Degenerative Meniscus in Knee Osteoarthritis: From Pathology to Treatment
Abstract
:1. Introduction
2. Meniscus Structures and Functions
3. Meniscus Pathology and Knee OA
3.1. Traumatic Meniscal Tears
3.2. Degenerative Meniscus Lesions
3.3. Meniscal Extrusion
4. Treatment for Degenerative Meniscal Lesions
4.1. Meniscectomy versus Conservative Treatment
4.2. Meniscus Preservation Surgery
4.3. Knee Osteotomy
4.4. Meniscus Replacement
4.5. Orthobiologics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACL | anterior cruciate ligament |
APM | arthroscopic partial meniscectomy |
DML | degenerative meniscal lesions |
HTO | high tibial osteotomy |
LM | lateral meniscus |
MM | medial meniscus |
MME | medial meniscal extrusion |
MMPRT | medial meniscus posterior root tear |
MRI | magnetic resonance imaging |
MSCs | mesenchymal stem cells |
OA | osteoarthritis |
PT | physiotherapy |
PRP | platelet-rich plasma |
TKA | total knee arthroplasty |
References
- Jang, S.; Lee, K.; Ju, J.H. Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int. J. Mol. Sci. 2021, 22, 2619. [Google Scholar] [CrossRef]
- Magnusson, K.; Turkiewicz, A.; Snoeker, B.; Hughes, V.; Englund, M. The heritability of doctor-diagnosed traumatic and degenerative meniscus tears. Osteoarthr. Cartil. 2021, 29, 979–985. [Google Scholar] [CrossRef]
- Zhang, Y.; Jordan, J.M. Epidemiology of osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Katano, H.; Ozeki, N.; Kohno, Y.; Nakagawa, Y.; Koga, H.; Watanabe, T.; Jinno, T.; Sekiya, I. Trends in arthroplasty in Japan by a complete survey, 2014–2017. J. Orthop. Sci. 2021, 26, 812–822. [Google Scholar] [CrossRef]
- Latourte, A.; Kloppenburg, M.; Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 2020, 16, 673–688. [Google Scholar] [CrossRef]
- Kraus, V.B.; Blanco, F.J.; Englund, M.; Karsdal, M.A.; Lohmander, L.S. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthr. Cartil. 2015, 23, 1233–1241. [Google Scholar] [CrossRef] [Green Version]
- Driban, J.B.; Davis, J.E.; Lu, B.; Price, L.L.; Ward, R.J.; MacKay, J.W.; Eaton, C.B.; Lo, G.H.; Barbe, M.F.; Zhang, M.; et al. Accelerated Knee Osteoarthritis Is Characterized by Destabilizing Meniscal Tears and Preradiographic Structural Disease Burden. Arthritis Rheumatol. 2019, 71, 1089–1100. [Google Scholar] [CrossRef] [Green Version]
- Englund, M.; Paradowski, P.T.; Lohmander, L.S. Association of radiographic hand osteoarthritis with radiographic knee osteoarthritis after meniscectomy. Arthritis Rheumatol. 2004, 50, 469–475. [Google Scholar] [CrossRef]
- Englund, M.; Lohmander, L.S. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheumatol. 2004, 50, 2811–2819. [Google Scholar] [CrossRef]
- Englund, M.; Guermazi, A.; Gale, D.; Hunter, D.J.; Aliabadi, P.; Clancy, M.; Felson, D.T. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N. Engl. J. Med. 2008, 359, 1108–1115. [Google Scholar] [CrossRef] [Green Version]
- Sihvonen, R.; Paavola, M.; Malmivaara, A.; Itala, A.; Joukainen, A.; Nurmi, H.; Kalske, J.; Jarvinen, T.L.; Finnish Degenerative Meniscal Lesion Study Group. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. N. Engl. J. Med. 2013, 369, 2515–2524. [Google Scholar] [CrossRef] [Green Version]
- Katz, J.N.; Brophy, R.H.; Chaisson, C.E.; de Chaves, L.; Cole, B.J.; Dahm, D.L.; Donnell-Fink, L.A.; Guermazi, A.; Haas, A.K.; Jones, M.H.; et al. Arthroscopic Partial Meniscectomy Was Not More Effective Than Physical Therapy for Meniscal Tear and Knee Osteoarthritis. J. Bone Jt. Surg. Ser. A 2013, 95, 2058. [Google Scholar] [CrossRef]
- Beaufils, P.; Becker, R.; Kopf, S.; Englund, M.; Verdonk, R.; Ollivier, M.; Seil, R. Surgical management of degenerative meniscus lesions: The 2016 ESSKA meniscus consensus. Joints 2017, 5, 59–69. [Google Scholar] [CrossRef]
- Wadhwa, V.; Omar, H.; Coyner, K.; Khazzam, M.; Robertson, W.; Chhabra, A. ISAKOS classification of meniscal tears-illustration on 2D and 3D isotropic spin echo MR imaging. Eur. J. Radiol. 2016, 85, 15–24. [Google Scholar] [CrossRef]
- Ozeki, N.; Seil, R.; Krych, A.J.; Koga, H. Surgical treatment of complex meniscus tear and disease: State of the Art. J. ISAKOS 2020, 6, 35–45. [Google Scholar] [CrossRef]
- Krych, A.J.; Reardon, P.J.; Johnson, N.R.; Mohan, R.; Peter, L.; Levy, B.A.; Stuart, M.J. Non-operative management of medial meniscus posterior horn root tears is associated with worsening arthritis and poor clinical outcome at 5-year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 383–389. [Google Scholar] [CrossRef]
- Takahashi, A.; Umehara, J.; Kamimura, M.; Aizawa, T.; Itoi, E. Obesity is a risk factor for osteoarthritis progression and spontaneous osteoporosis is a risk for the development of spontaneous osteonecrosis in patients with medial meniscus posterior root tear. J. Orthop. Sci. 2021, 26, 844–849. [Google Scholar] [CrossRef]
- Fox, A.J.; Wanivenhaus, F.; Burge, A.J.; Warren, R.F.; Rodeo, S.A. The human meniscus: A review of anatomy, function, injury, and advances in treatment. Clin. Anat. 2015, 28, 269–287. [Google Scholar] [CrossRef]
- Fairbank, T.J. Knee joint changes after meniscectomy. J. Bone Jt. Surg. Br. 1948, 30B, 664–670. [Google Scholar] [CrossRef]
- Fukubayashi, T.; Kurosawa, H. The contact area and pressure distribution pattern of the knee: A study of normal and osteoarthrotic knee joints. Acta Orthop. Scand. 1980, 51, 871–879. [Google Scholar] [CrossRef]
- Arnoczky, S.P.; Warren, R.F. Microvasculature of the human meniscus. Am. J. Sports Med. 1982, 10, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Hagmeijer, M.H.; Hevesi, M.; Desai, V.S.; Sanders, T.L.; Camp, C.L.; Hewett, T.E.; Stuart, M.J.; Saris, D.B.F.; Krych, A.J. Secondary Meniscal Tears in Patients with Anterior Cruciate Ligament Injury: Relationship Among Operative Management, Osteoarthritis, and Arthroplasty at 18-Year Mean Follow-up. Am. J. Sports Med. 2019, 47, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Behairy, N.H.; Dorgham, M.A.; Khaled, S.A. Accuracy of routine magnetic resonance imaging in meniscal and ligamentous injuries of the knee: Comparison with arthroscopy. Int. Orthop. 2009, 33, 961–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiozaki, Y.; Horibe, S.; Mitsuoka, T.; Nakamura, N.; Toritsuka, Y.; Shino, K. Prediction of reparability of isolated semilunar lateral meniscus tears by magnetic resonance imaging. Knee Surg. Sports Traumatol. Arthrosc. 2002, 10, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Nourissat, G.; Beaufils, P.; Charrois, O.; Selmi, T.A.; Thoreux, P.; Moyen, B.; Cassard, X.; French Society of Arthroscopy. Magnetic resonance imaging as a tool to predict reparability of longitudinal full-thickness meniscus lesions. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Bedi, A.; Kelly, N.; Baad, M.; Fox, A.J.S.; Ma, Y.; Warren, R.F.; Maher, S.A. Dynamic Contact Mechanics of Radial Tears of the Lateral Meniscus: Implications for Treatment. Arthrosc. J. Arthrosc. Relat. Surg. 2012, 28, 372–381. [Google Scholar] [CrossRef]
- Forkel, P.; Reuter, S.; Sprenker, F.; Achtnich, A.; Herbst, E.; Imhoff, A.; Petersen, W. Different patterns of lateral meniscus root tears in ACL injuries: Application of a differentiated classification system. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 112–118. [Google Scholar] [CrossRef]
- Minami, T.; Muneta, T.; Sekiya, I.; Watanabe, T.; Mochizuki, T.; Horie, M.; Katagiri, H.; Otabe, K.; Ohara, T.; Katakura, M.; et al. Lateral meniscus posterior root tear contributes to anterolateral rotational instability and meniscus extrusion in anterior cruciate ligament-injured patients. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1174–1181. [Google Scholar] [CrossRef]
- Allaire, R.; Muriuki, M.; Gilbertson, L.; Harner, C.D. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J. Bone Jt. Surg. Am. 2008, 90, 1922–1931. [Google Scholar] [CrossRef] [Green Version]
- Hussain, Z.B.; Chahla, J.; Mandelbaum, B.R.; Gomoll, A.H.; LaPrade, R.F. The Role of Meniscal Tears in Spontaneous Osteonecrosis of the Knee: A Systematic Review of Suspected Etiology and a Call to Revisit Nomenclature. Am. J. Sports Med. 2019, 47, 501–507. [Google Scholar] [CrossRef]
- Bhatia, S.; LaPrade, C.M.; Ellman, M.B.; LaPrade, R.F. Meniscal root tears: Significance, diagnosis, and treatment. Am. J. Sports Med. 2014, 42, 3016–3030. [Google Scholar] [CrossRef] [PubMed]
- Kumm, J.; Roemer, F.W.; Guermazi, A.; Turkiewicz, A.; Englund, M. Natural History of Intrameniscal Signal Intensity on Knee MR Images: Six Years of Data from the Osteoarthritis Initiative. Radiology 2016, 278, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesiha, M.; Zurakowski, D.; Soriano, J.; Nielson, J.H.; Zarins, B.; Murray, M.M. Pathologic characteristics of the torn human meniscus. Am. J. Sports Med. 2007, 35, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Pauli, C.; Grogan, S.P.; Patil, S.; Otsuki, S.; Hasegawa, A.; Koziol, J.; Lotz, M.K.; D’Lima, D.D. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthr. Cartil. 2011, 19, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Englund, M.; Guermazi, A.; Roemer, F.W.; Aliabadi, P.; Yang, M.; Lewis, C.E.; Torner, J.; Nevitt, M.C.; Sack, B.; Felson, D.T. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: The Multicenter Osteoarthritis Study. Arthritis Rheumatol. 2009, 60, 831–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, H.; Chou, L.; Aitken, T.; McBride, A.; Ding, C.; Blizzard, L. Correlation between changes in global knee structures assessed by magnetic resonance imaging and radiographic osteoarthritis changes over ten years in a midlife cohort. Arthritis Care Res. 2016, 68, 958–964. [Google Scholar] [CrossRef] [Green Version]
- Badlani, J.T.; Borrero, C.; Golla, S.; Harner, C.D.; Irrgang, J.J. The effects of meniscus injury on the development of knee osteoarthritis: Data from the osteoarthritis initiative. Am. J. Sports Med. 2013, 41, 1238–1244. [Google Scholar] [CrossRef]
- Katz, J.N.; Losina, E. Surgery versus physical therapy for meniscal tear and osteoarthritis. N. Engl. J. Med. 2013, 369, 677–678. [Google Scholar] [CrossRef] [Green Version]
- Katz, J.N.; Shrestha, S.; Losina, E.; Jones, M.H.; Marx, R.G.; Mandl, L.A.; Levy, B.A.; MacFarlane, L.A.; Spindler, K.P.; Silva, G.S.; et al. Five-Year Outcome of Operative and Nonoperative Management of Meniscal Tear in Persons Older Than Forty-Five Years. Arthritis Rheumatol. 2020, 72, 273–281. [Google Scholar] [CrossRef]
- Swamy, N.; Wadhwa, V.; Bajaj, G.; Chhabra, A.; Pandey, T. Medial meniscal extrusion: Detection, evaluation and clinical implications. Eur. J. Radiol. 2018, 102, 115–124. [Google Scholar] [CrossRef]
- Hada, S.; Ishijima, M.; Kaneko, H.; Kinoshita, M.; Liu, L.; Sadatsuki, R.; Futami, I.; Yusup, A.; Takamura, T.; Arita, H.; et al. Association of medial meniscal extrusion with medial tibial osteophyte distance detected by T2 mapping MRI in patients with early-stage knee osteoarthritis. Arthritis Res. Ther. 2017, 19, 201. [Google Scholar] [CrossRef] [Green Version]
- Krych, A.J.; Bernard, C.D.; Leland, D.P.; Camp, C.L.; Johnson, A.C.; Finnoff, J.T.; Stuart, M.J. Isolated meniscus extrusion associated with meniscotibial ligament abnormality. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 3599–3605. [Google Scholar] [CrossRef]
- Adams, J.G.; McAlindon, T.; Dimasi, M.; Carey, J.; Eustace, S. Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis. Clin. Radiol. 1999, 54, 502–506. [Google Scholar] [CrossRef]
- Hunter, D.J.; Zhang, Y.Q.; Tu, X.; Lavalley, M.; Niu, J.B.; Amin, S.; Guermazi, A.; Genant, H.; Gale, D.; Felson, D.T. Change in joint space width: Hyaline articular cartilage loss or alteration in meniscus? Arthritis Rheumatol. 2006, 54, 2488–2495. [Google Scholar] [CrossRef]
- Roemer, F.W.; Zhang, Y.; Niu, J.; Lynch, J.A.; Crema, M.D.; Marra, M.D.; Nevitt, M.C.; Felson, D.T.; Hughes, L.B.; El-Khoury, G.Y.; et al. Tibiofemoral joint osteoarthritis: Risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study. Radiology 2009, 252, 772–780. [Google Scholar] [CrossRef]
- Roemer, F.W.; Kwoh, C.K.; Hannon, M.J.; Green, S.M.; Jakicic, J.M.; Boudreau, R.; Crema, M.D.; Moore, C.E.; Guermazi, A. Risk factors for magnetic resonance imaging-detected patellofemoral and tibiofemoral cartilage loss during a six-month period: The joints on glucosamine study. Arthritis Rheumatol. 2012, 64, 1888–1898. [Google Scholar] [CrossRef] [Green Version]
- Wenger, A.; Englund, M.; Wirth, W.; Hudelmaier, M.; Kwoh, K.; Eckstein, F.; OAI Investigators. Relationship of 3D meniscal morphology and position with knee pain in subjects with knee osteoarthritis: A pilot study. Eur. Radiol. 2012, 22, 211–220. [Google Scholar] [CrossRef]
- Roubille, C.; Raynauld, J.P.; Abram, F.; Paiement, P.; Dorais, M.; Delorme, P.; Bessette, L.; Beaulieu, A.D.; Martel-Pelletier, J.; Pelletier, J.P. The presence of meniscal lesions is a strong predictor of neuropathic pain in symptomatic knee osteoarthritis: A cross-sectional pilot study. Arthritis Res. Ther. 2014, 16, 507. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.R.; Morrison, W.B.; Carrino, J.A. Medial meniscus extrusion on knee MRI: Is extent associated with severity of degeneration or type of tear? AJR Am. J. Roentgenol. 2004, 183, 17–23. [Google Scholar] [CrossRef]
- Ding, C.; Martel-Pelletier, J.; Pelletier, J.P.; Abram, F.; Raynauld, J.P.; Cicuttini, F.; Jones, G. Knee meniscal extrusion in a largely non-osteoarthritic cohort: Association with greater loss of cartilage volume. Arthritis Res. Ther. 2007, 9, R21. [Google Scholar] [CrossRef] [Green Version]
- Crema, M.D.; Roemer, F.W.; Felson, D.T.; Englund, M.; Wang, K.; Jarraya, M.; Nevitt, M.C.; Marra, M.D.; Torner, J.C.; Lewis, C.E.; et al. Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: The Multicenter Osteoarthritis study. Radiology 2012, 264, 494–503. [Google Scholar] [CrossRef] [Green Version]
- Sharma, L.; Nevitt, M.; Hochberg, M.; Guermazi, A.; Roemer, F.W.; Crema, M.; Eaton, C.; Jackson, R.; Kwoh, K.; Cauley, J.; et al. Clinical significance of worsening versus stable preradiographic MRI lesions in a cohort study of persons at higher risk for knee osteoarthritis. Ann. Rheum. Dis. 2016, 75, 1630–1636. [Google Scholar] [CrossRef]
- Hunter, D.J.; Guermazi, A.; Lo, G.H.; Grainger, A.J.; Conaghan, P.G.; Boudreau, R.M.; Roemer, F.W. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthr. Cartil. 2011, 19, 990–1002. [Google Scholar] [CrossRef] [Green Version]
- Wenger, A.; Wirth, W.; Hudelmaier, M.; Noebauer-Huhmann, I.; Trattnig, S.; Bloecker, K.; Frobell, R.B.; Kwoh, C.K.; Eckstein, F.; Englund, M. Meniscus body position, size, and shape in persons with and persons without radiographic knee osteoarthritis: Quantitative analyses of knee magnetic resonance images from the osteoarthritis initiative. Arthritis Rheumatol. 2013, 65, 1804–1811. [Google Scholar] [CrossRef]
- Sharma, K.; Eckstein, F.; Wirth, W.; Emmanuel, K. Meniscus position and size in knees with versus without structural knee osteoarthritis progression: Data from the osteoarthritis initiative. Skelet. Radiol. 2021, 51, 997–1006. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Enokida, M.; Otsuki, R.; Teshima, R. Ultrasonographic evaluation of medial radial displacement of the medial meniscus in knee osteoarthritis. Arthritis Rheumatol. 2012, 64, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Shimozaki, K.; Nakase, J.; Oshima, T.; Asai, K.; Toyooka, K.; Ohno, N.; Miyati, T.; Tsuchiya, H. Investigation of extrusion of the medial meniscus under full weight-loading conditions using upright weight-loading magnetic resonance imaging and ultrasonography. J. Orthop. Sci. 2020, 25, 652–657. [Google Scholar] [CrossRef]
- Englund, M.; Roemer, F.W.; Hayashi, D.; Crema, M.D.; Guermazi, A. Meniscus pathology, osteoarthritis and the treatment controversy. Nat. Rev. Rheumatol. 2012, 8, 412–419. [Google Scholar] [CrossRef]
- Pengas, I.P.; Assiotis, A.; Nash, W.; Hatcher, J.; Banks, J.; McNicholas, M.J. Total meniscectomy in adolescents: A 40-year follow-up. J. Bone Jt. Surg. Br. 2012, 94, 1649–1654. [Google Scholar] [CrossRef]
- Englund, M.; Roos, E.M.; Lohmander, L.S. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis: A sixteen-year followup of meniscectomy with matched controls. Arthritis Rheumatol. 2003, 48, 2178–2187. [Google Scholar] [CrossRef]
- Katano, H.; Koga, H.; Ozeki, N.; Otabe, K.; Mizuno, M.; Tomita, M.; Muneta, T.; Sekiya, I. Trends in isolated meniscus repair and meniscectomy in Japan, 2011–2016. J. Orthop. Sci. 2018, 23, 676–681. [Google Scholar] [CrossRef]
- Herrlin, S.V.; Wange, P.O.; Lapidus, G.; Hallander, M.; Werner, S.; Weidenhielm, L. Is arthroscopic surgery beneficial in treating non-traumatic, degenerative medial meniscal tears? A five year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 358–364. [Google Scholar] [CrossRef]
- Shelbourne, K.D.; Benner, R.W.; Gray, T. Results of Anterior Cruciate Ligament Reconstruction with Patellar Tendon Autografts: Objective Factors Associated with the Development of Osteoarthritis at 20 to 33 Years After Surgery. Am. J. Sports Med. 2017, 45, 2730–2738. [Google Scholar] [CrossRef]
- Paxton, E.S.; Stock, M.V.; Brophy, R.H. Meniscal repair versus partial meniscectomy: A systematic review comparing reoperation rates and clinical outcomes. Arthroscopy 2011, 27, 1275–1288. [Google Scholar] [CrossRef]
- Lutz, C.; Dalmay, F.; Ehkirch, F.P.; Cucurulo, T.; Laporte, C.; Le Henaff, G.; Potel, J.F.; Pujol, N.; Rochcongar, G.; Salledechou, E.; et al. Meniscectomy versus meniscal repair: 10 years radiological and clinical results in vertical lesions in stable knee. Orthop. Traumatol. Surg. Res. 2015, 101, S327–S331. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, Y.; Furumatsu, T.; Yamaguchi, T.; Kodama, Y.; Kamatsuki, Y.; Masuda, S.; Okazaki, Y.; Hiranaka, T.; Zhang, X.; Ozaki, T. Medial meniscus posterior root tear causes swelling of the medial meniscus and expansion of the extruded meniscus: A comparative analysis between 2D and 3D MRI. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 3405–3415. [Google Scholar] [CrossRef]
- Chung, K.S.; Noh, J.M.; Ha, J.K.; Ra, H.J.; Park, S.B.; Kim, H.K.; Kim, J.G. Survivorship Analysis and Clinical Outcomes of Transtibial Pullout Repair for Medial Meniscus Posterior Root Tears: A 5- to 10-Year Follow-up Study. Arthroscopy 2018, 34, 530–535. [Google Scholar] [CrossRef]
- Feucht, M.J.; Kuhle, J.; Bode, G.; Mehl, J.; Schmal, H.; Sudkamp, N.P.; Niemeyer, P. Arthroscopic Transtibial Pullout Repair for Posterior Medial Meniscus Root Tears: A Systematic Review of Clinical, Radiographic, and Second-Look Arthroscopic Results. Arthroscopy 2015, 31, 1808–1816. [Google Scholar] [CrossRef]
- Koga, H.; Watanabe, T.; Horie, M.; Katagiri, H.; Otabe, K.; Ohara, T.; Katakura, M.; Sekiya, I.; Muneta, T. Augmentation of the pullout repair of a medial meniscus posterior root tear by arthroscopic centralization. Arthrosc. Tech. 2017, 6, e1335–e1339. [Google Scholar] [CrossRef] [Green Version]
- Faucett, S.C.; Geisler, B.P.; Chahla, J.; Krych, A.J.; Kurzweil, P.R.; Garner, A.M.; Liu, S.; LaPrade, R.F.; Pietzsch, J.B. Meniscus Root Repair vs. Meniscectomy or Nonoperative Management to Prevent Knee Osteoarthritis After Medial Meniscus Root Tears: Clinical and Economic Effectiveness. Am. J. Sports Med. 2019, 47, 762–769. [Google Scholar] [CrossRef]
- Koga, H.; Muneta, T.; Yagishita, K.; Watanabe, T.; Mochizuki, T.; Horie, M.; Nakamura, T.; Okawa, A.; Sekiya, I. Arthroscopic centralization of an extruded lateral meniscus. Arthrosc. Tech. 2012, 1, e209–e212. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Muneta, T.; Watanabe, T.; Mochizuki, T.; Horie, M.; Nakamura, T.; Otabe, K.; Nakagawa, Y.; Sekiya, I. Two-Year Outcomes After Arthroscopic Lateral Meniscus Centralization. Arthrosc. J. Arthrosc. Relat. Surg. 2016, 32, 2000–2008. [Google Scholar] [CrossRef] [PubMed]
- Daney, B.T.; Aman, Z.S.; Krob, J.J.; Storaci, H.W.; Brady, A.W.; Nakama, G.; Dornan, G.J.; Provencher, M.T.; LaPrade, R.F. Utilization of Transtibial Centralization Suture Best Minimizes Extrusion and Restores Tibiofemoral Contact Mechanics for Anatomic Medial Meniscal Root Repairs in a Cadaveric Model. Am. J. Sports Med. 2019, 47, 1591–1600. [Google Scholar] [CrossRef] [PubMed]
- Masferrer-Pino, A.; Monllau, J.C.; Abat, F.; Gelber, P.E. Capsular fixation limits graft extrusion in lateral meniscal allograft transplantation. Int. Orthop. 2019, 43, 2549–2556. [Google Scholar] [CrossRef] [PubMed]
- Ozeki, N.; Koga, H.; Matsuda, J.; Kohno, Y.; Mizuno, M.; Katano, H.; Tsuji, K.; Saito, T.; Muneta, T.; Sekiya, I. Biomechanical analysis of the centralization procedure for extruded lateral menisci with posterior root deficiency in a porcine model. J. Orthop. Sci. 2020, 25, 161–166. [Google Scholar] [CrossRef]
- Kubota, R.; Koga, H.; Ozeki, N.; Matsuda, J.; Kohno, Y.; Mizuno, M.; Katano, H.; Sekiya, I. The effect of a centralization procedure for extruded lateral meniscus on load distribution in porcine knee joints at different flexion angles. BMC Musculoskelet. Disord. 2020, 21, 205. [Google Scholar] [CrossRef]
- Kohno, Y.; Koga, H.; Ozeki, N.; Matsuda, J.; Mizuno, M.; Katano, H.; Sekiya, I. Biomechanical analysis of a centralization procedure for extruded lateral meniscus after meniscectomy in porcine knee joints. J. Orthop. Res. 2021, 40, 1097–1103. [Google Scholar] [CrossRef]
- Nakayama, H.; Kanto, R.; Kambara, S.; Iseki, T.; Onishi, S.; Yoshiya, S. Successful treatment of degenerative medial meniscal tears in well-alignedss knees with fibrin clot implantation. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 3466–3473. [Google Scholar] [CrossRef]
- Ekhtiari, S.; Haldane, C.E.; de Sa, D.; Simunovic, N.; Musahl, V.; Ayeni, O.R. Return to Work and Sport Following High Tibial Osteotomy: A Systematic Review. J. Bone Jt. Surg. Am. 2016, 98, 1568–1577. [Google Scholar] [CrossRef]
- Katagiri, H.; Nakagawa, Y.; Miyatake, K.; Ohara, T.; Shioda, M.; Sekiya, I.; Koga, H. Short-Term Outcomes after High Tibial Osteotomy Aimed at Neutral Alignment Combined with Arthroscopic Centralization of Medial Meniscus in Osteoarthritis Patients. J. Knee Surg. 2021. [Google Scholar] [CrossRef]
- Choi, H.G.; Kang, Y.S.; Kim, J.S.; Lee, H.S.; Lee, Y.S. Meniscal and Cartilage Changes on Serial MRI After Medial Opening-Wedge High Tibial Osteotomy. Orthop. J. Sports Med. 2021, 9, 23259671211047904. [Google Scholar] [CrossRef] [PubMed]
- Astur, D.C.; Novaretti, J.V.; Gomes, M.L.; Rodrigues, A.G., Jr.; Kaleka, C.C.; Cavalcante, E.L.B.; Debieux, P.; Amaro, J.T.; Cohen, M. Medial Opening Wedge High Tibial Osteotomy Decreases Medial Meniscal Extrusion and Improves Clinical Outcomes and Return to Activity. Orthop. J. Sports Med. 2020, 8, 2325967120913531. [Google Scholar] [CrossRef]
- Hergan, D.; Thut, D.; Sherman, O.; Day, M.S. Meniscal allograft transplantation. Arthroscopy 2011, 27, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Verdonk, R.; Volpi, P.; Verdonk, P.; Van der Bracht, H.; Van Laer, M.; Almqvist, K.F.; Vander Eecken, S.; Prospero, E.; Quaglia, A. Indications and limits of meniscal allografts. Injury 2013, 44 (Suppl. S1), S21–S27. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Marcheggiani Muccioli, G.M.; Lopomo, N.; Bruni, D.; Giordano, G.; Ravazzolo, G.; Molinari, M.; Marcacci, M. Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: A minimum 10-year follow-up study. Am. J. Sports Med. 2011, 39, 977–985. [Google Scholar] [CrossRef]
- Toanen, C.; Dhollander, A.; Bulgheroni, P.; Filardo, G.; Zaffagnini, S.; Spalding, T.; Monllau, J.C.; Gelber, P.; Verdonk, R.; Beaufils, P.; et al. Polyurethane Meniscal Scaffold for the Treatment of Partial Meniscal Deficiency: 5-Year Follow-up Outcomes: A European Multicentric Study. Am. J. Sports Med. 2020, 48, 1347–1355. [Google Scholar] [CrossRef]
- Kohn, D.; Wirth, C.J.; Reiss, G.; Plitz, W.; Maschek, H.; Erhardt, W.; Wülker, N. Medial meniscus replacement by a tendon autograft. Experiments in sheep. J. Bone Jt. Surg. Br. 1992, 74, 910–917. [Google Scholar] [CrossRef]
- Ozeki, N.; Muneta, T.; Koga, H.; Katagiri, H.; Otabe, K.; Okuno, M.; Tsuji, K.; Kobayashi, E.; Matsumoto, K.; Saito, H.; et al. Transplantation of Achilles tendon treated with bone morphogenetic protein 7 promotes meniscus regeneration in a rat model of massive meniscal defect. Arthritis Rheumatol. 2013, 65, 2876–2886. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.L.; Feagin, J.A. Autogenous tendon graft substitution for absent knee joint meniscus: A pilot study. Arthroscopy 2000, 16, 191–196. [Google Scholar] [CrossRef]
- Ronnblad, E.; Rotzius, P.; Eriksson, K. Autologous semitendinosus tendon graft could function as a meniscal transplant. Knee Surg. Sports Traumatol. Arthrosc. 2021. [Google Scholar] [CrossRef]
- Patel, J.M.; Merriam, A.R.; Culp, B.M.; Gatt, C.J., Jr.; Dunn, M.G. One-Year Outcomes of Total Meniscus Reconstruction Using a Novel Fiber-Reinforced Scaffold in an Ovine Model. Am. J. Sports Med. 2016, 44, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Mizuno, M.; Matsuda, J.; Nakamura, N.; Otabe, K.; Katano, H.; Ozeki, N.; Kohno, Y.; Kimura, T.; Tsuji, K.; et al. Comparison of High-Hydrostatic-Pressure Decellularized Versus Freeze-Thawed Porcine Menisci. J. Orthop. Res. 2019, 37, 2466–2475. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Brown, W.E.; Lee, C.A.; Wang, D.; Paschos, N.; Hu, J.C.; Athanasiou, K.A. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat. Rev. Rheumatol. 2019, 15, 550–570. [Google Scholar] [CrossRef] [PubMed]
- Korpershoek, J.V.; de Windt, T.S.; Hagmeijer, M.H.; Vonk, L.A.; Saris, D.B. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation? A Systematic Review of Preclinical Studies. Orthop. J. Sports Med. 2017, 5, 2325967117690131. [Google Scholar] [CrossRef] [Green Version]
- Wasserstein, D.; Dwyer, T.; Gandhi, R.; Austin, P.C.; Mahomed, N.; Ogilvie-Harris, D. A matched-cohort population study of reoperation after meniscal repair with and without concomitant anterior cruciate ligament reconstruction. Am. J. Sports Med. 2013, 41, 349–355. [Google Scholar] [CrossRef]
- Dean, C.S.; Chahla, J.; Matheny, L.M.; Mitchell, J.J.; LaPrade, R.F. Outcomes After Biologically Augmented Isolated Meniscal Repair with Marrow Venting Are Comparable with Those After Meniscal Repair with Concomitant Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2017, 45, 1341–1348. [Google Scholar] [CrossRef]
- Van Trommel, M.F.; Simonian, P.T.; Potter, H.G.; Wickiewicz, T.L. Arthroscopic meniscal repair with fibrin clot of complete radial tears of the lateral meniscus in the avascular zone. Arthroscopy 1998, 14, 360–365. [Google Scholar] [CrossRef]
- Aoki, H.; Ozeki, N.; Katano, H.; Hyodo, A.; Miura, Y.; Matsuda, J.; Takanashi, K.; Suzuki, K.; Masumoto, J.; Okanouchi, N.; et al. Relationship between medial meniscus extrusion and cartilage measurements in the knee by fully automatic three-dimensional MRI analysis. BMC Musculoskelet. Disord. 2020, 21, 742. [Google Scholar] [CrossRef]
- Haunschild, E.D.; Huddleston, H.P.; Chahla, J.; Gilat, R.; Cole, B.J.; Yanke, A.B. Platelet-Rich Plasma Augmentation in Meniscal Repair Surgery: A Systematic Review of Comparative Studies. Arthroscopy 2020, 36, 1765–1774. [Google Scholar] [CrossRef]
- Everhart, J.S.; Cavendish, P.A.; Eikenberry, A.; Magnussen, R.A.; Kaeding, C.C.; Flanigan, D.C. Platelet-Rich Plasma Reduces Failure Risk for Isolated Meniscal Repairs but Provides No Benefit for Meniscal Repairs with Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2019, 47, 1789–1796. [Google Scholar] [CrossRef]
- Whitehouse, M.R.; Howells, N.R.; Parry, M.C.; Austin, E.; Kafienah, W.; Brady, K.; Goodship, A.E.; Eldridge, J.D.; Blom, A.W.; Hollander, A.P. Repair of Torn Avascular Meniscal Cartilage Using Undifferentiated Autologous Mesenchymal Stem Cells: From In Vitro Optimization to a First-in-Human Study. Stem Cells Transl. Med. 2017, 6, 1237–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakaguchi, Y.; Sekiya, I.; Yagishita, K.; Muneta, T. Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis Rheumatol. 2005, 52, 2521–2529. [Google Scholar] [CrossRef] [PubMed]
- Segawa, Y.; Muneta, T.; Makino, H.; Nimura, A.; Mochizuki, T.; Ju, Y.J.; Ezura, Y.; Umezawa, A.; Sekiya, I. Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. J. Orthop. Res. 2009, 27, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, I.; Koga, H.; Otabe, K.; Nakagawa, Y.; Katano, H.; Ozeki, N.; Mizuno, M.; Horie, M.; Kohno, Y.; Katagiri, K.; et al. Additional Use of Synovial Mesenchymal Stem Cell Transplantation Following Surgical Repair of a Complex Degenerative Tear of the Medial Meniscus of the Knee: A Case Report. Cell Transplant. 2019, 28, 1445–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vangsness, C.T., Jr.; Farr, J., II; Boyd, J.; Dellaero, D.T.; Mills, C.R.; LeRoux-Williams, M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: A randomized, double-blind, controlled study. J. Bone Jt. Surg. Am. 2014, 96, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Olivos-Meza, A.; Perez Jimenez, F.J.; Granados-Montiel, J.; Landa-Solis, C.; Cortes Gonzalez, S.; Jimenez Aroche, C.A.; Valdez Chavez, M.; Renan Leon, S.; Gomez-Garcia, R.; Martinez-Lopez, V.; et al. First Clinical Application of Polyurethane Meniscal Scaffolds with Mesenchymal Stem Cells and Assessment of Cartilage Quality with T2 Mapping at 12 Months. Cartilage 2021, 13, 197S–207S. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozeki, N.; Koga, H.; Sekiya, I. Degenerative Meniscus in Knee Osteoarthritis: From Pathology to Treatment. Life 2022, 12, 603. https://doi.org/10.3390/life12040603
Ozeki N, Koga H, Sekiya I. Degenerative Meniscus in Knee Osteoarthritis: From Pathology to Treatment. Life. 2022; 12(4):603. https://doi.org/10.3390/life12040603
Chicago/Turabian StyleOzeki, Nobutake, Hideyuki Koga, and Ichiro Sekiya. 2022. "Degenerative Meniscus in Knee Osteoarthritis: From Pathology to Treatment" Life 12, no. 4: 603. https://doi.org/10.3390/life12040603
APA StyleOzeki, N., Koga, H., & Sekiya, I. (2022). Degenerative Meniscus in Knee Osteoarthritis: From Pathology to Treatment. Life, 12(4), 603. https://doi.org/10.3390/life12040603