Kinetic, Isotherm and Thermodynamic Aspects of Zn2+ Biosorption by Spirulina platensis: Optimization of Process Variables by Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation and Preparation of Biosorbent
2.2. Preparation of Zinc Solutions
2.3. Characterization of the Spirulina Biomass
2.4. Batch Studies of Biosorption
2.4.1. Influence of Individual Variables
2.4.2. Optimization of Process Variables
2.4.3. Kinetics Model Analysis
2.4.4. Isotherm Model Analysis
2.4.5. Thermodynamic Model Analysis
3. Results and Discussion
3.1. Characterization of S. platensis Biomass
3.1.1. FT-IR Analysis
3.1.2. SEM/EDX Examination
3.2. Impact of Contact Time
3.3. Impact of Different Adsorbate Concentrations
3.4. Optimization of Zinc Ions Removal Using Response Surface Methodology
+ 5.17B2
3.5. The Interactive Impact of Process Parameters and 3-D Response Surface Plots
3.6. Validation Experiment of the Optimized Conditions
3.7. Adsorption Kinetics
3.8. Adsorption Isotherm
3.9. Impact of Temperature and Thermodynamic Modeling
3.10. Proposed Mechanism of Zn2+ Biosorption by S. platensis
3.11. Comparison of Zn2+ Biosorption Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.E.; Kuntz, J.; Jang, A.; Kim, I.S.; Choi, J.Y.; Phuntsho, S.; Shon, H.K. Technoeconomic assessment of fertilizer drawn forward osmosis process for greenwall plants from urban wastewater. Process Saf. Environ. Prot. 2019, 127, 180–188. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinicovscaia, I.; Yushin, N.; Shvetsova, M.; Frontasyeva, M. Zinc removal from model solution and wastewater by Arthrospira (Spirulina) platensis biomass. Inter. J. Phytoremed. 2018, 20, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Finocchio, E.; Lodi, A.; Solisio, C.; Converti, A. Chromium (VI) removal by methylated biomass of Spirulina platensis: The effect of methylation process. Chem. Eng. J. 2010, 156, 264–269. [Google Scholar] [CrossRef]
- Ghaemi, N.; Zereshki, S.; Heidari, S. Removal of lead ions from water using PESbased nanocomposite membrane incorporated with polyaniline modified GO nanoparticles: Performance optimization by central composite design. Process Saf. Environ. Prot. 2017, 111, 475–490. [Google Scholar] [CrossRef]
- Garba, Z.N.; Lawan, I.; Zhou, W.; Zhang, M.; Wang, L.; Yuan, Z. Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals—A review. Sci. Total Environ. 2020, 717, 135070. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and nonconventional adsorbents for wastewater treatment. Environ. Chem. Let. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Apiratikul, R. Application of analytical solution of advection-dispersion-reaction model to predict the breakthrough curve and mass transfer zone for the biosorption of heavy metal ion in a fixed bed column. Process Saf. Environ. Prot. 2020, 137, 58–65. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Issa, A.A. Bioremoval of heavy metals and nutrients from sewage plant by Anabaena oryzae and Cyanosarcina fontana. Int. J. Phytoremediat. 2016, 18, 321–328. [Google Scholar] [CrossRef]
- Ahmad, A.; Bhat, A.H.; Buang, A. Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: Kinetic and equilibrium modeling. J. Clean. Prod. 2018, 171, 1361–1375. [Google Scholar] [CrossRef]
- Malkoc, S.; Kaynak, E.; Guven, K. Biosorption of zinc(II) on dead and living biomass of Variovorax paradoxus and Arthrobacte rviscosus. Desalin. Water Treat. 2016, 57, 15445–15454. [Google Scholar] [CrossRef]
- Chen, X.C.; Wang, Y.P.; Lin, Q.; Shi, J.Y.; Wu, W.X.; Chen, Y.X. Biosorption of copper (II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf. B Biointerfaces 2005, 46, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Balaji, S.; Kalaivani, T.; Rajasekaran, C. Biosorption of zinc and nickel and its effect on growth of different Spirulina strains. CLEAN—Soil Air Water 2014, 42, 507–512. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Hifney, A.F.; Adam, M.S.; Al-Badaani, A.A. Biosorption of cobalt and its effect on growth and metabolites of Synechocystis pevalekii and Scenedesmus bernardii: Isothermal analysis. Environ. Technol. Innov. 2020, 19, 100953. [Google Scholar] [CrossRef]
- Fawzy, M.A. Phycoremediation and adsorption isotherms of cadmium and copper ions by Merismopedia tenuissima and their effect on growth and metabolism. Environ. Toxicol. Pharmacol. 2016, 46, 116–121. [Google Scholar] [CrossRef]
- Ahmad, A.; Ghufran, R.; Faizal, W.M. Cd (II), Pb (II) and Zn (II) removal from contaminated water by biosorption using activated sludge biomass. CLEAN–Soil Air Water. 2010, 38, 153–158. [Google Scholar] [CrossRef]
- Jaramillo, A.C.; Echavarría, A.M.; Hormaza, A. Box-Behnken design for optimizing the acid blue dye adsorption on flower wastes. Ing. Cienc. 2013, 9, 75–91. [Google Scholar] [CrossRef] [Green Version]
- Öztürk, D.; Şahan, T. Design and optimization of Cu (II) adsorption conditions from aqueous solutions by low-cost adsorbent pumice with response surface methodology. Pol. J. Environ. Stud. 2015, 24, 1749–1756. [Google Scholar] [CrossRef]
- Prescott, G.W. How to Know the Freshwater Algae, 3rd ed.; Wm. C. Brown Co., Publishers: Dubuque, IA, USA, 1978. [Google Scholar]
- Zarrouk, C. Contribution a L’etude d’une Cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur la Croissance et la Photosynthese de Spirulina mixima. Ph.D. Thesis, University of Paris, Paris, France, 1966. [Google Scholar]
- Nizam, N.U.M.; Hanafiah, M.M.; Mahmoudi, E.; Halim, A.A.; Mohammad, A.W. The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Sci. Rep. 2021, 11, 8623. [Google Scholar] [CrossRef]
- Thabede, P.M.; Shooto, N.D.; Xaba, T.; Naidoo, E.B. Adsorption studies of toxic cadmium (II) and chromium (VI) ions from aqueous solution by activated black cumin (Nigella sativa) seeds. J. Environ. Chem. Eng. 2020, 8, 104045. [Google Scholar] [CrossRef]
- Dulla, J.B.; Sumalatha, B.; King, P.; Yekula, P.K. Investigation on biosorption of Cd(II) onto Gelidiella acerosa (brown algae): Optimization (using RSM and ANN) and mechanistic studies. Desalin. Water Treat. 2018, 107, 195–206. [Google Scholar] [CrossRef]
- Sultana, N.; Hossain, S.M.Z.; Mohammed, M.E.; Irfan, M.F.; Faruque, M.O.; Razzak, S.A.; Hossain, M.M.; Haq, B. Experimental study and parameters optimization of microalgae based heavy metals removal process using a hybrid response surface methodology-crow search algorithm. Sci. Rep. 2020, 10, 15068. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Chen, R.; Wang, J.; Fan, L.; Cui, L.; Zhang, Y.; Cheng, J.; Wu, X.; Li, J.; Zeng, W. Biosorption behavior and mechanism of cadmium from aqueous solutions by Synechocystis sp. PCC6803. RSC Adv. 2021, 11, 18637–18650. [Google Scholar] [CrossRef]
- Ghoniem, A.A.; El-Naggar, N.E.; Saber, W.I.A.; El-Hersh, M.S.; El-Khateeb, A.Y. Statistical modeling-approaches for optimization of Cu2+ biosorption by Azotobacter nigricans NEWG-2: Characterization and application of the immobilized cells. Sci. Rep. 2020, 10, 9491. [Google Scholar] [CrossRef] [PubMed]
- Salmana, S.M.; Wahaba, M.; Zahoorb, M.; Shahwarc, D.; Sultanaa, S.; Alamzebd, M.; Ahmeda, S. Green mediated biosorption of Pb (II) from aqueous solution using chemically modified low-cost Grewia optiva leaves. Desalin. Water Treat. 2020, 195, 413–420. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, N.; Lin, D.; Qu, R.; Zhou, Q.; Ge, F. The complexation with proteins in extracellular polymeric substances alleviates the toxicity of Cd (II) to Chlorella vulgaris. Environ. Pollut. 2020, 263, 114102. [Google Scholar] [CrossRef]
- Sulaymon, A.H.; Mohammed, A.A.; Al-Musawi, T.J. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environ. Sci. Poll. Res. 2013, 20, 3011–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulla, J.B.; Tamana, M.R.; Boddu, S.; Pulipati, K.; Srirama, K. Biosorption of copper (II) onto spent biomass of Gelidiella acerosa (brown marine algae): Optimization and kinetic studies. Appl. Water Sci. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.S.; Rodrigues, M.S.; De Carvalho, J.C.M.; Lodi, A.; Finocchio, E.; Perego, P.; Converti, A. Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem. Eng. J. 2011, 173, 326–333. [Google Scholar] [CrossRef]
- Rezaei, H. Biosorption of chromium by using Spirulina sp. Arab. J. Chem. 2016, 9, 846–853. [Google Scholar] [CrossRef] [Green Version]
- Babu, P.N.; Binnal, P.; Kumar, D.J. Biosorption of Zn2+ on non-living biomass of S. platensis immobilized on polyurethane foam cubes: Column studies. J. Biochem. Technol. 2015, 6, 852–859. [Google Scholar]
- Dmytryk, A.; Saeid, A.; Chojnacka, K. Biosorption of microelements by Spirulina: Towards technology of mineral feed supplements. Sci. World J. 2014, 2014, 356328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aljeboree, A.M.; Alkaim, A.F.; Al-Dujaili, A.H. Adsorption isotherm, kinetic modeling and thermodynamics of crystal violet dye on coconut husk-based activated carbon. Desalin. Water Treat. 2015, 53, 3656–3667. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Gomaa, M. Low-cost biosorption of Methylene Blue and Congo Red from single and binary systems using Sargassum latifolium biorefinery waste/wastepaper xerogel: An optimization and modeling study. J. Appl. Phycol. 2021, 33, 675–692. [Google Scholar] [CrossRef]
- Fawzy, M.A. Biosorption of copper ions from aqueous solution by Codium vermilara: Optimization, kinetic, isotherm and thermodynamic studies. Adv. Powder Technol. 2020, 31, 3724–3735. [Google Scholar] [CrossRef]
- Ouyang, D.; Zhuo, Y.; Hu, L.; Zeng, Q.; Hu, Y.; He, Z. Research on the adsorption behavior of heavy metal ions by porous material prepared with silicate tailings. Minerals 2019, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- Hanif, M.A.; Nadeem, R.; Bhatti, H.N.; Ahmad, N.R.; Ansari, T.M. Ni(II) biosorption by Cassia fistula (golden Shower) biomass. J. Hazard. Mater. 2007, 139, 345–355. [Google Scholar] [CrossRef]
- Van Thuan, T.; Quynh, B.T.P.; Nguyen, T.D.; Bach, L.G. Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel. Surf. Interfaces 2017, 6, 209–217. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Alharthi, S. Use of Response Surface Methodology in optimization of biomass, lipid productivity and fatty acid profiles of marine microalga Dunaliella parva for biodiesel production. Environ. Technol. Innov. 2021, 22, 101485. [Google Scholar] [CrossRef]
- Kuehl, R.O. Designs of Experiments: Statistical Principles of Research Design and Analysis, 2nd ed.; Duxbury Press: Pacific Grove, CA, USA, 2000; pp. 20–25. [Google Scholar]
- Yavari, S.; Malakahmad, A.; Sapari, N.B. Effects of production conditions on yield and physicochemical properties of biochars produced from rice husk and oil palm empty fruit bunches. Environ. Sci. Poll. Res. 2016, 23, 17928–17940. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Darwish, H.; Alharthi, S.; Al-Zaban, M.I.; Noureldeen, A.; Hassan, S.H. Process optimization and modeling of Cd2+ biosorption onto the free and immobilized Turbinaria ornata using Box–Behnken experimental design. Sci. Rep. 2022, 12, 3256. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Dey, U.; Chattoraj, S.; Mukhopadhyay, D.; Mondal, N.K. Modeling of the adsorptive removal of arsenic (III) using plant biomass: A bioremedial approach. Appl. Water Sci. 2017, 7, 1307–1321. [Google Scholar] [CrossRef] [Green Version]
- Rivera–Utrilla, J.; Bautista-Toledo, I.; Ferro-García, M.A.; Moreno-Castilla, C. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol. 2001, 76, 1209–1215. [Google Scholar] [CrossRef] [Green Version]
- Fawzy, M.A.; Alharthi, S. Cellular responses and phenol bioremoval by green alga Scenedesmus abundans: Equilibrium, kinetic and thermodynamic studies. Environ. Technol. Innov. 2021, 22, 101463. [Google Scholar] [CrossRef]
- Yu, X.; Tong, S.; Ge, M.; Wu, L.; Zuo, J.; Cao, C.; Song, W. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J. Environ. Sci. 2013, 25, 933–943. [Google Scholar] [CrossRef]
- Areco, M.M.; Saleh-Medina, L.; Trinelli, M.A.; Marco-Brown, J.L.; dos Santos Afonso, M. Adsorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead Avena fatua biomass and the effect of these metals on their growth. Colloids Surf. B. 2013, 110, 305–312. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. ASCE 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Yang, J.; Zhang, L.; Cao, B.; Liu, L.; Gong, W. Removal of cadmium and lead from aqueous solutions using iron phosphate-modified pollen microspheres as adsorbents. Rev. Adv. Mater. Sci. 2021, 60, 365–376. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yuan, H.; Yang, J.; Li, B. Effective biosorption of reactive blue 5 by pH independent lyophilized biomass of Bacillus megaterium. Afr. J. Biotechnol. 2011, 10, 16626. [Google Scholar]
- Esvandi, Z.; Foroutan, R.; Peighambardoust, S.J.; Akbari, A.; Ramavandi, B. Uptake of anionic and cationic dyes from water using natural clay and clay/starch/MnFe2O4 magnetic nanocomposite. Surf. Interfaces. 2020, 21, 100754. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Sobhanikia, M.; Mostafapour, F.K.; Kamani, H.; Balarak, D. Chromium biosorption from aqueous environments by mucilaginous seeds of Cydonia oblonga: Kinetic and thermodynamic studies. Glob. Nest J. 2017, 19, 269–277. [Google Scholar]
- Safari, M.; Ahmady-Asbchin, S. Biosorption of zinc from aqueous solution by cyanobacterium Fischerella ambigua ISC67: Optimization, kinetic, isotherm and thermodynamic studies. Water Sci. Technol. 2018, 78, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Almomani, F.; Judd, S.; Bhosale, R.R.; Shurair, M.; Aljaml, K.; Khraisheh, M. Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture. Process Saf. Environ. Prot. 2019, 124, 240–250. [Google Scholar] [CrossRef]
- Kipigroch, K. The use of algae to remove zinc and lead from industrial wastewater. Desalin. Water Treat. 2020, 199, 323–330. [Google Scholar] [CrossRef]
- Rahman, M.; Sathasivam, K.V. Heavy metal adsorption onto Kappaphycus sp. from aqueous solutions: The use of error functions for validation of isotherm and kinetics models. BioMed Res. Int. 2015, 2015, 126298. [Google Scholar] [CrossRef] [Green Version]
- Putra, W.P.; Kamari, A.; Yusoff, S.N.M.; Ishak, C.F.; Mohamed, A.; Hashim, N.; Isa, I.M. Biosorption of Cu (II), Pb (II) and Zn (II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies. J. Encapsul. Adsorpt. Sci. 2014, 2014, 43532. [Google Scholar] [CrossRef] [Green Version]
- Maznah, W.W.; Al-Fawwaz, A.T.; Surif, M. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J. Environ. Sci. 2012, 24, 1386–1393. [Google Scholar] [CrossRef]
- Shahmohammadi-Kalalagh, S.; Babazadeh, H.; Nazemi, A.H.; Manshouri, M. Isotherm and kinetic studies on adsorption of Pb, Zn and Cu by kaolinite. Casp. J. Environ. Sci. 2011, 9, 243–255. [Google Scholar]
- Sheikha, D.; Ashour, I.; Al-Rub, F.A. Biosorption of zinc on immobilized green algae: Equilibrium and dynamics studies. J. Eng. Res. 2008, 5, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Bina, B.; Kermani, M.; Movahedian, H.; Khazaei, Z. Biosorption and recovery of copper and zinc from aqueous solutions by nonliving biomass of marine brown algae of Sargassum sp. Pak. J. Biol. Sci. 2006, 9, 1525–1530. [Google Scholar] [CrossRef] [Green Version]
Actual and Coded Values | Zinc Removal (%) | ||||
---|---|---|---|---|---|
Run Order | Algal Dose (g/L) | B: pH | C: Initial Zn2+ Conc. (mg/L) | Actual | Predicted |
1 | 1(−1) | 3(−1) | 40(0) | 75.00 | 76.42 |
2 | 5(+1) | 3(−1) | 40(0) | 93.90 | 95.14 |
3 | 1(−1) | 7(+1) | 40(0) | 98.58 | 97.70 |
4 | 5(+1) | 7(+1) | 40(0) | 99.33 | 98.27 |
5 | 1(−1) | 5(0) | 20(−1) | 97.30 | 93.78 |
6 | 5(+1) | 5(0) | 20(−1) | 91.46 | 88.12 |
7 | 1(−1) | 5(0) | 60(+1) | 70.00 | 70.01 |
8 | 5(+1) | 5(0) | 60(+1) | 94.77 | 94.96 |
9 | 3(0) | 3(−1) | 20(−1) | 94.24 | 94.67 |
10 | 3(0) | 7(+1) | 20(−1) | 94.84 | 97.57 |
11 | 3(0) | 3(−1) | 60(+1) | 80.00 | 76.90 |
12 | 3(0) | 7(+1) | 60(+1) | 99.20 | 98.40 |
13–17 a | 3(0) | 5(0) | 40(0) | 95.34 | 86.72 |
Source of Variations | Sum of Squares | Degree of Freedom | Mean Sum of Squares | F Value | Probability |
---|---|---|---|---|---|
Regression | 1143.3 | 7 | 163.3 | 6.70 | 0.005 * |
Residual | 219.3 | 9 | 24.4 | - | - |
Lack of Fit | 55.7 | 5 | 11.1 | 0.27 | 0.91 ** |
Pure Error | 163.5 | 4 | 40.9 | - | - |
Correlation Total | 1362.6 | 16 | - | - | - |
R2 = 0.89 | Adjusted R2 = 0.81 | Predicted R2 = 0.70 | Adequate precision = 8.4 | Mean = 89.2 | % coefficient of variation = 5.5 |
Model Term | Coefficient Estimate | Degree of Freedom | Standard Error | F Value | p-Value Prob > F |
---|---|---|---|---|---|
Intercept | 86.7 | 1 | 1.65 | - | - |
A-algal dose | 4.82 | 1 | 1.75 | 7.64 | 0.038 |
B-pH | 6.10 | 1 | 1.75 | 12.22 | 0.007 |
C-Zn2+ conc. | −4.23 | 1 | 1.75 | 5.88 | 0.022 |
AB | −4.54 | 1 | 2.47 | 3.38 | 0.099 |
AC | 7.65 | 1 | 2.47 | 9.61 | 0.013 |
BC | 4.65 | 1 | 2.47 | 3.55 | 0.092 |
B2 | 5.14 | 1 | 2.40 | 4.64 | 0.059 |
Parameters | Values | |
---|---|---|
Experimental data | qe (exp.) (mg g−1) | 19.60 |
Pseudo-first order | qe (cal.) (mg g−1) | 1.10 |
k1 (min−1) | 0.066 | |
R2 | 0.816 | |
Pseudo-second order | qe (cal.)(mg g−1) | 19.57 |
k2 (gs mg−1 min−1) | 0.29 | |
R2 | 0.999 | |
Intra-particle diffusion | Ki(mgg−1 min−0.5) | 0.016 |
Ci(mg g−1) | 18.83 | |
R2 | 0.382 |
Isotherms | Parameters | Values |
---|---|---|
Langmuir | qmax (mg g−1) | 50.7 |
b (L mg−1) | 0.317 | |
RL | 0.03–0.12 | |
R2 | 0.963 | |
Freundlich | 1/n | 0.68 |
Kf (L mg−1) | 11.54 | |
R2 | 0.945 | |
D-R | qo (mg g−1) | 28.5 |
β × 10−7 (mol2 J−2) | 2.0 | |
E (kJ mol−1) | 15.8 | |
R2 | 0.967 |
Temperature (K) | ΔG° (kJ mol−1) | ΔH° (kJ mol−1) | ΔS° (kJ mol−1) | R2 |
---|---|---|---|---|
298 | −4.93 | 15.31 | 0.068 | 0.874 |
308 | −5.28 | |||
318 | −6.29 |
Sorbents | qmax (mg/g) | Reference |
---|---|---|
Spirulina platensis | 7.1 | [3] |
Raphidocelis subcapitata | 10.77 | [60] |
Kappaphycus sp. | 16.78 | [61] |
Sugarcane bagasse | 40.0 | [62] |
Coconut tree sawdust | 23.81 | [62] |
Immobilized Chlorella sp. | 28.5 | [63] |
Kaolinite | 4.95 | [64] |
Immobilized Chlorella vulgaris | 9.38 | [65] |
Sargassum sp. | 1.914 | [66] |
Spirulina platensis | 50.7 | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, N.K.; Al-Zaban, M.I.; Albarakaty, F.M.; Abdelwahab, S.F.; Hassan, S.H.A.; Fawzy, M.A. Kinetic, Isotherm and Thermodynamic Aspects of Zn2+ Biosorption by Spirulina platensis: Optimization of Process Variables by Response Surface Methodology. Life 2022, 12, 585. https://doi.org/10.3390/life12040585
Alharbi NK, Al-Zaban MI, Albarakaty FM, Abdelwahab SF, Hassan SHA, Fawzy MA. Kinetic, Isotherm and Thermodynamic Aspects of Zn2+ Biosorption by Spirulina platensis: Optimization of Process Variables by Response Surface Methodology. Life. 2022; 12(4):585. https://doi.org/10.3390/life12040585
Chicago/Turabian StyleAlharbi, Nada K., Mayasar I. Al-Zaban, Fawziah M. Albarakaty, Sayed F. Abdelwahab, Sedky H. A. Hassan, and Mustafa A. Fawzy. 2022. "Kinetic, Isotherm and Thermodynamic Aspects of Zn2+ Biosorption by Spirulina platensis: Optimization of Process Variables by Response Surface Methodology" Life 12, no. 4: 585. https://doi.org/10.3390/life12040585
APA StyleAlharbi, N. K., Al-Zaban, M. I., Albarakaty, F. M., Abdelwahab, S. F., Hassan, S. H. A., & Fawzy, M. A. (2022). Kinetic, Isotherm and Thermodynamic Aspects of Zn2+ Biosorption by Spirulina platensis: Optimization of Process Variables by Response Surface Methodology. Life, 12(4), 585. https://doi.org/10.3390/life12040585