Association between Serum Adipocyte Fatty Acid Binding Protein Level and Endothelial Dysfunction in Chronic Hemodialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Analysis and Biochemical Investigations
2.3. Endothelial Function Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Stevens, P.E.; Levin, A.; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Member. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ignjatovic, A.M.; Cvetkovic, T.P.; Pavlovic, R.M.; Dordevic, V.M.; Milosevic, Z.G.; Dordevic, V.B.; Pavlovic, D.D.; Stojanovic, I.R.; Bogdanovic, D. Endothelial dysfunction, inflammation and malnutrition markers as predictors of mortality in dialysis patients: Multimarker approach. Int. Urol. Nephrol. 2013, 45, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, A.; Quelhas-Santos, J.; Sampaio, S.; Ferreira, I.; Relvas, M.; Marques, N.; Dias, C.C.; Pestana, M. Endothelial dysfunction is associated with cerebrovascular events in pre-dialysis CKD patients: A prospective study. Life 2021, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Kopel, T.; Kaufman, J.S.; Hamburg, N.; Sampalis, J.S.; Vita, J.A.; Dember, L.M. Endothelium-dependent and -independent vascular function in advanced chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 1588–1594. [Google Scholar] [CrossRef]
- Lee, M.J.; Han, S.H.; Lee, J.E.; Choi, H.Y.; Yoon, C.Y.; Kim, E.J.; Han, J.H.; Han, J.S.; Oh, H.J.; Park, J.T.; et al. Endothelial dysfunction is associated with major adverse cardiovascular events in peritoneal dialysis patients. Medicine 2014, 93, e73. [Google Scholar] [CrossRef]
- Hirata, Y.; Sugiyama, S.; Yamamoto, E.; Matsuzawa, Y.; Akiyama, E.; Kusaka, H.; Fujisue, K.; Kurokawa, H.; Matsubara, J.; Sugamura, K.; et al. Endothelial function and cardiovascular events in chronic kidney disease. Int. J. Cardiol. 2014, 173, 481–486. [Google Scholar] [CrossRef]
- Choi, H.Y.; Lee, J.E.; Han, S.H.; Yoo, T.H.; Kim, B.S.; Park, H.C.; Kang, S.W.; Choi, K.H.; Ha, S.K.; Lee, H.Y.; et al. Association of inflammation and protein-energy wasting with endothelial dysfunction in peritoneal dialysis patients. Nephrol. Dial. Transpl. 2010, 25, 1266–1271. [Google Scholar] [CrossRef] [Green Version]
- Ghiadoni, L.; Cupisti, A.; Huang, Y.; Mattei, P.; Cardinal, H.; Favilla, S.; Rindi, P.; Barsotti, G.; Taddei, S.; Salvetti, A. Endothelial dysfunction and oxidative stress in chronic renal failure. J. Nephrol. 2004, 17, 512–519. [Google Scholar]
- Recio-Mayoral, A.; Banerjee, D.; Streather, C.; Kaski, J.C. Endothelial dysfunction, inflammation and atherosclerosis in chronic kidney disease—A cross-sectional study of predialysis, dialysis and kidney-transplantation patients. Atherosclerosis 2011, 216, 446–451. [Google Scholar] [CrossRef]
- Lin, C.J.; Wu, C.J.; Wu, P.C.; Pan, C.F.; Wang, T.J.; Sun, F.J.; Liu, H.L.; Chen, H.H.; Yeh, H.I. Indoxyl sulfate impairs endothelial progenitor cells and might contribute to vascular dysfunction in patients with chronic kidney disease. Kidney Blood Press. Res. 2016, 41, 1025–1036. [Google Scholar] [CrossRef]
- Yu, M.; Kim, Y.J.; Kang, D.H. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin. J. Am. Soc. Nephrol. 2011, 6, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuhashi, M. Fatty acid-binding protein 4 in cardiovascular and metabolic diseases. J. Atheroscler. Thromb. 2019, 26, 216–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terra, X.; Quintero, Y.; Auguet, T.; Porras, J.A.; Hernandez, M.; Sabench, F.; Aguilar, C.; Luna, A.M.; Del Castillo, D.; Richart, C. FABP 4 is associated with inflammatory markers and metabolic syndrome in morbidly obese women. Eur. J. Endocrinol. 2011, 164, 539–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ota, H.; Furuhashi, M.; Ishimura, S.; Koyama, M.; Okazaki, Y.; Mita, T.; Fuseya, T.; Yamashita, T.; Tanaka, M.; Yoshida, H.; et al. Elevation of fatty acid-binding protein 4 is predisposed by family history of hypertension and contributes to blood pressure elevation. Am. J. Hypertens. 2012, 25, 1124–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuseya, T.; Furuhashi, M.; Yuda, S.; Muranaka, A.; Kawamukai, M.; Mita, T.; Ishimura, S.; Watanabe, Y.; Hoshina, K.; Tanaka, M.; et al. Elevation of circulating fatty acid-binding protein 4 is independently associated with left ventricular diastolic dysfunction in a general population. Cardiovasc. Diabetol. 2014, 13, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.L.; Wu, Y.W.; Hsieh, A.R.; Hung, Y.H.; Chen, W.J.; Yang, W.S. Serum adipocyte fatty acid-binding protein levels in patients with critical illness are associated with insulin resistance and predict mortality. Crit. Care 2013, 17, R22. [Google Scholar] [CrossRef] [Green Version]
- Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty acid-binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 2014, 8, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.L.; Lee, M.C.; Ho, C.C.; Hsu, B.G.; Tsai, J.P. Serum adipocyte fatty acid-binding protein level is negatively associated with vascular reactivity index measured by digital thermal monitoring in kidney transplant patients. Metabolites 2019, 9, 159. [Google Scholar] [CrossRef] [Green Version]
- Tsai, J.P.; Wang, J.H.; Lee, C.J.; Chen, Y.C.; Hsu, B.G. Positive correlation of serum adipocyte fatty acid binding protein levels with carotid-femoral pulse wave velocity in geriatric population. BMC Geriatr. 2015, 15, 88. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.H.; Lin, Y.L.; Wang, C.H.; Kuo, C.H.; Hsu, B.G. Positive association of serum adipocyte fatty acid binding protein level with peripheral artery disease in hemodialysis patients. Ther. Apher. Dial. 2020, 24, 300–306. [Google Scholar] [CrossRef]
- Sung, C.H.; Hsu, B.G.; Tasi, J.P.; Wang, C.H.; Kuo, C.H. Positive associations between adipocyte fatty acid-binding protein level and central arterial stiffness in peritoneal dialysis patients. Int. J. Hypertens. 2021, 2021, 8849115. [Google Scholar] [CrossRef]
- Naghavi, M.; Yen, A.A.; Lin, A.W.; Tanaka, H.; Kleis, S. New Indices of endothelial function measured by digital thermal monitoring of vascular reactivity: Data from 6084 patients registry. Int. J. Vasc. Med. 2016, 2016, 1348028. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chiu, L.T.; Lee, M.C.; Hsu, B.G. Serum osteocalcin level is negatively associated with vascular reactivity index by digital thermal monitoring in kidney transplant recipients. Medicina 2020, 56, 400. [Google Scholar] [CrossRef] [PubMed]
- Mason, D.L.; Godugu, K.; Nnani, D.; Mousa, S.A. Effects of sevelamer carbonate versus calcium acetate on vascular calcification, inflammation, and endothelial dysfunction in chronic kidney disease. Clin. Transl. Sci. 2021; in press. [Google Scholar] [CrossRef] [PubMed]
- Mallamaci, F.; Tripepi, G.; Cutrupi, S.; Malatino, L.S.; Zoccali, C. Prognostic value of combined use of biomarkers of inflammation, endothelial dysfunction, and myocardiopathy in patients with ESRD. Kidney Int. 2005, 67, 2330–2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtaszek, E.; Oldakowska-Jedynak, U.; Kwiatkowska, M.; Glogowski, T.; Malyszko, J. Uremic toxins, oxidative stress, atherosclerosis in chronic kidney disease, and kidney transplantation. Oxid. Med. Cell. Longev. 2021, 2021, 6651367. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Lai, Y.H.; Kuo, C.H.; Lin, Y.L.; Tsai, J.P.; Hsu, B.G. Association between serum indoxyl sulfate levels and endothelial function in non-dialysis chronic kidney disease. Toxins 2019, 11, 589. [Google Scholar] [CrossRef] [Green Version]
- Malgorzewicz, S.; Lichodziejewska-Niemierko, M.; Aleksandrowicz-Wrona, E.; Swietlik, D.; Rutkowski, B.; Lysiak-Szydlowska, W. Adipokines, endothelial dysfunction and nutritional status in peritoneal dialysis patients. Scand. J. Urol. Nephrol. 2010, 44, 445–451. [Google Scholar] [CrossRef]
- Svensson, H.; Wetterling, L.; Andersson-Hall, U.; Jennische, E.; Eden, S.; Holmang, A.; Lonn, M. Adipose tissue and body composition in women six years after gestational diabetes: Factors associated with development of type 2 diabetes. Adipocyte 2018, 7, 229–237. [Google Scholar] [CrossRef]
- Furuhashi, M.; Ishimura, S.; Ota, H.; Hayashi, M.; Nishitani, T.; Tanaka, M.; Yoshida, H.; Shimamoto, K.; Hotamisligil, G.S.; Miura, T. Serum fatty acid-binding protein 4 is a predictor of cardiovascular events in end-stage renal disease. PLoS ONE 2011, 6, e27356. [Google Scholar] [CrossRef]
- Huang, I.C.; Hsu, B.G.; Chang, C.C.; Lee, C.J.; Wang, J.H. High levels of serum adipocyte fatty acid-binding protein predict cardiovascular events in coronary artery disease patients. Int. J. Med. Sci. 2018, 15, 1268–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.Y.; Li, H.; Xiao, Y.; Zhou, Z.; Xu, A.; Vanhoutte, P.M. Chronic administration of BMS309403 improves endothelial function in apolipoprotein E-deficient mice and in cultured human endothelial cells. Br. J. Pharmacol. 2011, 162, 1564–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makowski, L.; Boord, J.B.; Maeda, K.; Babaev, V.R.; Uysal, K.T.; Morgan, M.A.; Parker, R.A.; Suttles, J.; Fazio, S.; Hotamisligil, G.S.; et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat. Med. 2001, 7, 699–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.W.; Chang, T.T.; Chang, C.C.; Chen, J.W. Fatty-acid-binding protein 4 as a novel contributor to mononuclear cell activation and endothelial cell dysfunction in atherosclerosis. Int. J. Mol. Sci. 2020, 21, 9245. [Google Scholar] [CrossRef]
- Aragones, G.; Saavedra, P.; Heras, M.; Cabre, A.; Girona, J.; Masana, L. Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells. Cardiovasc. Diabetol. 2012, 11, 72. [Google Scholar] [CrossRef] [Green Version]
- Aragones, G.; Ferre, R.; Lazaro, I.; Cabre, A.; Plana, N.; Merino, J.; Heras, M.; Girona, J.; Masana, L. Fatty acid-binding protein 4 is associated with endothelial dysfunction in patients with type 2 diabetes. Atherosclerosis 2010, 213, 329–331. [Google Scholar] [CrossRef]
- Lin, Y.L.; Liou, H.H.; Lai, Y.H.; Wang, C.H.; Kuo, C.H.; Chen, S.Y.; Hsu, B.G. Decreased serum fatty acid binding protein 4 concentrations are associated with sarcopenia in chronic hemodialysis patients. Clin. Chim. Acta 2018, 485, 113–118. [Google Scholar] [CrossRef]
- Lin, Y.L.; Liu, C.H.; Lai, Y.H.; Wang, C.H.; Kuo, C.H.; Liou, H.H.; Hsu, B.G. Association of serum indoxyl sulfate levels with skeletal muscle mass and strength in chronic hemodialysis patients: A 2-year longitudinal analysis. Calcif. Tissue Int. 2020, 107, 257–265. [Google Scholar] [CrossRef]
Characteristics | All Patients (n = 90) | Good Vascular Reactivity (n= 38) | Intermediate Vascular Reactivity (n = 38) | Poor Vascular Reactivity (n = 14) | p-Value |
---|---|---|---|---|---|
Age (years) | 59.97 ± 13.48 | 58.01 ± 12.88 | 63.06 ± 14.44 | 56.92 ± 11.36 | 0.173 |
Height (cm) | 162.78 ± 8.03 | 162.84 ± 7.73 | 164.04 ± 8.80 | 159.21 ± 5.74 | 0.158 |
Pre-HD body weight (kg) | 65.96 ± 14.79 | 67.23 ± 15.67 | 68.45 ± 14.27 | 55.74 ± 9.13 | 0.016 * |
Post-HD body weight (kg) | 63.37 ± 14.29 | 64.72 ± 15.15 | 65.76 ± 13.68 | 53.25 ± 8.95 | 0.013 * |
Body mass index (kg/m2) | 24.73 ± 4.37 | 25.18 ± 4.66 | 25.29 ± 4.14 | 21.95 ± 3.24 | 0.034 * |
HD duration (months) | 44.34 (26.55–81.90) | 40.92 (25.59–92.79) | 40.74 (20.01–80.04) | 51.90 (40.02–87.57) | 0.358 |
Vascular reactivity index | 1.89 (1.45–2.23) | 2.29 (2.11–2.50) | 1.70 (1.48–1.85) | 0.44 (0.40–0.66) | <0.001 * |
SBP (mmHg) | 150.82 ± 26.95 | 153.13 ± 26.97 | 148.39 ± 25.84 | 151.14 ± 31.11 | 0.960 |
DBP (mmHg) | 82.24 ± 15.15 | 83.87 ± 15.07 | 79.74 ± 14.70 | 84.64 ± 16.69 | 0.406 |
Hemoglobin (g/dL) | 10.24 ± 1.30 | 10.26 ± 1.29 | 10.24 ± 1.33 | 10.19 ± 1.37 | 0.989 |
Albumin (g/dL) | 4.18 ± 0.44 | 4.25 ± 0.48 | 4.09 ± 0.40 | 4.24 ± 0.40 | 0.241 |
Total cholesterol (mg/dL) | 158.99 ± 38.59 | 160.66± 37.58 | 155.16 ± 39.51 | 164.86 ± 40.57 | 0.686 |
Triglyceride (mg/dL) | 117.00 (77.75–202.75) | 111.00 (77.25–191.50) | 127.50 (80.00–207.50) | 95.50 (62.25–188.75) | 0.820 |
Glucose (mg/dL) | 120.00 (94.75–181.75) | 119.00 (100.00–175.00) | 133.00 (97.75–195.75) | 103.50 (77.50–136.50) | 0.109 |
Alkaline phosphatase (U/L) | 75.00 (61.50–104.25) | 68.50 (57.75–96.00) | 75.50 (62.25–110.75) | 95.00 (69.50–125.50) | 0.167 |
Blood urea nitrogen (mg/dL) | 60.09 ± 15.19 | 60.82 ± 13.93 | 58.95 ± 15.60 | 61.21 ± 18.12 | 0.831 |
Creatinine (mg/dL) | 9.28 ± 2.11 | 9.95 ± 2.16 | 9.05 ± 1.90 | 8.07 ± 1.94 | 0.010 * |
Total calcium (mg/dL) | 9.11 ± 0.75 | 9.13 ± 0.73 | 9.02 ± 0.80 | 9.27 ± 0.68 | 0.550 |
Phosphorus (mg/dL) | 4.75 ± 1.44 | 4.95 ± 1.46 | 4.57 ± 1.33 | 4.72 ± 1.71 | 0.521 |
iPTH (pg/mL) | 216.00 (98.88–1482.15) | 291.35 (161.25–471.73) | 161.50 (67.93–482.65) | 207.65 (93.06–662.45) | 0.232 |
A-FABP (ng/mL) | 164.79 ± 67.22 | 140.61 ± 48.26 | 169.14 ± 71.93 | 218.64 ± 48.48 | 0.001 * |
Urea reduction rate | 0.73 ± 0.05 | 0.73 ± 0.05 | 0.72 ± 0.05 | 0.75 ± 0.06 | 0.288 |
Kt/V (Gotch) | 1.32 ± 0.21 | 1.31 ± 0.19 | 1.29 ± 0.20 | 1.40 ± 0.26 | 0.262 |
Female, n (%) | 34 (37.8) | 14 (36.8) | 12 (31.6) | 8 (57.1) | 0.238 |
Diabetes mellitus, n (%) | 49 (54.4) | 19 (50.0) | 24 (63.2) | 6 (42.9) | 0.329 |
Hypertension, n (%) | 52 (57.8) | 18 (47.4) | 24 (63.2) | 10 (71.4) | 0.201 |
CAD, n (%) | 15 (16.7) | 4 (10.5) | 9 (23.7) | 2 (14.3) | 0.296 |
PAD, n (%) | 4 (4.4) | 1 (2.6) | 2 (5.3) | 1 (7.1) | 0.743 |
ARB use, n (%) | 42 (46.7) | 15 (39.5) | 18 (47.4) | 9 (64.3) | 0.280 |
β-blocker use, n (%) | 19 (21.1) | 6 (15.8) | 10 (26.3) | 3 (21.4) | 0.531 |
CCB use, n (%) | 37 (41.1) | 16 (42.1) | 13 (34.2) | 8 (57.1) | 0.325 |
α-adrenergic blockers, n (%) | 30 (33.3) | 11 (28.9) | 13 (34.2) | 6 (42.9) | 0.633 |
Statin use, n (%) | 21 (23.3) | 9 (23.7) | 10 (26.3) | 2 (14.3) | 0.660 |
Fibrate use, n (%) | 18 (20.0) | 10 (26.3) | 5 (13.2) | 3 (21.4) | 0.354 |
Variables | Log Transformed Vascular Reactivity Index | ||||||
---|---|---|---|---|---|---|---|
Simple Regression | Multivariable Regression | ||||||
r | 95% CI | p-Value | Beta Coefficient | 95% CI | Adjusted R2 Change | p-Value | |
Age (years) | −0.004 | −0.004–0.004 | 0.971 | — | — | — | — |
Height (cm) | 0.196 | −0.001–0.012 | 0.063 | — | — | — | — |
Pre−HD body weight (kg) | 0.278 | 0.001–0.008 | 0.008 * | — | — | — | — |
Post−HD body weight (kg) | 0.284 | 0.001–0.008 | 0.007 * | — | — | — | — |
Body mass index (kg/m2) | 0.242 | 0.002–0.024 | 0.022 * | — | — | — | — |
Log−HD duration (months) | −0.134 | −0.217–0.048 | 0.208 | — | — | — | — |
Systolic blood pressure (mmHg) | 0.088 | −0.001–0.003 | 0.407 | — | — | — | — |
Diastolic blood pressure (mmHg) | 0.049 | −0.003–0.004 | 0.646 | — | — | — | — |
Hemoglobin (g/dL) | 0.040 | −0.031–0.046 | 0.709 | — | — | — | — |
Albumin (g/dL) | 0.054 | −0.058–0.144 | 0.613 | — | — | — | — |
Total cholesterol (mg/dL) | −0.049 | −0.002–0.001 | 0.646 | — | — | — | — |
Log−Triglyceride (mg/dL) | 0.071 | −0.115–0.231 | 0.504 | — | — | — | — |
Log−Glucose (mg/dL) | 0.080 | −0.158–0.348 | 0.456 | — | — | — | — |
Log−ALP (U/L) | −0.161 | −0.437–0.057 | 0.129 | — | — | — | — |
Blood urea nitrogen (mg/dL) | 0.073 | −0.002–0.004 | 0.491 | — | — | — | — |
Creatinine (mg/dL) | 0.314 | 0.013–0.058 | 0.003 * | 0.232 | 0.004–0.048 | 0.042 | 0.020 * |
Total calcium (mg/dL) | −0.023 | −0.075–0.060 | 0.827 | — | — | — | — |
Phosphorus (mg/dL) | 0.137 | −0.012–0.057 | 0.198 | — | — | — | — |
Log−iPTH (pg/mL) | 0.071 | −0.059–0.119 | 0.504 | — | — | — | — |
A−FABP (ng/mL) | −0.404 | −0.002–−0.001 | <0.001 * | −0.349 | −0.002–0.001 | 0.153 | 0.001 * |
Urea reduction rate | −0.159 | −1.652–0.224 | 0.134 | — | — | — | — |
Kt/V (Gotch) | −0.179 | −0.443–0.033 | 0.091 | — | — | — | — |
Model | A-FABP (Per 1 ng/mL of Increase) for Vascular Reactivity Dysfunction | A-FABP (Per 1 ng/mL of Increase) for Poor Vascular Reactivity | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Crude model | 1.011 (1.003–1.018) | 0.005 * | 1.014 (1.005–1.024) | 0.003 * |
Adjusted model | 1.010 (1.002–1.018) | 0.011 * | 1.014 (1.003–1.025) | 0.011 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, H.-J.; Wang, C.-H.; Hsu, B.-G.; Tsai, J.-P. Association between Serum Adipocyte Fatty Acid Binding Protein Level and Endothelial Dysfunction in Chronic Hemodialysis Patients. Life 2022, 12, 316. https://doi.org/10.3390/life12020316
Fan H-J, Wang C-H, Hsu B-G, Tsai J-P. Association between Serum Adipocyte Fatty Acid Binding Protein Level and Endothelial Dysfunction in Chronic Hemodialysis Patients. Life. 2022; 12(2):316. https://doi.org/10.3390/life12020316
Chicago/Turabian StyleFan, Hsin-Jou, Chih-Hsien Wang, Bang-Gee Hsu, and Jen-Pi Tsai. 2022. "Association between Serum Adipocyte Fatty Acid Binding Protein Level and Endothelial Dysfunction in Chronic Hemodialysis Patients" Life 12, no. 2: 316. https://doi.org/10.3390/life12020316
APA StyleFan, H. -J., Wang, C. -H., Hsu, B. -G., & Tsai, J. -P. (2022). Association between Serum Adipocyte Fatty Acid Binding Protein Level and Endothelial Dysfunction in Chronic Hemodialysis Patients. Life, 12(2), 316. https://doi.org/10.3390/life12020316