Data Collection for Dilute Protein Solutions via a Neutron Backscattering Spectrometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation of Hef-IDR Solutions
2.2. D2O-Boehmite Coated Sample Cells
2.3. QENS Measurements for Protein Solutions
3. Results and Discussions
3.1. Scattering Profile of D2O-Boehmite Coating Cell
3.2. Scattering Profiles of the Hef-IDR Solution, the Buffer, and the Empty Cell
3.3. Temperature Dependence of Protein Dynamics in the Hef-IDR Protein Solutions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitter, J.; Gutberlet, T.; Katsaras, J. Neutron Scattering in Biology: Techniques and Applications; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-29108-4. [Google Scholar]
- Mahieu, E.; Gabel, F. Biological small-angle neutron scattering: Recent results and development. Acta Crystallogr. Sect. D Struct. Biol. 2018, 74, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Karplus, M.; Weaver, D.L. Protein folding dynamics: The diffusion-collision model and experimental data. Protein Sci. 1994, 3, 650–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, R.E.; Myers, J.K.; Oas, T.G. Protein Folding Dynamics: Quantitative Comparison between Theory and Experiment. Biochemistry 1998, 37, 5337–5343. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.S.; Dill, K.A. Protein folding in the landscape perspective: Chevron plots and non-Arrhenius kinetics. Proteins Struct. Funct. Genet. 1998, 30, 2–33. [Google Scholar] [CrossRef]
- Portman, J.J.; Takada, S.; Wolynes, P.G. Microscopic theory of protein folding rates. II. Local reaction coordinates and chain dynamics. J. Chem. Phys. 2001, 114, 5082–5096. [Google Scholar] [CrossRef] [Green Version]
- Ashkar, R.; Bilheux, H.Z.; Bordallo, H.; Briber, R.; Callaway, D.J.E.; Cheng, X.; Chu, X.-Q.; Curtis, J.E.; Dadmun, M.; Fenimore, P.; et al. Neutron scattering in the biological sciences: Progress and prospects. Acta Crystallogr. Sect. D Struct. Biol. 2018, 74, 1129–1168. [Google Scholar] [CrossRef] [Green Version]
- Gabel, F.; Bicout, D.; Lehnert, U.; Tehei, M.; Weik, M.; Zaccai, G. Protein dynamics studied by neutron scattering. Q. Rev. Biophys. 2002, 35, 327–367. [Google Scholar] [CrossRef]
- Grimaldo, M.; Roosen-Runge, F.; Zhang, F.; Schreiber, F.; Seydel, T. Dynamics of proteins in solution. Q. Rev. Biophys. 2019, 52, e7. [Google Scholar] [CrossRef] [Green Version]
- Melchers, B.; Knapp, E.W.; Parak, F.; Cordone, L.; Cupane, A.; Leone, M. Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy. Biophys. J. 1996, 70, 2092–2099. [Google Scholar] [CrossRef] [Green Version]
- Zanotti, J.-M.; Bellissent-Funel, M.-C.; Parello, J. Hydration-Coupled Dynamics in Proteins Studied by Neutron Scattering and NMR: The Case of the Typical EF-Hand Calcium-Binding Parvalbumin. Biophys. J. 1999, 76, 2390–2411. [Google Scholar] [CrossRef] [Green Version]
- Rupley, J.A.; Careri, G. Protein Hydration and Function. Adv. Protein Chem. 1991, 47, 37–172. [Google Scholar] [CrossRef]
- Pérez, J.; Zanotti, J.-M.; Durand, D. Evolution of the Internal Dynamics of Two Globular Proteins from Dry Powder to Solution. Biophys. J. 1999, 77, 454–469. [Google Scholar] [CrossRef] [Green Version]
- Zaccai, G.; Tehei, M.; Scherbakova, I.; Serdyuk, I.; Gerez, C.; Pfister, C. Incoherent elastic neutron scattering as a function of temperature: A fast way to characterise in-situ biological dynamics in complex solutions. J. Phys. IV Fr. 2000, 10, Pr7-283–Pr7-287. [Google Scholar] [CrossRef]
- Bon, C.; Dianoux, A.J.; Ferrand, M.; Lehmann, M.S. A Model for Water Motion in Crystals of Lysozyme Based on an Incoherent Quasielastic Neutron-Scattering Study. Biophys. J. 2002, 83, 1578–1588. [Google Scholar] [CrossRef] [Green Version]
- Bon, C.; Lehmann, M.S.; Wilkinson, C. Quasi-Laue neutron-diffraction study of the water arrangement in crystals of triclinic hen egg-white lysozyme. Acta Crystallogr. Sect. D Biol. Crystallogr. 1999, 55, 978–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monkenbusch, M.; Stadler, A.; Biehl, R.; Ollivier, J.; Zamponi, M.; Richter, D. Fast internal dynamics in alcohol dehydrogenase. J. Chem. Phys. 2015, 143, 075101. [Google Scholar] [CrossRef] [Green Version]
- Shibata, K.; Takahashi, N.; Kawakita, Y.; Matsuura, M.; Yamada, T.; Tominaga, T.; Kambara, W.; Kobayashi, M.; Inamura, Y.; Nakatani, T.; et al. The Performance of TOF near Backscattering Spectrometer DNA in MLF, J-PARC. In Proceedings of the 2nd International Symposium on Science at J-PARC: Unlocking the Mysteries of Life, Matter and the Universe, Tsukuba, Japan, 12–15 July 2014. [Google Scholar]
- Fujiwara, S.; Yamada, T.; Matsuo, T.; Takahashi, N.; Kamazawa, K.; Kawakita, Y.; Shibata, K. Internal Dynamics of a Protein That Forms the Amyloid Fibrils Observed by Neutron Scattering. J. Phys. Soc. Jpn. 2013, 82, SA019. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, S.; Araki, K.; Matsuo, T.; Yagi, H.; Yamada, T.; Shibata, K.; Mochizuki, H. Dynamical Behavior of Human α-Synuclein Studied by Quasielastic Neutron Scattering. PLoS ONE 2016, 11, e0151447. [Google Scholar] [CrossRef]
- Fujiwara, S.; Chatake, T.; Matsuo, T.; Kono, F.; Tominaga, T.; Shibata, K.; Sato-Tomita, A.; Shibayama, N. Ligation-Dependent Picosecond Dynamics in Human Hemoglobin as Revealed by Quasielastic Neutron Scattering. J. Phys. Chem. B 2017, 121, 8069–8077. [Google Scholar] [CrossRef]
- Fujiwara, S.; Matsuo, T.; Sugimoto, Y.; Shibata, K. Segmental Motions of Proteins under Non-native States Evaluated Using Quasielastic Neutron Scattering. J. Phys. Chem. Lett. 2019, 10, 7505–7509. [Google Scholar] [CrossRef]
- Fujiwara, S.; Kono, F.; Matsuo, T.; Sugimoto, Y.; Matsumoto, T.; Narita, A.; Shibata, K. Dynamic Properties of Human α-Synuclein Related to Propensity to Amyloid Fibril Formation. J. Mol. Biol. 2019, 431, 3229–3245. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; Tominaga, T.; Kono, F.; Shibata, K.; Fujiwara, S. Modulation of the picosecond dynamics of troponin by the cardiomyopathy-causing mutation K247R of troponin T observed by quasielastic neutron scattering. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2017, 1865, 1781–1789. [Google Scholar] [CrossRef] [PubMed]
- Inoue, R.; Oda, T.; Nakagawa, H.; Tominaga, T.; Saio, T.; Kawakita, Y.; Shimizu, M.; Okuda, A.; Morishima, K.; Sato, N.; et al. Dynamics of proteins with different molecular structures under solution condition. Sci. Rep. 2020, 10, 21678. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Saio, T.; Nagao, M.; Inoue, R.; Sugiyama, M.; Ajito, S.; Tominaga, T.; Kawakita, Y. Conformational dynamics of a multidomain protein by neutron scattering and computational analysis. Biophys. J. 2021, 120, 3341–3354. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, T.; Sahara, M.; Kawakita, Y.; Nakagawa, H.; Yamada, T. Evaluation of sample cell materials for aqueous solutions used in quasi-elastic neutron scattering measurements. J. Appl. Crystallogr. 2021, 54, 1631–1640. [Google Scholar] [CrossRef]
- Tominaga, T.; Sahara, M.; Kawakita, Y.; Nakagawa, H.; Shimamoto, N. Corrosion of Aluminum-based Containers for Neutron Studies with Aqueous Samples under Low Temperatures. In Proceedings of the 3rd J-PARC Symposium (J-PARC2019), Tsukuba, Japan, 23–26 September 2019; p. 011094. [Google Scholar]
- Vargel, C. Corrosion of Aluminium, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780080999258. [Google Scholar]
- Paalman, H.H.; Pings, C.J. Numerical Evaluation of X-Ray Absorption Factors for Cylindrical Samples and Annular Sample Cells. J. Appl. Phys. 1962, 33, 2635–2639. [Google Scholar] [CrossRef]
- Fitter, J. Conformational dynamics of a protein in the folded and the unfolded state. Chem. Phys. 2003, 292, 405–411. [Google Scholar] [CrossRef]
- Tominaga, T.; Kobayashi, M.; Yamada, T.; Matsuura, M.; Kawakita, Y.; Kasai, S. Position-Encoded Automatic Cell Elevator for BL02, J-PARC MLF. In Proceedings of the 3rd J-PARC Symposium (J-PARC2019), Tsukuba, Japan, 23–26 September 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tominaga, T.; Nakagawa, H.; Sahara, M.; Oda, T.; Inoue, R.; Sugiyama, M. Data Collection for Dilute Protein Solutions via a Neutron Backscattering Spectrometer. Life 2022, 12, 675. https://doi.org/10.3390/life12050675
Tominaga T, Nakagawa H, Sahara M, Oda T, Inoue R, Sugiyama M. Data Collection for Dilute Protein Solutions via a Neutron Backscattering Spectrometer. Life. 2022; 12(5):675. https://doi.org/10.3390/life12050675
Chicago/Turabian StyleTominaga, Taiki, Hiroshi Nakagawa, Masae Sahara, Takashi Oda, Rintaro Inoue, and Masaaki Sugiyama. 2022. "Data Collection for Dilute Protein Solutions via a Neutron Backscattering Spectrometer" Life 12, no. 5: 675. https://doi.org/10.3390/life12050675
APA StyleTominaga, T., Nakagawa, H., Sahara, M., Oda, T., Inoue, R., & Sugiyama, M. (2022). Data Collection for Dilute Protein Solutions via a Neutron Backscattering Spectrometer. Life, 12(5), 675. https://doi.org/10.3390/life12050675