Comparison of Creatinine and Cystatin C to Estimate Renal Function in Geriatric and Frail Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.1.1. Inclusion Criteria
- Both eGFRcrea and eGFRcys available at admission.
- All diagnoses, sex and ages.
2.1.2. Exclusion Criteria
- eGFRcys > 90 mL/min. When eGFRcys exceeded 90 mL/min, it was only reported as ‘>90 mL/min’ in the lab results. The statistical analysis would be skewed if these values were included.
2.2. Data Acquisition
Laboratory Analyses
2.3. Outcome Measures
2.3.1. Lin’s Concordance Correlation
2.3.2. Clinical Frailty Scale
2.4. Statistical Analyses
Power
3. Results
3.1. Descriptive Statistics
3.2. Outcome Measures
3.2.1. Primary Outcome Measure
3.2.2. Secondary Outcome Measure
3.2.3. Tertiary Outcome Measure
4. Discussion
Strenghts and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skattning av Njurfunktion: En Systematisk Litteraturöversikt [Methods to Estimate and Measure Renal Function (Glomerular Filtration Rate): A Systematic Review]. Swedish. Available online: http://www.sbu.se/sv/Publicerat/Gul/Skattning-av-njurfunktion (accessed on 3 June 2022).
- Fehrman-Ekholm, I.; Seeberger, A.; Björk, J.; Sterner, G. Serum cystatin C: A useful marker of kidney function in very old people. Scand. J. Clin. Lab. Investig. 2009, 69, 606–611. [Google Scholar] [CrossRef]
- Corsonello, A.; Pedone, C.; Corica, F.; Mussi, C.; Carbonin, P.; Antonelli Incalzi, R. Concealed renal insufficiency and adverse drug reactions in elderly hospitalized patients. Arch. Intern. Med. 2005, 165, 790–795. [Google Scholar] [CrossRef] [Green Version]
- Läkemedelsorsakad Sjuklighet Hos Äldre [Adverse Drug Reactions in the Elderly]. Swedish. Available online: https://www.socialstyrelsen.se/globalassets/sharepoint-dokument/artikelkatalog/ovrigt/2014-12-13.pdf (accessed on 3 June 2022).
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Balk, E.; Kausz, A.T.; Levin, A.; Steffes, M.W.; Hogg, R.J.; Perrone, R.D.; Lau, J.; Eknoyan, G. National Kidney Foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann. Intern. Med. 2003, 139, 137–147. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [Green Version]
- Smithard, D.; Hansjee, D.; Henry, D.; Mitchell, L.; Sabaharwal, A.; Salkeld, J.; Yeung, E.; Younus, O.; Swaine, I. Inter-Relationships between Frailty, Sarcopenia, Undernutrition and Dysphagia in Older People Who Are Admitted to Acute Frailty and Medical Wards: Is There an Older Adult Quartet? Geriatrics 2020, 5, 41. [Google Scholar] [CrossRef]
- Kamijo, Y.; Kanda, E.; Ishibashi, Y.; Yoshida, M. Sarcopenia and Frailty in PD: Impact on Mortality, Malnutrition, and Inflammation. Perit. Dial. Int. 2018, 38, 447–454. [Google Scholar] [CrossRef]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 388–395. [Google Scholar] [CrossRef]
- Tsushita, H.; Tanaka, R.; Suzuki, Y.; Sato, Y.; Itoh, H. Effects of dose and type of corticosteroids on the divergence between estimated glomerular filtration rates derived from cystatin C and creatinine. J. Clin. Pharm. Ther. 2020, 45, 1390–1397. [Google Scholar] [CrossRef]
- Björk, J.; Bäck, S.E.; Ebert, N.; Evans, M.; Grubb, A.; Hansson, M.; Jones, I.; Lamb, E.J.; Martus, P.; Schaeffner, E.; et al. GFR estimation based on standardized creatinine and cystatin C: A European multicenter analysis in older adults. Clin. Chem. Lab. Med. 2018, 56, 422–435. [Google Scholar] [CrossRef]
- Iversen, E.; Bodilsen, A.C.; Klausen, H.H.; Treldal, C.; Andersen, O.; Houlind, M.B.; Petersen, J. Kidney function estimates using cystatin C versus creatinine: Impact on medication prescribing in acutely hospitalized elderly patients. Basic Clin. Pharmacol. Toxicol. 2019, 124, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Levey, A.S.; Gudnason, V.; Eiriksdottir, G.; Andresdottir, M.B.; Gudmundsdottir, H.; Indridason, O.S.; Palsson, R.; Mitchell, G.; Inker, L.A. Comparing GFR Estimating Equations Using Cystatin C and Creatinine in Elderly Individuals. J. Am. Soc. Nephrol. 2015, 26, 1982–1989. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Wei, L.; Pei, X.; Zhu, B.; Wu, J.; Zhao, W. Application of creatinine- and/or cystatin C-based glomerular filtration rate estimation equations in elderly Chinese. Clin. Interv. Aging 2014, 9, 1539–1549. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.B.; Araújo, L.Q.; Passos, M.T.; Nishida, S.K.; Kirsztajn, G.M.; Cendoroglo, M.S.; Sesso, R.C. Estimation of glomerular filtration rate from serum creatinine and cystatin C in octogenarians and nonagenarians. BMC Nephrol. 2013, 14, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Ma, H.; Huang, H.; Wang, C.; Tang, H.; Li, M.; Wang, Y.; Lou, T. Is the Chronic Kidney Disease Epidemiology Collaboration creatinine-cystatin C equation useful for glomerular filtration rate estimation in the elderly? Clin. Interv. Aging 2013, 8, 1387–1391. [Google Scholar] [CrossRef] [Green Version]
- Björk, J.; Grubb, A.; Gudnason, V.; Indridason, O.S.; Levey, A.S.; Palsson, R.; Nyman, U. Comparison of glomerular filtration rate estimating equations derived from creatinine and cystatin C: Validation in the Age, Gene/Environment Susceptibility-Reykjavik elderly cohort. Nephrol. Dial. Transplant. 2018, 33, 1380–1388. [Google Scholar] [CrossRef]
- Huang, Q.; Sun, X.; Chen, Y.; Zhang, M.; Tang, L.; Liu, S.; Wei, R.; Wang, S.; Zhou, J.; Cao, X.; et al. A Study of the Applicability of GFR Evaluation Equations for an Elderly Chinese Population. J. Nutr. Health Aging 2015, 19, 693–701. [Google Scholar] [CrossRef]
- Helldén, A.; Bergman, U.; Odar-Cederlöf, I. The importance of correct estimation of renal function for drug treatment in hospitalized elderly patients, especially women: A prospective observational study. Clin. Nephrol. 2019, 91, 254–264. [Google Scholar] [CrossRef]
- Bevc, S.; Hojs, N.; Hojs, R.; Ekart, R.; Gorenjak, M.; Puklavec, L. Estimation of Glomerular Filtration Rate in Elderly Chronic Kidney Disease Patients: Comparison of Three Novel Sophisticated Equations and Simple Cystatin C Equation. Ther. Apher. Dial. 2017, 21, 126–132. [Google Scholar] [CrossRef]
- Jalalonmuhali, M.; Elagel, S.M.A.; Tan, M.P.; Lim, S.K.; Ng, K.P. Estimating Renal Function in the Elderly Malaysian Patients Attending Medical Outpatient Clinic: A Comparison between Creatinine Based and Cystatin-C Based Equations. Int. J. Nephrol. 2018, 2018, 3081518. [Google Scholar] [CrossRef]
- Kilbride, H.S.; Stevens, P.E.; Eaglestone, G.; Knight, S.; Carter, J.L.; Delaney, M.P.; Farmer, C.K.; Irving, J.; O’Riordan, S.E.; Dalton, R.N.; et al. Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly. Am. J. Kidney Dis. 2013, 61, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ye, X.; Zhu, B.; Pei, X.; Wei, L.; Wu, J.; Zhao, W. Comparisons between the 2012 new CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equations and other four approved equations. PLoS ONE 2014, 9, e84688. [Google Scholar] [CrossRef] [PubMed]
- Chua, X.Y.; Toh, S.; Wei, K.; Teo, N.; Tang, T.; Wee, S.L. Evaluation of clinical frailty screening in geriatric acute care. J. Eval. Clin. Pract. 2020, 26, 35–41. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Ly, T.T.; Nguyen, T.N. A Pilot Study of the Clinical Frailty Scale to Predict Frailty Transition and Readmission in Older Patients in Vietnam. Int. J. Environ. Res. Public Health 2020, 17, 1582. [Google Scholar] [CrossRef] [Green Version]
- Chong, E.; Ho, E.; Baldevarona-Llego, J.; Chan, M.; Wu, L.; Tay, L.; Ding, Y.Y.; Lim, W.S. Frailty in Hospitalized Older Adults: Comparing Different Frailty Measures in Predicting Short- and Long-term Patient Outcomes. J. Am. Med. Dir. Assoc. 2018, 19, 450–457.e3. [Google Scholar] [CrossRef] [PubMed]
- Kahlon, S.; Pederson, J.; Majumdar, S.R.; Belga, S.; Lau, D.; Fradette, M.; Boyko, D.; Bakal, J.A.; Johnston, C.; Padwal, R.S.; et al. Association between frailty and 30-day outcomes after discharge from hospital. CMAJ 2015, 187, 799–804. [Google Scholar] [CrossRef] [Green Version]
- Pei, X.; Liu, Q.; He, J.; Bao, L.; Yan, C.; Wu, J.; Zhao, W. Are cystatin C-based equations superior to creatinine-based equations for estimating GFR in Chinese elderly population? Int. Urol. Nephrol. 2012, 44, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Bolmsjö, B.B.; Mölstad, S.; Gallagher, M.; Chalmers, J.; Östgren, C.J.; Midlöv, P. Risk factors and consequences of decreased kidney function in nursing home residents: A longitudinal study. Geriatr. Gerontol. Int. 2017, 17, 791–797. [Google Scholar] [CrossRef]
- Björk, J.; Grubb, A.; Sterner, G.; Nyman, U. Revised equations for estimating glomerular filtration rate based on the Lund-Malmö Study cohort. Scand. J. Clin. Lab. Investig. 2011, 71, 232–239. [Google Scholar] [CrossRef]
- Grubb, A.; Horio, M.; Hansson, L.O.; Björk, J.; Nyman, U.; Flodin, M.; Larsson, A.; Bökenkamp, A.; Yasuda, Y.; Blufpand, H.; et al. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin. Chem. 2014, 60, 974–986. [Google Scholar] [CrossRef]
- Suzuki, Y.; Matsushita, K.; Seimiya, M.; Yoshida, T.; Sawabe, Y.; Ogawa, M.; Nomura, F. Paradoxical effects of thyroid function on glomerular filtration rate estimated from serum creatinine or standardized cystatin C in patients with Japanese Graves’ disease. Clin. Chim. Acta 2015, 451, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Björk, J.; Grubb, A.; Larsson, A.; Hansson, L.O.; Flodin, M.; Sterner, G.; Lindström, V.; Nyman, U. Accuracy of GFR estimating equations combining standardized cystatin C and creatinine assays: A cross-sectional study in Sweden. Clin. Chem. Lab. Med. 2015, 53, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Grubb, A.; Nyman, U.; Björk, J. Improved estimation of glomerular filtration rate (GFR) by comparison of eGFRcystatin C and eGFRcreatinine. Scand. J. Clin. Lab. Investig. 2012, 72, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Den Bakker, E.; Musters, M.; Hubeek, I.; van Wijk, J.A.E.; Gemke, R.; Bokenkamp, A. Concordance between creatinine- and cystatin C-based eGFR in clinical practice. Scand. J. Clin. Lab. Investig. 2021, 81, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005, 173, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Rockwood, K.; Theou, O. Using the Clinical Frailty Scale in Allocating Scarce Health Care Resources. Can. Geriatr. J. 2020, 23, 210–215. [Google Scholar] [CrossRef]
- Lin, H.-M.; Williamson, J. A Simple Approach for Sample Size Calculation for Comparing Two Concordance Correlation Coefficients Estimated on the Same Subjects. J. Biopharm. Stat. 2014, 25, 1145–1160. [Google Scholar] [CrossRef]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Portney, L.G. Foundations of Clinical Research: Applications to Evidence-Based Practice, 4th ed.; F.A. Davis: Philadelphia, PA, USA, 2020. [Google Scholar]
- McBride, G. A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. In NIWA Client Report: HAM2005-062; National Institute of Water & Atmospheric Research: Hamilton, New Zealand, 2005; Volume 62. [Google Scholar]
- Shrier, W.; Dewar, C.; Parrella, P.; Hunt, D.; Hodgson, L.E. Agreement and predictive value of the Rockwood Clinical Frailty Scale at emergency department triage. Emerg. Med. J. 2020, 38, 868–873. [Google Scholar] [CrossRef]
- Jacobs, A.; Benraad, C.; Wetzels, J.; Rikkert, M.O.; Kramers, C. Clinical Relevance of Differences in Glomerular Filtration Rate Estimations in Frail Older People by Creatinine- vs. Cystatin C-Based Formulae. Drugs Aging 2017, 34, 445–452. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Itabashi, M.; Yumura, W.; Takei, T. Geriatric assessment of estimated glomerular filtration rate: A cross-sectional study. Clin. Exp. Nephrol. 2020, 24, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Husain, S.A.; Willey, J.Z.; Park Moon, Y.; Elkind, M.S.V.; Sacco, R.L.; Wolf, M.; Cheung, K.; Wright, C.B.; Mohan, S. Creatinine- versus cystatin C-based renal function assessment in the Northern Manhattan Study. PLoS ONE 2018, 13, e0206839. [Google Scholar] [CrossRef]
- Ramel, A.; Jonsson, P.V.; Bjornsson, S.; Thorsdottir, I. Differences in the glomerular filtration rate calculated by two creatinine-based and three cystatin-C-based formulae in hospitalized elderly patients. Nephron Clin. Pract. 2008, 108, c16–c22. [Google Scholar] [CrossRef] [PubMed]
- Pharmacokinetics in Patients with Impaired Renal Function-Study Design, Data Analysis, and Impact on Dosing and Labeling. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pharmacokinetics-patients-impaired-renal-function-study-design-data-analysis-and-impact-dosing-and (accessed on 3 June 2022).
- Kawakami, M.; Hirata, S.; Mizuta, M.; Hidaka, D.; Sano, H.; Isobe, K.; Nakatani, S.; Narita, Y. Modified serum creatinine-derived equations with muscle mass-adjusted estimation of renal function and serum cystatin C-derived estimated glomerular filtration rate in elderly individuals. Int. J. Clin. Pharmacol. Ther. 2019, 57, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Ichihara, K.; Saito, K.; Itoh, Y. Sources of variation and reference intervals for serum cystatin C in a healthy Japanese adult population. Clin. Chem. Lab. Med. 2007, 45, 1232–1236. [Google Scholar] [CrossRef] [PubMed]
- Erlandsen, E.J.; Randers, E.; Kristensen, J.H. Reference intervals for serum cystatin C and serum creatinine in adults. Clin. Chem. Lab. Med. 1998, 36, 393–397. [Google Scholar] [CrossRef]
- Finney, H.; Newman, D.J.; Price, C.P. Adult reference ranges for serum cystatin C, creatinine and predicted creatinine clearance. Ann. Clin. Biochem. 2000, 37 Pt 1, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreto, E.F.; Poyant, J.O.; Coville, H.H.; Dierkhising, R.A.; Kennedy, C.C.; Gajic, O.; Nystrom, E.M.; Takahashi, N.; Moynagh, M.R.; Kashani, K.B. Validation of the sarcopenia index to assess muscle mass in the critically ill: A novel application of kidney function markers. Clin. Nutr. 2019, 38, 1362–1367. [Google Scholar] [CrossRef]
- Kashani, K.B.; Frazee, E.N.; Kukrálová, L.; Sarvottam, K.; Herasevich, V.; Young, P.M.; Kashyap, R.; Lieske, J.C. Evaluating Muscle Mass by Using Markers of Kidney Function: Development of the Sarcopenia Index. Crit. Care Med. 2017, 45, e23–e29. [Google Scholar] [CrossRef]
- Kusunoki, H.; Tsuji, S.; Kusukawa, T.; Wada, Y.; Tamaki, K.; Nagai, K.; Itoh, M.; Sano, K.; Amano, M.; Maeda, H.; et al. Relationships between cystatin C- and creatinine-based eGFR in Japanese rural community-dwelling older adults with sarcopenia. Clin. Exp. Nephrol. 2021, 25, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Grubb, A.; Lindström, V.; Jonsson, M.; Bäck, S.E.; Åhlund, T.; Rippe, B.; Christensson, A. Reduction in glomerular pore size is not restricted to pregnant women. Evidence for a new syndrome: ‘Shrunken pore syndrome’. Scand. J. Clin. Lab. Investig. 2015, 75, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Mucino, M.J.; Ronco, C. Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin. Pract. 2014, 127, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Grubb, A.; Björk, J.; Nyman, U.; Pollak, J.; Bengzon, J.; Ostner, G.; Lindström, V. Cystatin C, a marker for successful aging and glomerular filtration rate, is not influenced by inflammation. Scand. J. Clin. Lab. Investig. 2011, 71, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Legrand, H.; Werner, K.; Christensson, A.; Pihlsgård, M.; Elmståhl, S. Prevalence and determinants of differences in cystatin C and creatinine-based estimated glomerular filtration rate in community-dwelling older adults: A cross-sectional study. BMC Nephrol. 2017, 18, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Stage | eGFR | Micro- or Macroalbuminuria |
---|---|---|
1 | ≥90 | Obligate |
2 | 60–89 | Obligate |
3 | 30–59 | Not obligate |
4 | 15–29 | Not obligate |
5 | <15 | Not obligate |
All (n = 95) | CFS 1–4 (n = 20) | CFS 5–9 (n = 63) | |
---|---|---|---|
Age | 84 (76–89) | 80 (74–85) | 85 (78–90) |
CFS | 6 (5–7) | 3 (3–4) | 6 (4–7) |
Women | 56% | 60% | 57% |
Men | 44% | 40% | 43% |
BMI | 24.4 (21.8–28.4) | 25.0 (22.3–28.9) | 24.2 (21.7–27.8) |
Length of stay, days | 6 (4–8) | 6 (4–10) | 7 (4–8) |
Stage of renal failure eGFRcrea | 2 (2–3) | 2 (2–2) | 3 (2–3) |
Stage of renal failure eGFRcys | 3 (2–4) | 2 (2–3) | 3 (3–4) |
Treatment for thyroid disease | 17% | 10% | 19% |
High-dose steroid therapy | 8% | 10% | 10% |
Musculoskeletal (including fractures) | 26% |
Cardiological | 17% |
Urogenital and nephrological | 15% |
Lung diseases | 8% |
GI-related | 6% |
Neurological | 5% |
Neoplasms | 4% |
Mental and behavioral disorders | 4% |
Diabetes | 2% |
Infectious diseases | 2% |
Other | 10% |
All (n = 95) | CFS 1–4 (n = 20) | CFS 5–9 (n = 63) | <80 Years (n = 37) | 80-89 Years (n = 36) | ≥90 Years (n = 22) | |
---|---|---|---|---|---|---|
|ΔeGFRmean| | 37% [32, 42] | 23% [16, 31] | 42% [35, 48] | 38% [29, 46] | 37% [29, 45] | 34% [25, 44] |
Proportion of |ΔeGFRmean| ≥ 40% | 41% [32, 51] | 18% [5, 36] | 52% [40, 64] | 32% [20, 49] | 47% [32, 63] | 45% [27, 65] |
CCC | 0.66 [0.55, 0.74] | 0.65 [0.08, 0.72] | 0.61 [0.47, 0.72] | 0.49 [0.31, 0.64] | 0.64 [0.46, 0.77] | 0.80 [0.59, 0.91] |
Consistent staging of renal failure | 44% [35, 54] | 65% [43, 82] | 38% [27, 50] | 41% [26, 57] | 47% [32, 63] | 46% [27, 65] |
CFS (n = 83) | Age (n = 95) | |
---|---|---|
β-coefficient | 0.065 ** [0.031, 0.099] | −0.002 [−0.007, 0.004] |
r2 | 0.15 | 0.004 |
Intercept | 0.19 [−0.17, 0.21] | 0.50 * [0.06, 0.94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahlén, E.; Björkhem-Bergman, L. Comparison of Creatinine and Cystatin C to Estimate Renal Function in Geriatric and Frail Patients. Life 2022, 12, 846. https://doi.org/10.3390/life12060846
Dahlén E, Björkhem-Bergman L. Comparison of Creatinine and Cystatin C to Estimate Renal Function in Geriatric and Frail Patients. Life. 2022; 12(6):846. https://doi.org/10.3390/life12060846
Chicago/Turabian StyleDahlén, Erik, and Linda Björkhem-Bergman. 2022. "Comparison of Creatinine and Cystatin C to Estimate Renal Function in Geriatric and Frail Patients" Life 12, no. 6: 846. https://doi.org/10.3390/life12060846
APA StyleDahlén, E., & Björkhem-Bergman, L. (2022). Comparison of Creatinine and Cystatin C to Estimate Renal Function in Geriatric and Frail Patients. Life, 12(6), 846. https://doi.org/10.3390/life12060846