] [PubMed]
- Graziano, G. Salting out of Methane by Sodium Chloride: A Scaled Particle Theory Study. J. Chem. Phys. 2008, 129, 084506. [Google Scholar] [CrossRef] [PubMed]
- Sorenson, J.M.; Hura, G.; Glaeser, R.M.; Head-Gordon, T. What Can X-Ray Scattering Tell Us about the Radial Distribution Functions of Water? J. Chem. Phys. 2000, 113, 9149–9161. [Google Scholar] [CrossRef]
- Harpaz, Y.; Gerstein, M.; Chothia, C. Volume Changes on Protein Folding. Structure 1994, 2, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Street, T.O.; Bolen, D.W.; Rose, G.D. A Molecular Mechanism for Osmolyte-Induced Protein Stability. Proc. Natl. Acad. Sci. USA 2006, 103, 13997–14002. [Google Scholar] [CrossRef] [Green Version]
- Robertson, A.D.; Murphy, K.P. Protein Structure and the Energetics of Protein Stability. Chem. Rev. 1997, 97, 1251–1268. [Google Scholar] [CrossRef]
- Sawle, L.; Ghosh, K. How Do Thermophilic Proteins and Proteomes Withstand High Temperature? Biophys. J. 2011, 101, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Zhou, A.Q.; O’Hern, C.S.; Regan, L. Revisiting the Ramachandran Plot from a New Angle. Protein Sci. 2011, 20, 1166–1171. [Google Scholar] [CrossRef] [Green Version]
- Baxa, M.C.; Haddadian, E.J.; Jumper, J.M.; Freed, K.F.; Sosnick, T.R. Loss of Conformational Entropy in Protein Folding Calculated Using Realistic Ensembles and Its Implications for NMR-Based Calculations. Proc. Natl. Acad. Sci. USA 2014, 111, 15396–15401. [Google Scholar] [CrossRef] [Green Version]
- Sharp, K.A.; O’Brien, E.; Kasinath, V.; Wand, A.J. On the Relationship between NMR-Derived Amide Order Parameters and Protein Backbone Entropy Changes. Proteins Struct. Funct. Bioinform. 2015, 83, 922–930. [Google Scholar] [CrossRef] [Green Version]
- Fogolari, F.; Corazza, A.; Fortuna, S.; Soler, M.A.; VanSchouwen, B.; Brancolini, G.; Corni, S.; Melacini, G.; Esposito, G. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations. PLoS ONE 2015, 10, e0132356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pica, A.; Graziano, G. Shedding Light on the Extra Thermal Stability of Thermophilic Proteins. Biopolymers 2016, 105, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Schellman, J.A. Protein Stability in Mixed Solvents: A Balance of Contact Interaction and Excluded Volume. Biophys. J. 2003, 85, 108–125. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, M.; Mondal, J. Bottom-Up View of the Mechanism of Action of Protein-Stabilizing Osmolytes. J. Phys. Chem. B 2020, 124, 11316–11323. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.; Shimizu, S. Molecular Interpretation of Preferential Interactions in Protein Solvation: A Solvent-Shell Perspective by Means of Minimum-Distance Distribution Functions. J. Chem. Theory Comput. 2017, 13, 6358–6372. [Google Scholar] [CrossRef] [Green Version]
- Mondal, J.; Stirnemann, G.; Berne, B.J. When Does Trimethylamine N -Oxide Fold a Polymer Chain and Urea Unfold It? J. Phys. Chem. B 2013, 117, 8723–8732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondal, J.; Halverson, D.; Li, I.T.S.; Stirnemann, G.; Walker, G.C.; Berne, B.J. How Osmolytes Influence Hydrophobic Polymer Conformations: A Unified View from Experiment and Theory. Proc. Natl. Acad. Sci. USA 2015, 112, 9270–9275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, B.A.; Okur, H.I.; Yan, C.; Yang, T.; Heyda, J.; Cremer, P.S. Weakly Hydrated Anions Bind to Polymers but Not Monomers in Aqueous Solutions. Nat. Chem. 2022, 14, 40–45. [Google Scholar] [CrossRef] [PubMed]
d(25°C) [g ml−1] | ξ(25 °C) | T(collapse) [°C] | ΔΔGc [kJ mol−1] | T·ΔSconf [kJ mol−1] | ΔEa [kJ mol−1] | |
---|---|---|---|---|---|---|
water | 0.997 | 0.383 | 28.5 | 1203.4 | 725.2 | −478.2 |
0.5 M betaine | 1.006 | 0.402 | 23.5 | 1218.0 | 713.7 | −504.3 |
1.0 M betaine | 1.016 | 0.421 | 18.5 | 1233.8 | 701.1 | −532.7 |
0.5 M TMAO | 0.998 | 0.394 | 20.5 | 1193.3 | 705.9 | −487.4 |
1.0 M TMAO | 1.000 | 0.405 | 12.5 | 1182.6 | 686.7 | −495.9 |
0.5 M glycine | 1.013 | 0.397 | 19.0 | 1218.3 | 702.3 | −516.0 |
1.0 M glycine | 1.029 | 0.410 | 10.0 | 1232.5 | 680.7 | −551.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pica, A.; Graziano, G. A Rationalization of the Effect That TMAO, Glycine, and Betaine Exert on the Collapse of Elastin-like Polypeptides. Life 2022, 12, 140. https://doi.org/10.3390/life12020140
Pica A, Graziano G. A Rationalization of the Effect That TMAO, Glycine, and Betaine Exert on the Collapse of Elastin-like Polypeptides. Life. 2022; 12(2):140. https://doi.org/10.3390/life12020140
Chicago/Turabian StylePica, Andrea, and Giuseppe Graziano. 2022. "A Rationalization of the Effect That TMAO, Glycine, and Betaine Exert on the Collapse of Elastin-like Polypeptides" Life 12, no. 2: 140. https://doi.org/10.3390/life12020140
APA StylePica, A., & Graziano, G. (2022). A Rationalization of the Effect That TMAO, Glycine, and Betaine Exert on the Collapse of Elastin-like Polypeptides. Life, 12(2), 140. https://doi.org/10.3390/life12020140