Quantification of Lung Perfusion Blood Volume in Dual-Energy Computed Tomography in Patients with Pulmonary Hypertension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Population
2.3. Data Collection and Measurement
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics in PH and Control Groups
3.2. Measurement of LPBV by DECT
3.3. Association between LPBV Measured by DECT and Pulmonary Blood Flow Scintigraphy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galie, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 2016, 37, 67–119. [Google Scholar] [PubMed]
- Lau, E.M.; Manes, A.; Celermajer, D.S.; Galie, N. Early detection of pulmonary vascular disease in pulmonary arterial hypertension: Time to move forward. Eur. Heart J. 2011, 32, 2489–2498. [Google Scholar] [CrossRef] [PubMed]
- Grosse, C.; Grosse, A. CT findings in diseases associated with pulmonary hypertension: A current review. Radiographics 2010, 30, 1753–1777. [Google Scholar] [CrossRef]
- Boroto, K.; Remy-Jardin, M.; Flohr, T.; Faivre, J.B.; Pansini, V.; Tacelli, N.; Schmidt, B.; Gorgos, A.; Remy, J. Thoracic applications of dual-source CT technology. Eur. J. Radiol. 2008, 68, 375–384. [Google Scholar] [CrossRef]
- Fink, C.; Johnson, T.R.; Michaely, H.J.; Morhard, D.; Becker, C.; Reiser, M.; Nikolaou, K. Dual-energy CT angiography of the lung in patients with suspected pulmonary embolism: Initial results. Rofo 2008, 180, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Thieme, S.F.; Becker, C.R.; Hacker, M.; Nikolaou, K.; Reiser, M.F.; Johnson, T.R. Dual energy CT for the assessment of lung perfusion--correlation to scintigraphy. Eur. J. Radiol. 2008, 68, 369–374. [Google Scholar] [CrossRef]
- Pontana, F.; Faivre, J.B.; Remy-Jardin, M.; Flohr, T.; Schmidt, B.; Tacelli, N.; Pansini, V.; Remy, J. Lung perfusion with dual-energy multidetector-row CT (MDCT): Feasibility for the evaluation of acute pulmonary embolism in 117 consecutive patients. Acad. Radiol. 2008, 15, 1494–1504. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Maier, R.; Tongers, J.; Niedermeyer, J.; Hohlfeld, J.M.; Hamm, M.; Fabel, H. Determination of cardiac output by the Fick method, thermodilution, and acetylene rebreathing in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 1999, 160, 535–541. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [Green Version]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713, quiz 786-788. [Google Scholar]
- Humbert, M.; Guignabert, C.; Bonnet, S.; Dorfmüller, P.; Klinger, J.R.; Nicolls, M.R.; Olschewski, A.J.; Pullamsetti, S.S.; Schermuly, R.T.; Stenmark, K.R.; et al. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur. Respir. J. 2019, 53, 1801887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heath, D.; Edwards, J.E. The pathology of hypertensive pulmonary vascular disease; a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation 1958, 18, 533–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toba, M.; Alzoubi, A.; O’Neill, K.D.; Gairhe, S.; Matsumoto, Y.; Oshima, K.; Abe, K.; Oka, M.; McMurtry, I.F. Temporal hemodynamic and histological progression in Sugen5416/hypoxia/normoxia-exposed pulmonary arterial hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H243–H250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, Y.; Nishimura, T.; Hayashida, K.; Uehara, T.; Shimonagata, T. Perfusion lung scintigraphy in primary pulmonary hypertension. Br. J. Radiol. 1993, 66, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ma, R.; Wu, D.; Xiong, C.; He, J.; Wang, L.; Sun, X.; Fang, W. Value of lung perfusion scintigraphy in patients with idiopathic pulmonary arterial hypertension: A patchy pattern to consider. Pulm. Circ. 2019, 9, 2045894018816968. [Google Scholar] [CrossRef] [Green Version]
- Fukuchi, K.; Hayashida, K.; Nakanishi, N.; Inubushi, M.; Kyotani, S.; Nagaya, N.; Ishida, Y. Quantitative analysis of lung perfusion in patients with primary pulmonary hypertension. J. Nucl. Med. 2002, 43, 757–761. [Google Scholar]
- Lau, E.M.; Bailey, D.L.; Bailey, E.A.; Torzillo, P.J.; Roach, P.J.; Schembri, G.P.; Corte, T.J.; Celermajer, D.S. Pulmonary hypertension leads to a loss of gravity dependent redistribution of regional lung perfusion: A SPECT/CT study. Heart 2014, 100, 47–53. [Google Scholar] [CrossRef]
- Simonneau, G.; Gatzoulis, M.A.; Adatia, I.; Celermajer, D.; Denton, C.; Ghofrani, A.; Gomez Sanchez, M.A.; Krishna Kumar, R.; Landzberg, M.; Machado, R.F.; et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 2013, 62 (Suppl. S25), D34–D41. [Google Scholar] [CrossRef] [Green Version]
- Dournes, G.; Verdier, D.; Montaudon, M.; Bullier, E.; Rivière, A.; Dromer, C.; Picard, F.; Billes, M.A.; Corneloup, O.; Laurent, F.; et al. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: Diagnostic accuracy and concordance with radionuclide scintigraphy. Eur. Radiol. 2014, 24, 42–51. [Google Scholar] [CrossRef]
- Masy, M.; Giordano, J.; Petyt, G.; Hossein-Foucher, C.; Duhamel, A.; Kyheng, M.; De Groote, P.; Fertin, M.; Lamblin, N.; Bervar, J.F.; et al. Dual-energy CT (DECT) lung perfusion in pulmonary hypertension: Concordance rate with V/Q scintigraphy in diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). Eur. Radiol. 2018, 28, 5100–5110. [Google Scholar] [CrossRef]
- Koike, H.; Sueyoshi, E.; Sakamoto, I.; Uetani, M.; Nakata, T.; Maemura, K. Comparative clinical and predictive value of lung perfusion blood volume CT, lung perfusion SPECT and catheter pulmonary angiography images in patients with chronic thromboembolic pulmonary hypertension before and after balloon pulmonary angioplasty. Eur. Radiol. 2018, 28, 5091–5099. [Google Scholar] [CrossRef]
- Vincent, W.R.; Goldberg, S.J.; Desilets, D. Fatality immediately following rapid infusion of macroaggregates of 99mTc albumin (MAA) for lung scan. Radiology 1968, 91, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.O. Death following injection of lung scanning agent in a case of pulmonary hypertension. Br. J. Radiol. 1974, 47, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.W.; FitzGerald, P.F.; Edic, P.M.; Sun, Y.; Bonitatibus, P.J., Jr.; Colborn, R.E.; Yeh, B.M. The Effect of Patient Diameter on the Dual-Energy Ratio of Selected Contrast-Producing Elements. J. Comput. Assist. Tomogr. 2017, 41, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Park, C.M.; Lee, C.H.; Goo, G.M.; Lee, H.J. Dual-energy CT: Clinical applications in various pulmonary diseases. Radiographics 2010, 30, 685–698. [Google Scholar] [CrossRef] [PubMed]
PH Group N = 25 | Control Group N = 20 | p Value | |
---|---|---|---|
Age (years) | 44 ± 16 | 42 ± 13 | 0.622 |
Female (%) | 17 (68) | 17 (34) | 0.183 |
BMI (kg/m2) | 21 ± 3 | 22 ± 4 | 0.569 |
Heart rate (bpm) | 76 ± 13 | 76 ± 15 | 0.886 |
Blood pressure (mmHg) | |||
Systolic | 113 ± 17 | 114 ± 10 | 0.843 |
Diastolic | 68 ± 14 | 70 ± 7 | 0.537 |
SpO2 (%) | 97 ± 3 | 98 ± 1 | 0.114 |
Blood examination | |||
BNP (pg/mL) | 196 ± 346 | 14 ± 9 | 0.015 |
Echocardiography | |||
TRPG (mmHg) | 59 ± 20 | 17 ± 3 | <0.001 |
TAPSE (mm) | 19 ± 5 | ||
Etiology, n (%) | NA | NA | |
Idiopathic | 7 (28) | ||
Collagen disease | 9 (36) | ||
Congenital heart disease | 6 (24) | ||
Others | 3 (12) | ||
WHO functional class | NA | NA | |
II | 17 (68) | ||
III | 6 (24) | ||
IV | 2 (8) | ||
Pulmonary function test | NA | NA | |
FEV1 (%) | 78.8 ± 9.6 | ||
FVC (%) | 85.5 ± 13.4 | ||
%DLCO | 54 ± 18 | ||
Hemodynamics | NA | NA | |
SPAP (mmHg) | 59 ± 16 | ||
DPAP (mmHg) | 26 ± 7 | ||
mPAP (mmHg) | 39 ± 10 | ||
PAWP (mmHg) | 9 ± 4 | ||
RAP (mmHg) | 5 ± 3 | ||
CO (L/min) | 5.1 ± 2.3 | ||
CI (L/min/m2) | 3.2 ± 1.4 | ||
PVR (wood units) | 7.4 ± 4.5 |
PH Group N = 25 | Control Group N = 20 | p Value | |
---|---|---|---|
LPBV | |||
Total PBV | 38 ± 9 | 45 ± 8 | 0.024 |
Right PBV | 38 ± 10 | 44 ± 8 | 0.039 |
Left PBV | 39 ± 9 | 45 ± 9 | 0.021 |
Left-upper PBV | 34 ± 10 | 47 ± 10 | <0.001 |
Left-middle PBV | 40 ± 9 | 45 ± 9 | 0.081 |
Left-lower PBV | 43 ± 11 | 44 ± 10 | 0.701 |
Right-upper PBV | 37 ± 10 | 47 ± 8 | <0.001 |
Right-middle PBV | 39 ± 10 | 43 ± 8 | 0.086 |
Right-lower PBV | 40 ± 10 | 42 ± 9 | 0.516 |
The ratio of LPBV in each lung | |||
Right lung | 1.00 ± 0.03 | 0.99 ± 0.02 | 0.228 |
Left lung | 1.01 ± 0.04 | 1.02 ± 0.03 | 0.494 |
Right upper | 0.95 ± 0.07 | 1.05 ± 0.10 | <0.001 |
Right middle | 1.01 ± 0.05 | 0.97 ± 0.04 | 0.012 |
Right lower | 1.04 ± 0.07 | 0.93 ± 0.06 | <0.001 |
Left upper | 0.89 ± 0.14 | 1.05 ± 0.08 | <0.001 |
Left middle | 1.05 ± 0.08 | 1.01 ± 0.04 | 0.021 |
Left lower | 1.12 ± 0.13 | 0.99 ± 0.07 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugawa, S.; Akagi, S.; Ejiri, K.; Nakamura, K.; Ito, H. Quantification of Lung Perfusion Blood Volume in Dual-Energy Computed Tomography in Patients with Pulmonary Hypertension. Life 2022, 12, 684. https://doi.org/10.3390/life12050684
Ugawa S, Akagi S, Ejiri K, Nakamura K, Ito H. Quantification of Lung Perfusion Blood Volume in Dual-Energy Computed Tomography in Patients with Pulmonary Hypertension. Life. 2022; 12(5):684. https://doi.org/10.3390/life12050684
Chicago/Turabian StyleUgawa, Satoko, Satoshi Akagi, Kentaro Ejiri, Kazufumi Nakamura, and Hiroshi Ito. 2022. "Quantification of Lung Perfusion Blood Volume in Dual-Energy Computed Tomography in Patients with Pulmonary Hypertension" Life 12, no. 5: 684. https://doi.org/10.3390/life12050684
APA StyleUgawa, S., Akagi, S., Ejiri, K., Nakamura, K., & Ito, H. (2022). Quantification of Lung Perfusion Blood Volume in Dual-Energy Computed Tomography in Patients with Pulmonary Hypertension. Life, 12(5), 684. https://doi.org/10.3390/life12050684