Predictive Value of Circulating Tumor Cells Detected by ISET® in Patients with Non-Metastatic Prostate Cancer Undergoing Radical Prostatectomy
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Patient Cohort
2.2. Circulating Tumor Cells Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pak, S.; You, D.; Jeong, I.G.; Kim, Y.S.; Hong, J.H.; Kim, C.-S.; Ahn, H. Time to biochemical relapse after radical prostatectomy and efficacy of salvage radiotherapy in patients with prostate cancer. Int. J. Clin. Oncol. 2019, 24, 1238–1246. [Google Scholar] [CrossRef] [PubMed]
- Cornford, P.; Bellmunt, J.; Bolla, M.; Briers, E.; De Santis, M.; Gross, T.; Henry, A.M.; Joniau, S.; Lam, T.B.; Mason, M.D.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate Cancer. Eur. Urol. 2017, 71, 630–642. [Google Scholar] [CrossRef]
- Yang, C.; Xia, B.-R.; Jin, W.-L.; Lou, G. Circulating tumor cells in precision oncology: Clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int. 2019, 19, 341. [Google Scholar] [CrossRef] [Green Version]
- Murata, Y.; Tatsugami, K.; Yoshikawa, M.; Hamaguchi, M.; Yamada, S.; Hayakawa, Y.; Ueda, K.; Momosaki, S.; Sakamoto, N. Predictive factors of biochemical recurrence after radical prostatectomy for high-risk prostate cancer. Int. J. Urol. 2018, 25, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Negishi, T.; Kuroiwa, K.; Hori, Y.; Tomoda, T.; Uchino, H.; Tokuda, N.; Furubayashi, N.; Nagase, K.; Iwai, H.; Nakamura, M. Predictive factors of late biochemical recurrence after radical prostatectomy. Jpn. J. Clin. Oncol. 2017, 47, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Professionals, S.-O. AU Guidelines: Prostate Cancer. Uroweb. Available online: https://uroweb.org/guideline/prostate-cancer/ (accessed on 16 December 2021).
- Ilie, M.; Hofman, V.; Long-Mira, E.; Selva, E.; Vignaud, J.-M.; Padovani, B.; Mouroux, J.; Marquette, C.-H.; Hofman, P. “Sentinel” Circulating Tumor Cells Allow Early Diagnosis of Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease. PLoS ONE 2014, 9, e111597. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Hao, P.; Lin, D.; Li, Y.; Hu, T.; Cai, T.; Cui, S.; Wu, T. Application of Primary/Secondary Circulating Tumor Cells for the Prediction of Biochemical Recurrence in Nonmetastatic Prostate Cancer Patients following Radical Prostatectomy or Radiotherapy: A Meta-Analysis. BioMed Res. Int. 2021, 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vona, G.; Sabile, A.; Louha, M.; Sitruk, V.; Romana, S.; Schütze, K.; Capron, F.; Franco, D.; Pazzagli, M.; Vekemans, M.; et al. Isolation by Size of Epithelial Tumor Cells. Am. J. Pathol. 2000, 156, 57–63. [Google Scholar] [CrossRef]
- Hofman, V.J.; Ilie, M.I.; Bonnetaud, C.; Selva, E.; Long, E.; Molina, T.; Vignaud, J.M.; Fléjou, J.F.; Lantuejoul, S.; Piaton, E.; et al. Cytopathologic Detection of Circulating Tumor Cells Using the Isolation by Size of Epithelial Tumor Cell Method: Promises and Pitfalls. Am. J. Clin. Pathol. 2011, 135, 146–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broncy, L.; Paterlini-Bréchot, P. Clinical Impact of Circulating Tumor Cells in Patients with Localized Prostate Cancer. Cells 2019, 8, 676. [Google Scholar] [CrossRef] [Green Version]
- Laget, S.; Broncy, L.; Hormigos, K.; Dhingra, D.M.; BenMohamed, F.; Capiod, T.; Osteras, M.; Farinelli, L.; Jackson, S.; Paterlini-Bréchot, P. Technical Insights into Highly Sensitive Isolation and Molecular Characterization of Fixed and Live Circulating Tumor Cells for Early Detection of Tumor Invasion. PLoS ONE 2017, 12, e0169427. [Google Scholar] [CrossRef] [PubMed]
- Ried, K.; Eng, P.; Sali, A. Screening for Circulating Tumour Cells Allows Early Detection of Cancer and Monitoring of Treatment Effectiveness: An Observational Study. Asian Pac. J. Cancer Prev. 2017, 18, 2275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ried, K.; Tamanna, T.; Matthews, S.; Eng, P.; Sali, A. New Screening Test Improves Detection of Prostate Cancer Using Circulating Tumor Cells and Prostate-Specific Markers. Front. Oncol. 2020, 10, 582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farace, F.; Massard, C.; Vimond, N.; Drusch, F.; Jacques, N.; Billiot, F.; Laplanche, A.; Chauchereau, A.; Lacroix, L.; Planchard, D.; et al. A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br. J. Cancer 2011, 105, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Hofman, V.; Ilie, M.I.; Long, E.; Selva, E.; Bonnetaud, C.; Molina, T.; Vénissac, N.; Mouroux, J.; Vielh, P.; Hofman, P. Detection of circulating tumor cells as a prognostic factor in patients undergoing radical surgery for non-small-cell lung carcinoma: Comparison of the efficacy of the CellSearch AssayTM and the isolation by size of epithelial tumor cell method. Int. J. Cancer 2011, 129, 1651–1660. [Google Scholar] [CrossRef]
- Ilie, M.; Szafer-Glusman, E.; Hofman, V.; Long-Mira, E.; Suttmann, R.; Darbonne, W.; Butori, C.; Lalvée, S.; Fayada, J.; Selva, E.; et al. Expression of MET in circulating tumor cells correlates with expression in tumor tissue from advanced-stage lung cancer patients. Oncotarget 2017, 8, 26112–26121. [Google Scholar] [CrossRef] [Green Version]
- Kallergi, G.; Politaki, E.; Alkahtani, S.; Stournaras, C.; Georgoulias, V. Evaluation of Isolation Methods for Circulating Tumor Cells (CTCs). Cell. Physiol. Biochem. 2016, 40, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Khoja, L.; Backen, A.; Sloane, R.; Menasce, L.; Ryder, D.; Krebs, M.; Board, R.; Clack, G.; Hughes, A.; Blackhall, F.; et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br. J. Cancer 2012, 106, 508–516. [Google Scholar] [CrossRef]
- Krebs, M.G.; Hou, J.-M.; Sloane, R.; Lancashire, L.; Priest, L.; Nonaka, D.; Ward, T.H.; Backen, A.; Clack, G.; Hughes, A.; et al. Analysis of Circulating Tumor Cells in Patients with Non-small Cell Lung Cancer Using Epithelial Marker-Dependent and -Independent Approaches. J. Thorac. Oncol. 2012, 7, 306–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamminga, M.; Andree, K.C.; Hiltermann, T.J.N.; Jayat, M.; Schuuring, E.; van den Bos, H.; Spierings, D.C.J.; Lansdorp, P.M.; Timens, W.; Terstappen, L.W.M.M.; et al. Detection of Circulating Tumor Cells in the Diagnostic Leukapheresis Product of Non-Small-Cell Lung Cancer Patients Comparing CellSearch® and ISET. Cancers 2020, 12, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todenhöfer, T.; Park, E.S.; Duffy, S.; Deng, X.; Jin, C.; Abdi, H.; Ma, H.; Black, P.C. Microfluidic enrichment of circulating tumor cells in patients with clinically localized prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2016, 34, e9–e483. [Google Scholar] [CrossRef]
- Salami, S.S.; Singhal, U.; Spratt, D.E.; Palapattu, G.S.; Hollenbeck, B.K.; Schonhoft, J.D.; Graf, R.; Louw, J.; Jendrisak, A.; Dugan, L.; et al. Circulating Tumor Cells as a Predictor of Treatment Response in Clinically Localized Prostate Cancer. JCO Precis. Oncol. 2019, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.P.; Aedo, S.; Fuentealba, C.; Jacob, O.; Reyes, E.; Novoa, C.; Orellana, S.; Orellana, N. Limited improvement of incorporating primary circulating prostate cells with the CAPRA score to predict biochemical failure-free outcome of radical prostatectomy for prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2016, 34, e17–e430. [Google Scholar] [CrossRef]
- Shao, C.; Liao, C.-P.; Hu, P.; Chu, C.-Y.; Zhang, L.; Bui, M.H.T.; Ng, C.S.; Josephson, D.Y.; Knudsen, B.; Tighiouart, M.; et al. Detection of Live Circulating Tumor Cells by a Class of Near-Infrared Heptamethine Carbocyanine Dyes in Patients with Localized and Metastatic Prostate Cancer. PLoS ONE 2014, 9, e88967. [Google Scholar] [CrossRef]
- Kuske, A.; Gorges, T.M.; Tennstedt, P.; Tiebel, A.-K.; Pompe, R.; Preißer, F.; Prues, S.; Mazel, M.; Markou, A.; Lianidou, E.; et al. Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients. Sci. Rep. 2016, 6, 39736. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ding, J.; Wu, Y.; Wu, D.; Qi, J. Prospective Study of the Clinical Impact of Epithelial and Mesenchymal Circulating Tumor Cells in Localized Prostate Cancer. Cancer Manag. Res. 2020, 12, 4549–4560. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.W.; Nakanishi, H.; Kumar, V.S.; Bhadkamkar, V.A.; McCormack, R.; Fritsche, H.A.; Handy, B.; Gornet, T.; Babaian, R.J. Circulating Tumor Cells in Peripheral Blood Samples From Patients With Increased Serum Prostate Specific Antigen: Initial Results in Early Prostate Cancer. J. Urol. 2008, 179, 2187–2191. [Google Scholar] [CrossRef] [PubMed]
- Maestro, L.M.; Sastre, J.; Rafael, S.B.; Veganzones, S.B.; Vidaurreta, M.; Martin, M.; Olivier, C.; De La Orden, V.B.; Garcia-Saenz, J.A.; Alfonso, R.; et al. Circulating tumor cells in solid tumor in metastatic and localized stages. Anticancer Res. 2009, 29, 4839–4843. [Google Scholar]
- Thalgott, M.; Rack, B.; Horn, T.; Heck, M.M.; Eiber, M.; Kübler, H.; Retz, M.; Gschwend, J.E.; Andergassen, U.; Nawroth, R. Detection of Circulating Tumor Cells in Locally Advanced High-risk Prostate Cancer during Neoadjuvant Chemotherapy and Radical Prostatectomy. Anticancer Res. 2015, 35, 5679–5685. [Google Scholar] [PubMed]
- Kolostova, K.; Broul, M.; Schraml, J.; Cegan, M.; Matkowski, R.; Fiutowski, M.; Bobek, V. Circulating tumor cells in localized prostate cancer: Isolation, cultivation in vitro and relationship to T-stage and Gleason score. Anticancer Res. 2014, 34, 3641–3646. [Google Scholar]
- Pal, S.K.; He, M.; Wilson, T.; Liu, X.; Zhang, K.; Carmichael, C.; Torres, A.; Hernandez, S.; Lau, C.; Agarwal, N.; et al. Detection and Phenotyping of Circulating Tumor Cells in High-Risk Localized Prostate Cancer. Clin. Genitourin. Cancer 2015, 13, 130–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsumura, H.; Satoh, T.; Ishiyama, H.; Tabata, K.; Takenaka, K.; Sekiguchi, A.; Nakamura, M.; Kitano, M.; Hayakawa, K.; Iwamura, M. Perioperative Search for Circulating Tumor Cells in Patients Undergoing Prostate Brachytherapy for Clinically Nonmetastatic Prostate Cancer. Int. J. Mol. Sci. 2017, 18, 128. [Google Scholar] [CrossRef] [Green Version]
- Puche-Sanz, I.; Alvarez-Cubero, M.J.; Pascual-Geler, M.; Rodríguez-Martínez, A.; Delgado-Rodríguez, M.; García-Puche, J.L.; Expósito, J.; Robles-Fernández, I.; Entrala-Bernal, C.; Lorente, J.A.; et al. A comprehensive study of circulating tumour cells at the moment of prostate cancer diagnosis: Biological and clinical implications of EGFR, AR and SNPs. Oncotarget 2017, 8, 70472–70480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapatero, A.; Gómez-Caamaño, A.; Cabeza Rodriguez, M.Á.; Muinelo-Romay, L.; Martin de Vidales, C.; Abalo, A.; Calvo Crespo, P.; Leon Mateos, L.; Olivier, C.; Vega Piris, L.V. Detection and dynamics of circulating tumor cells in patients with high-risk prostate cancer treated with radiotherapy and hormones: A prospective phase II study. Radiat. Oncol. 2020, 15, 137. [Google Scholar] [CrossRef]
- Knipper, S.; Riethdorf, S.; Werner, S.; Tilki, D.; Graefen, M.; Pantel, K.; Maurer, T. Possible Role of Circulating Tumour Cells for Prediction of Salvage Lymph Node Dissection Outcome in Patients with Early Prostate Cancer Recurrence. Eur. Urol. Open Sci. 2021, 34, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, E.A.; Souza e Silva, V.; Braun, A.C.; Gasparini, V.A.; Kupper, B.E.C.; Tariki, M.S.; Tarazona, J.G.R.; Takahashi, R.M.; Aguiar Júnior, S.; Chinen, L.T.D. A higher platelet-to-lymphocyte ratio is prevalent in the presence of circulating tumor microemboli and is a potential prognostic factor for non-metastatic colon cancer. Transl. Oncol. 2021, 14, 100932. [Google Scholar] [CrossRef] [PubMed]
- Chinen, L.; Mello, C.; Abdallah, E.; Ocea, L.; Buim, M.; Mingues, N.; Gasparini Junior, J.; Fanelli, M.; Paterlini, P. Isolation, detection, and immunomorphological characterization of circulating tumor cells (CTCs) from patients with different types of sarcoma using isolation by size of tumor cells: A window on sarcoma-cell invasion. OncoTargets Ther. 2014, 7, 1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Giorgi, V.; Pinzani, P.; Salvianti, F.; Panelos, J.; Paglierani, M.; Janowska, A.; Grazzini, M.; Wechsler, J.; Orlando, C.; Santucci, M.; et al. Application of a Filtration- and Isolation-by-Size Technique for the Detection of Circulating Tumor Cells in Cutaneous Melanoma. J. Investig. Dermatol. 2010, 130, 2440–2447. [Google Scholar] [CrossRef]
- Fina, E.; Federico, D.; Novellis, P.; Dieci, E.; Monterisi, S.; Cioffi, F.; Mangiameli, G.; Finocchiaro, G.; Alloisio, M.; Veronesi, G. Subpopulations of Circulating Cells with Morphological Features of Malignancy Are Preoperatively Detected and Have Differential Prognostic Significance in Non-Small Cell Lung Cancer. Cancers 2021, 13, 4488. [Google Scholar] [CrossRef] [PubMed]
- Hofman, V.; Bonnetaud, C.; Ilie, M.I.; Vielh, P.; Vignaud, J.M.; Fléjou, J.F.; Lantuejoul, S.; Piaton, E.; Mourad, N.; Butori, C.; et al. Preoperative Circulating Tumor Cell Detection Using the Isolation by Size of Epithelial Tumor Cell Method for Patients with Lung Cancer Is a New Prognostic Biomarker. Clin. Cancer Res. 2011, 17, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Hofman, V.; Long, E.; Ilie, M.; Bonnetaud, C.; Vignaud, J.M.; Fléjou, J.F.; Lantuejoul, S.; Piaton, E.; Mourad, N.; Butori, C.; et al. Morphological analysis of circulating tumour cells in patients undergoing surgery for non-small cell lung carcinoma using the isolation by size of epithelial tumour cell (ISET) method: Circulating tumour cells and cytological analysis. Cytopathology 2012, 23, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Ilie, M.; Hofman, V.; Leroy, S.; Cohen, C.; Heeke, S.; Cattet, F.; Bence, C.; Lalvée, S.; Mouroux, J.; Marquette, C.-H.; et al. Use of circulating tumor cells in prospective clinical trials for NSCLC patients – standardization of the pre-analytical conditions. Clin. Chem. Lab. Med. 2018, 56, 980–989. [Google Scholar] [CrossRef]
- Lecharpentier, A.; Vielh, P.; Perez-Moreno, P.; Planchard, D.; Soria, J.C.; Farace, F. Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br. J. Cancer 2011, 105, 1338–1341. [Google Scholar] [CrossRef] [Green Version]
- Long, E.; Ilie, M.; Bence, C.; Butori, C.; Selva, E.; Lalvée, S.; Bonnetaud, C.; Poissonnet, G.; Lacour, J.-P.; Bahadoran, P.; et al. High expression of TRF2, SOX10, and CD10 in circulating tumor microemboli detected in metastatic melanoma patients. A potential impact for the assessment of disease aggressiveness. Cancer Med. 2016, 5, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Pinzani, P.; Mazzini, C.; Salvianti, F.; Massi, D.; Grifoni, R.; Paoletti, C.; Ucci, F.; Molinara, E.; Orlando, C.; Pazzagli, M.; et al. Tyrosinase mRNA levels in the blood of uveal melanoma patients: Correlation with the number of circulating tumor cells and tumor progression. Melanoma Res. 2010, 20, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Salvianti, F.; Orlando, C.; Massi, D.; De Giorgi, V.; Grazzini, M.; Pazzagli, M.; Pinzani, P. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma. Front. Mol. Biosci. 2016, 2, 76. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Gemenetzis, G.; Kinny-Köster, B.; Habib, J.R.; Groot, V.P.; Teinor, J.; Yin, L.; Pu, N.; Hasanain, A.; van Oosten, F.; et al. Pancreatic circulating tumor cell detection by targeted single-cell next-generation sequencing. Cancer Lett. 2020, 493, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Miah, S.; Catto, J. BPH and prostate cancer risk. Indian J. Urol. 2014, 30, 214. [Google Scholar] [CrossRef]
- Perera, M.; Lawrentschuk, N.; Perera, N.; Bolton, D.; Clouston, D. Incidental prostate cancer in transurethral resection of prostate specimens in men aged up to 65 years. Prostate Int. 2016, 4, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Vona, G.; Estepa, L.; Béroud, C.; Damotte, D.; Capron, F.; Nalpas, B.; Mineur, A.; Franco, D.; Lacour, B.; Pol, S.; et al. Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology 2004, 39, 792–797. [Google Scholar] [CrossRef]
- Broncy, L.; Njima, B.B.; Méjean, A.; Béroud, C.; Ben Romdhane, K.; Ilie, M.; Hofman, V.; Muret, J.; Hofman, P.; Chaabouni Bouhamed, H.; et al. Single-cell genetic analysis validates cytopathological identification of circulating cancer cells in patients with clear cell renal cell carcinoma. Oncotarget 2018, 9, 20058–20074. [Google Scholar] [CrossRef] [Green Version]
- Morrison, G.J.; Goldkorn, A. Development and Application of Liquid Biopsies in Metastatic Prostate Cancer. Curr. Oncol. Rep. 2018, 20, 35. [Google Scholar] [CrossRef] [PubMed]
- Schiewer, M.J.; Knudsen, K.E. DNA Damage Response in Prostate Cancer. Cold Spring Harb. Perspect. Med. 2019, 9, a030486. [Google Scholar] [CrossRef] [PubMed]
- Kornberg, Z.; Cooperberg, M.R.; Cowan, J.E.; Chan, J.M.; Shinohara, K.; Simko, J.P.; Tenggara, I.; Carroll, P.R. A 17-Gene Genomic Prostate Score as a Predictor of Adverse Pathology in Men on Active Surveillance. J. Urol. 2019, 202, 702–709. [Google Scholar] [CrossRef]
- Berlin, A.; Murgic, J.; Hosni, A.; Pintilie, M.; Salcedo, A.; Fraser, M.; Kamel-Reid, S.; Zhang, J.; Wang, Q.; Ch’ng, C.; et al. Genomic Classifier for Guiding Treatment of Intermediate-Risk Prostate Cancers to Dose-Escalated Image Guided Radiation Therapy Without Hormone Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 84–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palermo, G.; Bassi, P.; Racioppi, M.; Recupero, S.M.; Sacco, E.; Campetella, M.; Canu, G.; Pinto, F. Circulating tumor cells as prognostic biological marker in different stages prostate cancer and the effect of different therapeutic approaches on their expression. Minerva Urol. E Nefrol. 2020, 72, 214–222. [Google Scholar] [CrossRef]
- Osmulski, P.A.; Cunsolo, A.; Chen, M.; Qian, Y.; Lin, C.-L.; Hung, C.-N.; Mahalingam, D.; Kirma, N.B.; Chen, C.-L.; Taverna, J.A.; et al. Contacts with Macrophages Promote an Aggressive Nanomechanical Phenotype of Circulating Tumor Cells in Prostate Cancer. Cancer Res. 2021, 81, 4110–4123. [Google Scholar] [CrossRef]
Clinical Parameter | Number (%) or Median (Range) | |
---|---|---|
Total patients | 108 (100%) | |
Age (yrs) | 65.1 (±8.6) | |
Preoperative serum PSA (ng/mL) | ||
Mean | 13.92 | |
Median | 10.0 | |
Range | 1.83–93.00 | |
<15 ng/mL | 77 (77/106 = 72.6%) | |
≥15 ng/mL | 29 (29/106 = 27.4%) | |
Unknown | 2 (2/108 = 1.9%) | |
Gleason Score | ||
≤6 | 49 (49/107 = 45.8%) | |
7 | 48 (48/107 = 44.9%) | |
≥8 | 10 (10/107 = 9.3%) | |
Unknown | 1 (1/108 = 0.9%) | |
Pathological Stage—pT Staging | ||
T | T2a | 21 (19.4%) |
T2b | 44 (40.7%) | |
T3a | 23 (21.3%) | |
T3b | 20 (18.5%) | |
N | N0 | 103 (95.4%) |
N1 | 5 (4.6%) | |
M | M0 | 107 (99.1%) |
M1 | 1 (0.9%) | |
Initial treatment | ||
Radical prostatectomy | 108 (100%) | |
Postoperatory Treatments | ||
Radiotherapy + chemotherapy + ADT * | 74 (68.5%) | |
Hormonal therapy (ADT) | 10 (9.3%) | |
Radiotherapy | 8 (7.4%) | |
None | 16 (14.8%) |
CTC Count | N | Remission | Recurrence |
---|---|---|---|
No CTC | 53 | 53 | 0 |
1–3 CTC | 39 | 7 | 32 |
>3 CTC | 16 | 0 | 16 |
Prognostic Factor | p Value |
---|---|
Univariate analysis | |
Gleason score 7/>7 | 0.27 |
PSA, >15 ng/mL | =0.002 |
Presence of CTC | <0.001 (predictive value = 0.83) |
CTC positive patients in treated group | <0.001 |
CTC positive patients in non-treated group | 0.007 |
≥T2b tumors (pT staging) | 0.038 |
Multivariate analysis | |
CTC presence | <0.001 |
PSA | 0.497 |
Gleason score | 0.172 |
pT stage | 0.177 |
Study | No. Patients | pT Stage | CTC Detection Method | Cutoff | CTC+ Patients (%) | Blood Sample Size | Results |
---|---|---|---|---|---|---|---|
(Davis et al., 2008) [28] | 97 | 78 T2 19 T3 | CellSearch | ≥1 CTC/22.5 mL | 20/97 (21%) | 30 mL | No correlation between the number of CTC and tumor volume, pathological stage, and Gleason score. |
(Maestro LM et al., 2009) [29] | 24 | Uninformed | CellSearch | ≥2 CTC/7.5 mL | 4 (14%) | 10 mL | No correlation between CTC presence and tumor stage. |
(Thalgott et al., 2015) [30] | 20 | locally advanced high risk | CellSearch | ≥1 CTC | 1 (5%) | 7.5 mL before neoadjuva therapy and RP | No difference in patients CTC counts compared to controls. Follow-up 8–16 weeks following RP. |
(Kolostova et al., 2014) [31] | 55 | 45 T2 10 T3 | MetaCell® filtration | ≥1 CTC | 28 (52%) | 8 mL | No correlation found with Gleason score or tumor stage. |
(Shao et al., 2014) [25] | 40 | 26 T2 13 T3 1 Tx | Near-infrared dyes | ≥1 CTC | 39 (97.5%) | 7.5 mL | No correlation found with Gleason score, tumor stage, or PSA level. |
(Pal et al., 2015) [32] | 35 | 32 T1-T2, 3 T3 | Ficoll- CellSearch | ≥1 CTC | 16 (49%) | 30 mL | No association with clinical parameters. Median follow-up 510 days. |
(Murray et al., 2016) [24] | 269 | Unknown | differential centrifugation + ICC | ≥1 CTC | 211 (79%) | 8 mL | BCR was associated with PSA, Gleason score, T3 disease, CTC positivity, and higher CTC counts (p < 0.05). Median follow-up 5 years. |
(Kuske et al., 2016) [26] | 86 | 37 T1 45 T2 4 T3 | CellSearch EPISPOT CellCollector | ≥1 CTC | −37% CellSearch −54.9% CellCollect −58.7% EPISPOT | −7.5 mL-Directly from the vein −13–15 mL | CTC detected by EPISPOT correlated with tumor stage. |
(Todenhöfer et al., 2016) [22] | 50 | 37 T2 13 T3 | Microfluidic device | ≥1 CTC/2 mL | 25 (50%) | 2 mL | No correlation found with Gleason score, tumor stage, or PSA level. PCa recurrence was not studied. Median follow-up 48 months. |
(Tsumura et al., 2017) [33] | 59 | 26 T1c–T2a, 15 T2b–c, 17 T3, 1 T4 | CellSearch | ≥1 CTC/7.5 mL | 0% (0/59) before and 11.8% (7/59) after surgery | 10 mL | No correlation found with Gleason score, tumor stage, or PSA level. Median follow-up 18 months. |
(Puche-Sanz et al., 2017) [34] | 86 | Unknown | Immune-magnetic | ≥1 CTC/10 mL | 16 (18.6%) | 10 mL | No correlation with CTC counts. However, AR expression in tumor tissue correlated with CTC presence. |
(Salami et al., 2019) [23] | 26 | 2 pT2 15 pT3a9 pT3b | Epic Sciences | ≥1 | 19 (73%) | 10 mL | Metastasis (p = 0.03) was associated with baseline CTC detection while BCR (p = 0.10) was not. Median follow-up 14.2 months. |
(Liu et al., 2020) [27] | 80 | 5 T1c 37 T2a 11 T2b 23 T2c 4 T3a | CanPatrolTM | ≥1 CTC/5 mL | 44 (55%) | 5 mL, before surgery | PSA levels and Gleason score had no correlation with CTC counts. |
(Zapatero et al., 2020) [35] | 65 | 1 T1 17 T2 47 T3 | CellSearch | ≥1 CTC | 65 (7.5%) before treatment | 7.5 mL | CTC status was not significantly associated with any clinical or pathologic factors. Detection of CTCs was not significantly associated with overall survival. |
(Knipper et al., 2021) [36] | 20 | 8 pT2 4 pT3a 7 pT3b 1 unknown | CellSearch | 2–3 CTCs/7.5 mL | 3 (15%) | 7.5 mL | CTC-positive correlated with BCR-free survival (BFS). Median follow-up of 10.1 months. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido Castillo, L.N.; Mejean, A.; Vielh, P.; Anract, J.; Decina, A.; Nalpas, B.; Benali-Furet, N.; Desitter, I.; Paterlini-Bréchot, P. Predictive Value of Circulating Tumor Cells Detected by ISET® in Patients with Non-Metastatic Prostate Cancer Undergoing Radical Prostatectomy. Life 2022, 12, 165. https://doi.org/10.3390/life12020165
Garrido Castillo LN, Mejean A, Vielh P, Anract J, Decina A, Nalpas B, Benali-Furet N, Desitter I, Paterlini-Bréchot P. Predictive Value of Circulating Tumor Cells Detected by ISET® in Patients with Non-Metastatic Prostate Cancer Undergoing Radical Prostatectomy. Life. 2022; 12(2):165. https://doi.org/10.3390/life12020165
Chicago/Turabian StyleGarrido Castillo, Laura Nalleli, Arnaud Mejean, Philippe Vielh, Julien Anract, Alessandra Decina, Bertrand Nalpas, Naoual Benali-Furet, Isabelle Desitter, and Patrizia Paterlini-Bréchot. 2022. "Predictive Value of Circulating Tumor Cells Detected by ISET® in Patients with Non-Metastatic Prostate Cancer Undergoing Radical Prostatectomy" Life 12, no. 2: 165. https://doi.org/10.3390/life12020165
APA StyleGarrido Castillo, L. N., Mejean, A., Vielh, P., Anract, J., Decina, A., Nalpas, B., Benali-Furet, N., Desitter, I., & Paterlini-Bréchot, P. (2022). Predictive Value of Circulating Tumor Cells Detected by ISET® in Patients with Non-Metastatic Prostate Cancer Undergoing Radical Prostatectomy. Life, 12(2), 165. https://doi.org/10.3390/life12020165