Statistical Quantification of the Effects of Marker Misplacement and Soft-Tissue Artifact on Shoulder Kinematics and Kinetics
Abstract
:1. Introduction
2. Methods
2.1. Participant
2.2. Experimental Motion Trajectories
2.3. Multi-Body Model
2.4. Baseline Trajectories
2.5. Marker Perturbation
2.5.1. Marker Offset
2.5.2. STA
2.6. Monte-Carlo Approach
2.7. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koski, A.V.; McGill, S.M. Dynamic Shoulder Flexion Strength: For Use in Occupational Risk Analysis and Clinical Assessment. Clin. Biomech. 1994, 9, 99–104. [Google Scholar] [CrossRef]
- Galloway, J.C.; Koshland, G.F. General Coordination of Shoulder, Elbow and Wrist Dynamics during Multijoint Arm Movements. Exp. Brain Res. 2002, 142, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Aguinaldo, A.L.; Buttermore, J.; Chambers, H. Effects of Upper Trunk Rotation on Shoulder Joint Torque among Baseball Pitchers of Various Levels. J. Appl. Biomech. 2007, 23, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chèze, L.; Moissenet, F.; Dumas, R. State of the Art and Current Limits of Musculo-Skeletal Models for Clinical Applications. Mov. Sport Sci. Sci. Mot. 2015, 17, 7–17. [Google Scholar] [CrossRef]
- Lu, T.W.; O’Connor, J.J. Bone Position Estimation from Skin Marker Co-Ordinates Using Global Optimisation with Joint Constraints. J. Biomech. 1999, 32, 129–134. [Google Scholar] [CrossRef]
- Lund, M.E.; Andersen, M.S.; de Zee, M.; Rasmussen, J. Scaling of Musculoskeletal Models from Static and Dynamic Trials. Int. Biomech. 2015, 2, 1–11. [Google Scholar] [CrossRef]
- Wu, W.; Lee, P.V.S.; Bryant, A.L.; Galea, M.; Ackland, D.C. Subject-Specific Musculoskeletal Modeling in the Evaluation of Shoulder Muscle and Joint Function. J. Biomech. 2016, 49, 3626–3634. [Google Scholar] [CrossRef]
- Klemt, C.; Nolte, D.; Ding, Z.; Rane, L.; Quest, R.A.; Finnegan, M.E.; Walker, M.; Reilly, P.; Bull, A.M.J. Anthropometric Scaling of Anatomical Datasets for Subject-Specific Musculoskeletal Modelling of the Shoulder. Ann. Biomed. Eng. 2019, 47, 924–936. [Google Scholar] [CrossRef] [Green Version]
- Myers, C.A.; Laz, P.J.; Shelburne, K.B.; Davidson, B.S. A Probabilistic Approach to Quantify the Impact of Uncertainty Propagation in Musculoskeletal Simulations. Ann. Biomed. Eng. 2015, 43, 1098–1111. [Google Scholar] [CrossRef] [Green Version]
- Reinbolt, J.A.; Haftka, R.T.; Chmielewski, T.L.; Fregly, B.J. Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait? IEEE Trans. Biomed. Eng. 2007, 54, 782–793. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Hu, H. Human Motion Tracking for Rehabilitation—A Survey. Biomed. Signal Process. Control 2008, 3, 1–18. [Google Scholar] [CrossRef]
- Windolf, M.; Götzen, N.; Morlock, M. Systematic Accuracy and Precision Analysis of Video Motion Capturing Systems-Exemplified on the Vicon-460 System. J. Biomech. 2008, 41, 2776–2780. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Van Der Helm, F.C.T.; Veeger, H.E.J.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.; Fedrigo, T.; Brüls, O.; Cescotto, S.; Denoël, V.; Croisier, J.-L.; Forthomme, B. Reproducibility and Repeatability of Upper Limb Landmarks Palpation for Junior Operators. In Proceedings of the XXIII Congress of the International Society of Biomechanics (ISB), Brussels, Belgium, 3–7 July 2011. [Google Scholar]
- De Groot, J.H. The Variability of Shoulder Motions Recorded by Means of Palpation. Clin. Biomech. 1997, 12, 461–472. [Google Scholar] [CrossRef]
- Camomilla, V.; Dumas, R.; Cappozzo, A. Human Movement Analysis: The Soft Tissue Artefact Issue. J. Biomech. 2017, 62, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Warner, M.B.; Chappell, P.H.; Stokes, M.J. Measuring Scapular Kinematics during Arm Lowering Using the Acromion Marker Cluster. Hum. Mov. Sci. 2012, 31, 386–396. [Google Scholar] [CrossRef]
- Warner, M.B.; Chappell, P.H.; Stokes, M.J. Measurement of Dynamic Scapular Kinematics Using an Acromion Marker Cluster to Minimize Skin Movement Artifact. J. Vis. Exp. 2015, 96, e51717. [Google Scholar] [CrossRef] [Green Version]
- Matsui, K.; Shimada, K.; Andrew, P.D. Deviation of Skin Marker from Bone Target during Movement of the Scapula. J. Orthop. Sci. 2006, 11, 180–184. [Google Scholar] [CrossRef]
- Blache, Y.; Dumas, R.; Lundberg, A.; Begon, M. Main Component of Soft Tissue Artifact of the Upper-Limbs with Respect to Different Functional, Daily Life and Sports Movements. J. Biomech. 2017, 62, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Bourgain, M.; Hybois, S.; Thoreux, P.; Rouillon, O.; Rouch, P.; Sauret, C. Effect of Shoulder Model Complexity in Upper-Body Kinematics Analysis of the Golf Swing. J. Biomech. 2018, 75, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Cutti, A.G.; Paolini, G.; Troncossi, M.; Cappello, A.; Davalli, A. Soft Tissue Artefact Assessment in Humeral Axial Rotation. Gait Posture 2005, 21, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Naaim, A.; Moissenet, F.; Duprey, S.; Begon, M.; Chèze, L. Effect of Various Upper Limb Multibody Models on Soft Tissue Artefact Correction: A Case Study. J. Biomech. 2017, 62, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Croce, U.; Cappozzo, A.; Kerrigan, D.C. Pelvis and Lower Limb Anatomical Landmark Calibration Precision and Its Propagation to Bone Geometry and Joint Angles. Med. Biol. Eng. Comput. 1999, 37, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Zheng, N.N. Investigation of Soft Tissue Movement during Level Walking: Translations and Rotations of Skin Markers. J. Biomech. 2008, 41, 3189–3195. [Google Scholar] [CrossRef]
- Ackland, D.C.; Lin, Y.C.; Pandy, M.G. Sensitivity of Model Predictions of Muscle Function to Changes in Moment Arms and Muscle-Tendon Properties: A Monte-Carlo Analysis. J. Biomech. 2012, 45, 1463–1471. [Google Scholar] [CrossRef]
- Wu, W.; Lee, P.V.S.; Ackland, D.C. The Sensitivity of Shoulder Muscle and Joint Force Predictions to Changes in Joint Kinematics: A Monte-Carlo Analysis. Gait Posture 2017, 54, 87–92. [Google Scholar] [CrossRef]
- Ehrig, R.M.; Taylor, W.R.; Duda, G.N.; Heller, M.O. A Survey of Formal Methods for Determining the Centre of Rotation of Ball Joints. J. Biomech. 2006, 39, 2798–2809. [Google Scholar] [CrossRef]
- Nikooyan, A.A.; Veeger, H.E.J.; Westerhoff, P.; Graichen, F.; Bergmann, G.; van der Helm, F.C.T. Validation of the Delft Shoulder and Elbow Model Using In-Vivo Glenohumeral Joint Contact Forces. J. Biomech. 2010, 43, 3007–3014. [Google Scholar] [CrossRef]
- Valente, G.; Crimi, G.; Vanella, N.; Schileo, E.; Taddei, F. NMSBUILDER: Freeware to Create Subject-Specific Musculoskeletal Models for OpenSim. Comput. Methods Programs Biomed. 2017, 152, 85–92. [Google Scholar] [CrossRef]
- Martelli, S.; Taddei, F.; Testi, D.; Delp, S.; Viceconti, M. NMSBuilder: An Application to Personalize NMS Models. In Proceedings of the XXIII Congress of the International Society of Biomechanics (ISB), Brussels, Belgium, 3–7 July 2011; pp. 3–4. [Google Scholar]
- Meskers, C.G.M.; Van Der Helm, F.C.T.; Rozendaal, L.A.; Rozing, P.M. In Vivo Estimation of the Glenohumeral Joint Rotation Center from Scapular Bony Landmarks by Linear Regression. J. Biomech. 1998, 31, 93–96. [Google Scholar] [CrossRef]
- Šenk, M.; Chèze, L. Rotation Sequence as an Important Factor in Shoulder Kinematics. Clin. Biomech. 2006, 21 (Suppl. 1), 3–8. [Google Scholar] [CrossRef] [PubMed]
- Konda, S.; Sahara, W.; Sugamoto, K. Directional Bias of Soft-Tissue Artifacts on the Acromion during Recording of 3D Scapular Kinematics. J. Biomech. 2018, 73, 217–222. [Google Scholar] [CrossRef] [PubMed]
- van Andel, C.; van Hutten, K.; Eversdijk, M.; Veeger, D.J.; Harlaar, J. Recording Scapular Motion Using an Acromion Marker Cluster. Gait Posture 2009, 29, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, W.S.; Devlin, S.J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Lempereur, M.; Brochard, S.; Leboeuf, F.; Rémy-Néris, O. Validity and Reliability of 3D Marker Based Scapular Motion Analysis: A Systematic Review. J. Biomech. 2014, 47, 2219–2230. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Dashottar, A.; Borstad, J.D. Scapula Kinematics Differ by Body Mass Index. J. Appl. Biomech. 2013, 29, 380–385. [Google Scholar] [CrossRef]
- Hamming, D.; Braman, J.P.; Phadke, V.; LaPrade, R.F.; Ludewig, P.M. The Accuracy of Measuring Glenohumeral Motion with a Surface Humeral Cuff. J. Biomech. 2012, 45, 1161–1168. [Google Scholar] [CrossRef] [Green Version]
- Veeger, H.E.J. The Position of the Rotation Center of the Glenohumeral Joint. J. Biomech. 2000, 33, 1711–1715. [Google Scholar] [CrossRef]
- Lempereur, M.; Brochard, S.; Mao, L.; Rémy-Néris, O. Validity and Reliability of Shoulder Kinematics in Typically Developing Children and Children with Hemiplegic Cerebral Palsy. J. Biomech. 2012, 45, 2028–2034. [Google Scholar] [CrossRef]
Skeletal Landmarks | Abbreviations | SD–X (mm) | SD–Y (mm) | SD–Z (mm) |
---|---|---|---|---|
Incisura Jugularis | IJ | 1.4 | 1.6 | 1.9 |
Processus Xiphoideus | PX | 2.1 | 1.6 | 2.2 |
7th cervical vertebrae | C7 | 2.3 | 3.3 | 1.9 |
8th thoracic vertebrae | T8 | 1.3 | 1.2 | 3.1 |
Acromioclavicular joint | AC | 2.3 | 1.0 | 2.7 |
Angulus Acromialis | AAc | 2.9 | 1.6 | 3.2 |
Trigonum Spinae Scapulae | TS | 3.8 | 2.0 | 2.5 |
Angulus Inferior | AI | 3.8 | 1.8 | 3.0 |
Processus Coracoideus | PC | 2.3 | 1.0 | 2.7 |
Medial epicondyle | EM | 1.8 | 2.3 | 1.8 |
Lateral epicondyle | EL | 1.8 | 2.3 | 1.8 |
Skeletal Landmarks | Motion | Simulated Phases | ND in Local X (mm) | ND in Local Y (mm) | ND in Local Z (mm) |
---|---|---|---|---|---|
AAc (TS, AI, PC followed the same NDs) | AA, IER | Phases 1 & 5 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Phases 2 & 4 | 6.4 ± 4.1 | 3.6 ± 2.9 | 0.7 ± 7.5 | ||
Phase 3 | 8.4 ± 4.5 | 6.0 ± 2.9 | −0.8 ± 6.3 | ||
AAc (TS, AI, PC followed the same NDs) | FE | Phases 1 & 5 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Phases 2 & 4 | 10.8 ± 4.8 | 3.7 ± 1.7 | 13.9 ± 7.5 | ||
Phase 3 | 16.0 ± 5.0 | 7.9 ± 3.6 | 11.9 ± 7.8 | ||
IJ, PX, C7, T8, AC, EL, EM | AA, FE, IER | Phases 1, 2, 3, 4, 5 | 0 ± 4 | 0 ± 4 | 0 ± 4 |
RMSE Between Baseline and Median | Offset | STA | Combined | |
---|---|---|---|---|
Abduction/Adduction | Angles (°) | 0.18 | 1.17 | 1.03 |
Moments (N·m) | 0.08 | 0.10 | 0.11 | |
Flexion/Extension | Angles (°) | 0.40 | 0.98 | 0.92 |
Moments (N·m) | 0.06 | 0.10 | 0.09 | |
Internal/External Rotation | Angles (°) | 0.93 | 1.24 | 1.26 |
Moments (N·m) | 0.07 | 0.09 | 0.09 |
Averaged Difference Between Min/Max Bound and Median | Offset | STA | Combined | ||
---|---|---|---|---|---|
Abduction/Adduction | Angles (°) | Min | −0.23 | −1.06 | −0.99 |
Max | +0.60 | +1.12 | +1.40 | ||
Moments (N·m) | Min | −0.16 | −0.41 | −0.47 | |
Max | +0.21 | +0.72 | +0.74 | ||
Flexion/Extension | Angles (°) | Min | −1.13 | −3.27 | −3.92 |
Max | +1.98 | +3.12 | +3.77 | ||
Moments (N·m) | Min | −0.34 | −0.77 | −0.92 | |
Max | +0.22 | +0.26 | +0.31 | ||
Internal/External Rotation | Angles (°) | Min | −0.26 | −2.78 | −2.55 |
Max | +0.83 | +1.48 | +1.23 | ||
Moments (N·m) | Min | −0.07 | −0.18 | −0.17 | |
Max | +0.21 | +0.67 | 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavaill, M.; Martelli, S.; Kerr, G.K.; Pivonka, P. Statistical Quantification of the Effects of Marker Misplacement and Soft-Tissue Artifact on Shoulder Kinematics and Kinetics. Life 2022, 12, 819. https://doi.org/10.3390/life12060819
Lavaill M, Martelli S, Kerr GK, Pivonka P. Statistical Quantification of the Effects of Marker Misplacement and Soft-Tissue Artifact on Shoulder Kinematics and Kinetics. Life. 2022; 12(6):819. https://doi.org/10.3390/life12060819
Chicago/Turabian StyleLavaill, Maxence, Saulo Martelli, Graham K. Kerr, and Peter Pivonka. 2022. "Statistical Quantification of the Effects of Marker Misplacement and Soft-Tissue Artifact on Shoulder Kinematics and Kinetics" Life 12, no. 6: 819. https://doi.org/10.3390/life12060819
APA StyleLavaill, M., Martelli, S., Kerr, G. K., & Pivonka, P. (2022). Statistical Quantification of the Effects of Marker Misplacement and Soft-Tissue Artifact on Shoulder Kinematics and Kinetics. Life, 12(6), 819. https://doi.org/10.3390/life12060819