Influence of Immune Parameters after Enterococcus faecium AL41 Administration and Salmonella Infection in Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Scheme
2.2. Bacterial Strains
2.3. Hematology
2.4. Flow Cytometry
2.4.1. Imunophenotyping of Lymphocytes
2.4.2. Phagocytosis Assay
2.5. Statistical Analysis
3. Results
3.1. Hematology
3.2. Flow Cytometry
3.2.1. Phagocytic Activity
3.2.2. Peripheral Blood Lymphocyte Subpopulations
3.2.3. Cecal Intraepithelial and Lamina Propria Lymphocytes (IEL, LPL)
3.2.4. Bursal and Splenic Lymphocyte Subpopulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Gut, A.M.; Vasiljevic, T.; Yeager, T.; Donkor, O.N. Salmonella infection—Prevention and treatment by antibiotics and probiotic yeasts: A review. Microbiology 2018, 164, 1327–1344. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Hamidon, F.; Rajangna, C.H.; Soh, K.P.; Gan, C.H.Y.; Lim, T.S.; Abdullah, W.N.W.; Liong, M.T. Application of probiotic for the production of safe and high-quality poultry meat. Korean J. Food Sci. Anim. Resour. 2016, 36, 567–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trampel, D.W.; Holder, T.G.; Gast, R. Integrated farm management to prevent Salmonella Enteritidis contamination of eggs. J. Appl. Poult. Res. 2014, 23, 353–365. [Google Scholar] [CrossRef]
- Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [PubMed]
- Patterson, J.A.; Burkholder, K.M. Application of prebiotics and probiotics in poultry production. Poult. Sci. 2003, 82, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.H.; Lillehoj, H.S. Immunity, immunomodulation, and antibiotic alternatives to maximize the genetic potential of poultry for growth and disease response. Anim. Feed Sci. Technol. 2019, 250, 41–50. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, Z.; Song, D.; Zhou, H.; Wang, W.; Miao, H.; Wang, L.; Li, A. Effects of microencapsulated probiotics on growth performance, antioxidateve abilities, immune functions, and caecal microflora in broiler chickens. Food Agric. Immunol. 2018, 29, 859–869. [Google Scholar] [CrossRef] [Green Version]
- Bucková, B.; Hurníková, Z.; Lauková, A.; Revajová, V.; Dvorožňáková, E. The anti-parasitic effect of probiotic bacteria via liminting the fecundity of Trichinella spiralis female adults. Helminthologia 2018, 55, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Hurley, D.; McCusker, M.P.; Fanning, S.; Martins, M. Salmonella-host interactions—Modulation of the host innate immune system. Front. Immunol. 2014, 5, 481. [Google Scholar] [CrossRef] [Green Version]
- Rychlik, I.; Elsheimer-Matulova, M.; Kyrova, K. Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella. Vet. Res. 2014, 45, 119. [Google Scholar] [CrossRef] [Green Version]
- Wigley, P. Salmonella enterica in the chicken: How it has helped our understanding of immunology in a non-biomedical model species. Front. Immunol. 2014, 5, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittrücker, H.W.; Kaufmann, S.H. Immune response to infection with Salmonella typhimurium in mice. J. Leukoc. Biol. 2000, 67, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Mastroeni, P.; Ménager, T. Development of acquired immunity to Salmonella. J. Med. Microbiol. 2003, 52, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Levkut, M.; Pistl, J.; Lauková, A.; Revajová, V.; Herich, R.; Ševčíková, Z.; Strompfová, V.; Szabóová, R.; Kokinčáková, T. Antimicrobial activity of Enterococcus faecium ef 55 against Salmonella enteritidis in chicks. Acta Vet. Hung. 2009, 57, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Audisio, M.C.; Oliver, G.; Apella, M.C. Antagonistic effect of Enterococcus faecium J96 against human and poultry pathogenic Salmonella spp. J. Food Protect. 1999, 62, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Téllez, G.; Lauková, A.; Latorre, J.D.; Hernandez-Velaso, X.; Hargis, B.M.; Callaway, T. Food-producing animals and their health in relation to human health. Microb. Ecol. Health Dis. 2015, 26, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Marenková, M.; Styriak, I. Inhibitory effect of different enterocins against fecal bacterial isolates. Berl. Munch. Tierarztl. Wochenschr. 2003, 116, 37–40. [Google Scholar] [PubMed]
- Lauková, A.; Chrastinová, Ľ.; Pogány Simonová, M.; Stromfová, V.; Plachá, I.; Čobanová, K.; Formelová, Z.; Chrenková, M.; Ondruška, Ľ. Enterococcus faecium AL 41: Its enterocin M and their beneficial use in rabbits husbandry. Probiotics Antimicrob. Proteins 2012, 4, 243–249. [Google Scholar] [CrossRef]
- Ševčíková, Z.; Blanár, J.; Lauková, A.; Revajová, V.; Strompfová, V.; Levkut, M. Effect of Enterococcus faecium EF 55 on morphometry and proliferative activity of intestinal mucosa in broilers infected with Salmonella Enteritidis. J. Vet. Res. 2016, 60, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Herich, R.; Kokinčáková, T.; Lauková, A.; Levkutová, M. Effect of preventive application of Enterococcus faecium EF55 on intestinal mucosa during salmonellosis in chickens. Czech J. Anim. Sci. 2010, 55, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Levkut, M.; Revajová, V.; Lauková, A.; Ševčíková, Z.; Spišáková, V.; Faixová, Z.; Levkutová, M.; Strompfová, V.; Pistl, J.; Levkut, M. Leukocytic responses and intestinal mucin dynamics of broilers protected with Enterococcus faecium EF55 and challenged with Salmonella Enteritidis. Res. Vet. Sci. 2012, 93, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Elhasany, H. Effect of probiotic on Salmonella Enteritidis infection on broiler chickens. Egypt. J. Chem. Environ. Health 2016, 2, 298–314. [Google Scholar]
- Lauková, A.; Strompfová, V.; Pogány Simonová, M.; Plachá, I.; Čobanová, K.; Faix, Š. Beneficial effect of enterocin M-producing, probiotic Strain Enterococcus faecium AL41 in model experiment with hens. Glob. J. Anim. Sci. Res. 2015, 3, 206–213. [Google Scholar]
- Marekova, M.; Laukova, A.; Skaugen, M.; Nes, I.F. Isolation and characterization of a new bacteriocin, termed enterocin M, produced by environmental isolate Enterococcus faecium AL41. J. Ind. Microbiol. Biotechnol. 2007, 34, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Solano-Aguilar, G.I.; Vengroski, K.G. Isolation and purification of lymphocyte subsets from gut-associated lymphoid tissue in neonatal swine. J. Immunol. Methods. 2000, 241, 185–199. [Google Scholar] [CrossRef]
- Cigánková, V.; Lauková, A.; Guba, P.; Nemcová, R. Effect of enterocin A on the intestinal epithelium of Japanese quails infected by Salmonella Duesseldorf. Bull. Vet. Inst. Pulawy 2004, 48, 25–27. [Google Scholar]
- Bobíková, K.; Revajoá, V.; Karaffová, V.; Levkutová, M.; Levkut, M. IgA gene expression and quantification of cecal IgA+, IgM+, and CD4+ cells in chickens treated with EFAL41 and infected with Salmonella Enteritidis. Acta Histochem. 2015, 117, 629–634. [Google Scholar] [CrossRef]
- Crhanova, M.; Hradecká, A.; Faldynová, M.; Matulová, M.; Havličková, H.; Sisak, F.; Rychlik, I. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar Enteritidis infection. Infect. Immun. 2011, 79, 2755–2763. [Google Scholar] [CrossRef] [Green Version]
- Karaffová, V.; Marcinková, E.; Bobíková, K.; Herich, R.; Revajová, V.; Stašová, D.; Kavuľová, A.; Levkutová, M.; Levkut, M., Jr.; Lauková, A.; et al. TLR4 and TLR21 expression, MIF, IFN-β, MD-2, CD14 activation, and sIgA production in chickens administered with EFAL41 strain challenged with Campylobacter jejuni. Folia Microbiol. 2017, 62, 89–97. [Google Scholar]
- Kogut, M.H.; Tellez, G.I.; McGruder, E.D.; Hargis, B.M.; Williams, J.D.; Corrier, D.E.; DeLoach, J.R. Heterophils are decisive components in the early responses of chickens to Salmonella enteritidis infections. Microb. Pathog. 1994, 16, 141–151. [Google Scholar] [CrossRef]
- Takaya, A.; Yamamoto, T.; Tokoyoda, K. Humoral Immunity vs. Salmonella. Front. Immunol. 2020, 10, 3155. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Qattan, S.Y.A.; Batiha, G.E.; Khafaga, A.F.; Abdel-Moneim, A.-M.E.; Alagawany, M. Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1835–1850. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.J.; Bak, Y.T. Irritable bowel syndrome, gut mikrobiota and probiotics. J. Neurogastroenterol. Motil. 2011, 17, 252–266. [Google Scholar] [CrossRef] [Green Version]
- Hořejší, V.; Bartůňková, J. Základy Imunologie, 4th ed.; Prague: Triton, Czech Republic, 2009; 320p. (In Czech) [Google Scholar]
- Davidson, F.; Kaspers, B.; Schat, K.A. Avian Immunology, 1st ed.; Elsevier: London, UK, 2008; 496p. [Google Scholar]
- Martínez-Riaño, A.; Bovolenta, E.; Pilar Mendoza, R.; Oeste, C.L.; Martín-Bermejo, M.J.; Bovolenta, P.; Turner, M.; Martínez-Martín, M.; Alarcón, B. Antigen phagocztosis bz B cells is required for a potent humoral response. EMBO Rep. 2018, 19, e46016. [Google Scholar] [CrossRef] [PubMed]
- Husáková, E.; Bobíková, K.; Stašová, D. Total IgA in spleen, bursa and intestine of chickens pretreated with E. faecium AL41 and challenged with Salmonella Enteritidis PT4. Food Agric. Immunol. 2014, 26, 366–370. [Google Scholar] [CrossRef]
- Beirão, B.; Ingberman, M.; Fávaro, C., Jr.; Mesa, D.; Bittencourt, L.C.; Fascina, V.B.; Caron, L.F. Effect of an Enterococcus faecium probiotic on specific IgA following live Salmonella Enteritidis vaccination of layer chickens. Avian Pathol. 2018, 47, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Levkut, M., Jr.; Revajová, V.; Karaffová, V.; Lauková, A.; Herich, R.; Stromfová, V.; Ševčíková, Z.; Žitňan, R.; Levkutová, M.; Levkut, M. Evaluation of mucin and cytokines expression with intraepithelial lymphocytes determination in the caecum of broilers administered with Enterococcus faecium EF55 and challenged with Salmonella Enteritidis SE147. JVMAH 2016, 8, 214–222. [Google Scholar]
- Karaffová, V.; Bobíková, K.; Husáková, E.; Levkut, M.; Herich, R.; Revajová, V.; Levkutová, M.; Levkut, M. Interaction of TGF-β4 and IL-17 in the intestine of chickens fed with E. faecium AL41 and challenged with S. Enteritidis. Res. Vet. Sci. 2015, 100, 75–79. [Google Scholar] [CrossRef]
- Richardson, A.R.; Soliven, K.C.; Casto, M.E.; Barnes, P.D.; Libby, S.J.; Fang, F.C. The base excision repair system of Salmonella enterica serovar Typhimurium counteracts DNA damage bz host nitric oxide. PLoS Pathog. 2009, 5, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Husáková, E.; Spišáková, V.; Herich, R.; Kolesárová, M.; Stašová, D.; Levkutová, M.; Levkut, M. Expression of cytokines in chicken peripheral mononuclear blood cells (PBMC) exposed to probiotic strains and Salmonella Enteritidis. Acta Vet. Brno 2015, 84, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Duchet-Suchaux, M.; Léchopier, P.; Marly, J.; Bernardet, P.; Delaunay, R.; Pardon, P. Quantification of experimental Salmonella enteritidis carrier state in B13 leghorn chicks. Avian Dis. 1995, 39, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Shapiro-Shelef, M.; Calame, K. Regulation of plasma-cell development. Nat. Rev. Immunol. 2005, 5, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.S.; Rheins, S.; Winter, A.R. The significance of the Bursa of Fabricius of chickens in antibody production: 2. Spleen relationship. Poult. Sci. 1958, 37, 1091–1093. [Google Scholar] [CrossRef]
- Ishida, Y.; Sakai, E.; Sato, K.; Sugiyama, E.; Mima, K.; Taneno, A.; Shimomura, H.; Cui, L.; Hira, Y. Induction of mucosal humoral immunitz by subcutaneous of an oil-emulsion vaccine against Salmonella enterica subsp. enterica serovar Enteritidis in chickens. Food Safety 2018, 6, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Boyum, A. Separation of blood leucocytes, granulocytes and lymphocytes. Tissue Antigens 1974, 4, 269–274. [Google Scholar] [CrossRef]
- Bucková, B.; Revajová, V. Immunophenotyping of intraepithelial (IEL) and lamina propria lymphocytes (LPL) in the chicken intestine by flow cytometry. Folia Vet. 2014, 58, 75–77. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revajová, V.; Benková, T.; Karaffová, V.; Levkut, M.; Selecká, E.; Dvorožňáková, E.; Ševčíková, Z.; Herich, R.; Levkut, M. Influence of Immune Parameters after Enterococcus faecium AL41 Administration and Salmonella Infection in Chickens. Life 2022, 12, 201. https://doi.org/10.3390/life12020201
Revajová V, Benková T, Karaffová V, Levkut M, Selecká E, Dvorožňáková E, Ševčíková Z, Herich R, Levkut M. Influence of Immune Parameters after Enterococcus faecium AL41 Administration and Salmonella Infection in Chickens. Life. 2022; 12(2):201. https://doi.org/10.3390/life12020201
Chicago/Turabian StyleRevajová, Viera, Terézia Benková, Viera Karaffová, Martin Levkut, Emília Selecká, Emília Dvorožňáková, Zuzana Ševčíková, Róbert Herich, and Mikuláš Levkut. 2022. "Influence of Immune Parameters after Enterococcus faecium AL41 Administration and Salmonella Infection in Chickens" Life 12, no. 2: 201. https://doi.org/10.3390/life12020201
APA StyleRevajová, V., Benková, T., Karaffová, V., Levkut, M., Selecká, E., Dvorožňáková, E., Ševčíková, Z., Herich, R., & Levkut, M. (2022). Influence of Immune Parameters after Enterococcus faecium AL41 Administration and Salmonella Infection in Chickens. Life, 12(2), 201. https://doi.org/10.3390/life12020201