PD-L1 Expression Correlated with Clinicopathological Factors and Akt/Stat3 Pathway in Oral SCC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of Clinical Data of Patients
- Patients confirmed to have OSCC through biopsy in this department;
- Patients treated with radical resection in this department;
- Patients not treated for their primary tumor site at another hospital before surgery;
- Patients with no history of malignancy in other parts of the body;
- Patients without loss or contamination of tissue specimens.
2.2. Tissue Specimens
2.3. Analysis of Gene Expression Profile Using UALCAN
2.4. Immunohistochemical Analysis
2.5. Evaluation of PD-L1 Expression
2.6. In Vitro Study
2.7. Cell Culture
2.8. siRNA Transfection
- siPD-L1(hu)1 RNA 5′-CCU ACU GGC AUU UGC UGA ACG CAU U-3′ (1-AS),
- siPD-L1(hu)2 RNA 5′-AAU GCG UUC AGC AAA UGC CAG UAG G-3′ (1-AA)
2.9. Cell Viability Assay
2.10. Scratch Wound Healing Assay
2.11. Hoechst 33,342 Staining
2.12. ANNEXIN V/PI Staining
2.13. Colony-Forming Assay
2.14. Invasion Assay
2.15. Western Blot Analysis
2.16. Statistical Analysis
3. Results
3.1. Overview of the Clinical Data
3.2. Analysis of PD-L1 Expression Using UALCAN Portal
3.3. Expression of PD-L1 in Tumor Specimens
3.4. Analysis of Survival Rate
3.5. Association of PD-L1 Expression Levels with Clinicopathological Factors
3.6. In Vitro Study
3.7. Analysis of Tumorigenic Capacity
3.8. Western Blotting
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NOM | Normal oral mucosa |
OSCC | Oral squamous cell carcinoma |
IHC | Immunohistochemistry |
Mx | Maxilla |
Mn | Mandible |
FOM | Floor of mouth |
pTNM | Pathologic TNM stage |
CI | Confidence interval |
SD | Standard deviation |
References
- Ferris, R.L. Immunology and Immunotherapy of Head and Neck Cancer. J. Clin. Oncol. 2015, 33, 3293–3304. [Google Scholar] [CrossRef]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.; Chirieac, L.R.; D’Amico, T.A.; DeCamp, M.M.; Dilling, T.J.; Dobelbower, M.; et al. Non-Small Cell Lung Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2017, 15, 504–535. [Google Scholar] [CrossRef] [PubMed]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okazaki, T.; Honjo, T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol. 2006, 27, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, A.H.; Wherry, E.J.; Ahmed, R.; Freeman, G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 2007, 8, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Blank, C.; Mackensen, A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: An update on implications for chronic infections and tumor evasion. Cancer Immunol. Immunother. 2007, 56, 739–745. [Google Scholar] [CrossRef]
- Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 2000, 192, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Kintsler, S.; Cassataro, M.A.; Drosch, M.; Holenya, P.; Knuechel, R.; Braunschweig, T. Expression of programmed death ligand (PD-L1) in different tumors. Comparison of several current available antibody clones and antibody profiling. Ann. Diagn. Pathol. 2019, 41, 24–37. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Ribas, A. Tumor immunotherapy directed at PD-1. N. Engl. J. Med. 2012, 366, 2517–2519. [Google Scholar] [CrossRef] [Green Version]
- Chow, L.Q.M.; Haddad, R.; Gupta, S.; Mahipal, A.; Mehra, R.; Tahara, M.; Berger, R.; Eder, J.P.; Burtness, B.; Lee, S.H.; et al. Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients With Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Results From the Phase Ib KEYNOTE-012 Expansion Cohort. J. Clin. Oncol. 2016, 34, 3838–3845. [Google Scholar] [CrossRef]
- Ferris, R.L.; Licitra, L.; Fayette, J.; Even, C.; Blumenschein, G., Jr.; Harrington, K.J.; Guigay, J.; Vokes, E.E.; Saba, N.F.; Haddad, R.; et al. Nivolumab in Patients with Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck: Efficacy and Safety in CheckMate 141 by Prior Cetuximab Use. Clin. Cancer Res. 2019, 25, 5221–5230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, J.D.; Kim, H.K.; Cha, I.H. Cytoplasmic HuR expression: Correlation with cellular inhibitors of apoptosis protein-2 expression and clinicopathologic factors in oral squamous cell carcinoma cells. Head. Neck. 2014, 36, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Yagyuu, T.; Hatakeyama, K.; Imada, M.; Kurihara, M.; Matsusue, Y.; Yamamoto, K.; Obayashi, C.; Kirita, T. Programmed death ligand 1 (PD-L1) expression and tumor microenvironment: Implications for patients with oral precancerous lesions. Oral. Oncol. 2017, 68, 36–43. [Google Scholar] [CrossRef]
- Zerdes, I.; Matikas, A.; Bergh, J.; Rassidakis, G.Z.; Foukakis, T. Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: Biology and clinical correlations. Oncogene 2018, 37, 4639–4661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geum, D.H.; Roh, Y.C.; Yoon, S.Y.; Kim, H.G.; Lee, J.H.; Song, J.M.; Lee, J.Y.; Hwang, D.S.; Kim, Y.D.; Shin, S.H.; et al. The impact factors on 5-year survival rate in patients operated with oral cancer. J. Korean Assoc. Oral. Maxillofac. Surg. 2013, 39, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Padera, T.P.; Meijer, E.F.; Munn, L.L. The Lymphatic System in Disease Processes and Cancer Progression. Annu. Rev. Biomed. Eng. 2016, 18, 125–158. [Google Scholar] [CrossRef] [Green Version]
- Radoi, L.; Luce, D. A review of risk factors for oral cavity cancer: The importance of a standardized case definition. Community Dent. Oral. Epidemiol. 2013, 41, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.A.; Yoon, H.J.; Lee, J.I.; Hong, S.P.; Hong, S.D. Relationship between the expressions of PD-L1 and tumor-infiltrating lymphocytes in oral squamous cell carcinoma. Oral. Oncol. 2011, 47, 1148–1153. [Google Scholar] [CrossRef]
- Maruse, Y.; Kawano, S.; Jinno, T.; Matsubara, R.; Goto, Y.; Kaneko, N.; Sakamoto, T.; Hashiguchi, Y.; Moriyama, M.; Toyoshima, T.; et al. Significant association of increased PD-L1 and PD-1 expression with nodal metastasis and a poor prognosis in oral squamous cell carcinoma. Int. J. Oral. Maxillofac. Surg. 2018, 47, 836–845. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, D.; He, Y.; Koopmans, I.; Wiersma, V.R.; van Ginkel, R.J.; Samplonius, D.F.; Helfrich, W.; Bremer, E. Programmed Death Ligand 1 (PD-L1)-targeted TRAIL combines PD-L1-mediated checkpoint inhibition with TRAIL-mediated apoptosis induction. Oncoimmunology 2016, 5, e1202390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Chen, L.; Xiong, Y.; Zheng, X.; Xie, Q.; Zhou, Q.; Shi, L.; Wu, C.; Jiang, J.; Wang, H. Knockdown of PD-L1 in Human Gastric Cancer Cells Inhibits Tumor Progression and Improves the Cytotoxic Sensitivity to CIK Therapy. Cell Physiol. Biochem. 2017, 41, 907–920. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Su, D.M.; Liang, M.; Fu, J. Chemopreventive agents induce programmed death-1-ligand 1 (PD-L1) surface expression in breast cancer cells and promote PD-L1-mediated T cell apoptosis. Mol. Immunol. 2008, 45, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Koh, J.; Kim, M.Y.; Kwon, D.; Go, H.; Kim, Y.A.; Jeon, Y.K.; Chung, D.H. PD-L1 expression is associated with epithelial-to-mesenchymal transition in adenocarcinoma of the lung. Hum. Pathol. 2016, 58, 7–14. [Google Scholar] [CrossRef]
- Zheng, B.; Ren, T.; Huang, Y.; Guo, W. Apatinib inhibits migration and invasion as well as PD-L1 expression in osteosarcoma by targeting STAT3. Biochem. Biophys. Res. Commun. 2018, 495, 1695–1701. [Google Scholar] [CrossRef] [PubMed]
- Ghebeh, H.; Lehe, C.; Barhoush, E.; Al-Romaih, K.; Tulbah, A.; Al-Alwan, M.; Hendrayani, S.F.; Manogaran, P.; Alaiya, A.; Al-Tweigeri, T.; et al. Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: Role of B7-H1 as an anti-apoptotic molecule. Breast. Cancer Res. 2010, 12, R48. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Cha, G.; Chen, L.; Yang, C.; Xu, D.; Ge, M. HIF1alpha/PD-L1 axis mediates hypoxia-induced cell apoptosis and tumor progression in follicular thyroid carcinoma. Onco. Targets Ther. 2019, 12, 6461–6470. [Google Scholar] [CrossRef] [Green Version]
- Bian, C.; Liu, Z.; Li, D.; Zhen, L. PI3K/AKT inhibition induces compensatory activation of the MET/STAT3 pathway in non-small cell lung cancer. Oncol. Lett. 2018, 15, 9655–9662. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamed, S.; Ogura, K.; Yokoyama, S.; Saiki, I.; Hayakawa, Y. AKT-STAT3 Pathway as a Downstream Target of EGFR Signaling to Regulate PD-L1 Expression on NSCLC cells. J. Cancer. 2016, 7, 1579–1586. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.B.R.; Choi, J.H.; Kim, U.K.; Hwang, D.S.; Kim, G.C. Gold nanoparticles conjugated with programmed death-ligand 1 antibodies induce apoptosis of SCC-25 oral squamous cell carcinoma cells via programmed death-ligand 1/signal transducer and transcription 3 pathway. Arch. Oral. Biol. 2021, 125, 105085. [Google Scholar] [CrossRef] [PubMed]
Parameter | n (%) | PD-L1 Low | PD-L1 High | p Value |
---|---|---|---|---|
Gender | ||||
Male | 49 (59.8%) | 29 | 20 | 0.271 |
Female | 32 (40.2%) | 17 | 15 | |
Age (mean = 61.6 ± 13.6) | ||||
≤60 | 35 (43.2%) | 22 | 13 | 0.032 * |
>60 | 46 (56.8%) | 24 | 22 | |
Drinking + | 26 (31.6%) | 17 | 10 | 0.070 |
Smoking + | 27 (32.8%) | 15 | 11 | 0.881 |
Primary sites | ||||
Mx. | 16 (19.6%) | 9 | 7 | <0.000 ** |
Mn. | 28 (35.8%) | 14 | 14 | |
Tongue + FOM | 25 (29.6%) | 19 | 6 | |
Buccal mucosa + etc | 12 (14.8%) | 4 | 8 | |
Tumor size | ||||
T1-T2 | 46 (54.9%) | 30 | 16 | <0.000 ** |
T3-T4 | 35 (45.1%) | 16 | 19 | |
Clinical stage | ||||
I + II | 35 (43.2%) | 27 | 8 | <0.000 ** |
III + IV | 46 (56.8%) | 19 | 27 | |
Histopathologic grade | ||||
Well differentiated | 49 (60.5%) | 28 | 21 | 0.010 * |
Moderately differentiated | 28 (34.6%) | 17 | 11 | |
Poorly differentiated | 4 (4.9%) | 1 | 3 | |
Pathological stage | ||||
I + II | 32 (39.5%) | 22 | 10 | <0.000 ** |
III + IV | 49 (60.5%) | 24 | 25 | |
Cervical nodal metastasis | ||||
No | 51 (63.0%) | 31 | 20 | 0.033 * |
Yes | 30 (36.8%) | 15 | 15 | |
Locoregional recurrence | ||||
No | 56 (69.1%) | 34 | 22 | 0.023 * |
Yes | 25 (30.9%) | 12 | 13 | |
Distant metastasis | ||||
No | 73 (90.1%) | 42 | 31 | 0.359 |
Yes | 8 (9.8%) | 4 | 4 |
Variable | Multivariate Survival Analysis | ||
---|---|---|---|
Hazard Ratio | 95% CI | p Value | |
Age | 0.888 | 0.639–1.234 | 0.478 |
Primary site | 1.143 | 0.985–1.327 | 0.078 |
pTNM | 1.419 | 1.159–1.737 | 0.001 ** |
Cervical nodal metastasis | 3.053 | 2.080–4.480 | <0.000 ** |
Locoregional recurrence | 1.837 | 1.327–2.542 | <0.000 ** |
PD-L1 | 1.573 | 1.123–2.203 | 0.008 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geum, D.-H.; Hwang, D.-S.; Lee, C.-H.; Cho, S.-D.; Jang, M.-A.; Ryu, M.-H.; Kim, U.-K. PD-L1 Expression Correlated with Clinicopathological Factors and Akt/Stat3 Pathway in Oral SCC. Life 2022, 12, 238. https://doi.org/10.3390/life12020238
Geum D-H, Hwang D-S, Lee C-H, Cho S-D, Jang M-A, Ryu M-H, Kim U-K. PD-L1 Expression Correlated with Clinicopathological Factors and Akt/Stat3 Pathway in Oral SCC. Life. 2022; 12(2):238. https://doi.org/10.3390/life12020238
Chicago/Turabian StyleGeum, Dong-Ho, Dae-Seok Hwang, Chang-Hun Lee, Sung-Dae Cho, Min-A Jang, Mi-Heon Ryu, and Uk-Kyu Kim. 2022. "PD-L1 Expression Correlated with Clinicopathological Factors and Akt/Stat3 Pathway in Oral SCC" Life 12, no. 2: 238. https://doi.org/10.3390/life12020238
APA StyleGeum, D. -H., Hwang, D. -S., Lee, C. -H., Cho, S. -D., Jang, M. -A., Ryu, M. -H., & Kim, U. -K. (2022). PD-L1 Expression Correlated with Clinicopathological Factors and Akt/Stat3 Pathway in Oral SCC. Life, 12(2), 238. https://doi.org/10.3390/life12020238