Evaluation of the Effect of Wheat Germ Oil and Olmutinib on the Thioacetamide-Induced Liver and Kidney Toxicity in Mice
Abstract
:1. Introduction
2. Methodology
2.1. Histopathology
2.2. Inflammatory Marker Estimations
2.3. Enzyme Marker Estimation
2.4. Statistical Analysis
3. Results
3.1. Inflammatory Marker Expression in Liver and Kidney
3.2. Enzyme Activity (AST, ALT, LDH, and CK)
3.3. Histological Studies on Liver and Kidney
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bahirwani, R.; Reddy, K.R. Drug-induced liver injury due to cancer chemotherapeutic agents. Semin. Liver Dis. 2014, 34, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Mitra, V.; Metcalf, J. Metabolic functions of the liver. Anaesth. Intensive Care Med. 2012, 13, 54–55. [Google Scholar] [CrossRef]
- Kalra, A.; Yetiskul, E.; Wehrle, C.J.; Tuma, F. Physiology, Liver; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.-M.; Yang, C.-W. Chronic kidney disease: Global dimension and perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef]
- Russmann, S.; Kullak-Ublick, G.A.; Grattagliano, I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr. Med. Chem. 2009, 16, 3041–3053. [Google Scholar] [CrossRef] [Green Version]
- Alsalman, N.; Aljafari, A.; Wani, T.A.; Zargar, S. High-dose aspirin reverses tartrazine-induced cell growth dysregulation independent of p53 signaling and antioxidant mechanisms in rat brain. BioMed Res. Int. 2019, 2019, 9096404. [Google Scholar] [CrossRef]
- Zargar, S.; Wani, T.A. Protective Role of Quercetin in Carbon Tetrachloride Induced Toxicity in Rat Brain: Biochemical, Spectrophotometric Assays and Computational Approach. Molecules 2021, 26, 7526. [Google Scholar] [CrossRef]
- Müller, A.; Machnik, F.; Zimmermann, T.; Schubert, H. Thioacetamide-induced cirrhosis-like liver lesions in rats usefulness and reliability of this animal model. Exp. Pathol. 1988, 34, 229–236. [Google Scholar] [CrossRef]
- Torres, E.M.; Bouza, J.I.P.; Bravo, A.L.; Hernández, M.M.A.; Marino, E.C. Experimental thioacetamide-induced cirrhosis of the liver. Histol. Histopathol. 1991, 6, 95–100. [Google Scholar]
- Salguero Palacios, R.; Roderfeld, M.; Hemmann, S.; Rath, T.; Atanasova, S.; Tschuschner, A.; Gressner, O.A.; Weiskirchen, R.; Graf, J.; Roeb, E. Activation of hepatic stellate cells is associated with cytokine expression in thioacetamide-induced hepatic fibrosis in mice. Lab. Investig. 2008, 88, 1192–1203. [Google Scholar] [CrossRef] [Green Version]
- Zargar, S.; Alonazi, M.; Rizwana, H.; Wani, T.A. Resveratrol reverses thioacetamide-induced renal assault with respect to oxidative stress, renal function, DNA damage, and cytokine release in Wistar rats. Oxid. Med. Cell. Longev. 2019, 2019, 1702959. [Google Scholar] [CrossRef] [Green Version]
- Zargar, S.; Wani, T.A.; Alamro, A.A.; Ganaie, M.A. Amelioration of thioacetamide-induced liver toxicity in Wistar rats by rutin. Int. J. Immunopathol. Pharmacol. 2017, 30, 207–214. [Google Scholar] [CrossRef] [PubMed]
- BARKER, E.A.; SMUCKLER, E.A. Altered microsome function during acute thioacetamide poisoning. Mol. Pharmacol. 1972, 8, 318–326. [Google Scholar] [PubMed]
- Ortega, M.A.; Torres, M.I.; Fernandez, M.I.; Rios, A.; Sanchez-Pozo, A.; Gil, A. Hepatotoxic agent thioacetamide induces biochemical and histological alterations in rat small intestine. Dig. Dis. Sci. 1997, 42, 1715–1723. [Google Scholar] [CrossRef] [PubMed]
- Al-Bader, A.; Mathew, T.; Khoursheed, M.; Asfar, S.; Al-Sayer, H.; Dashti, H. Thioacetamide toxicity and the spleen: Histological and biochemical analysis. Anat. Histol. Embryol. 2000, 29, 3–8. [Google Scholar] [CrossRef]
- Latha, S.; Pai, M.R.; Pai, P.K. Thioacetamide toxicity and the lung: Histological analysis. Indian J. Physiol. Pharmacol. 2003, 47, 476–478. [Google Scholar]
- Bethune, G.; Bethune, D.; Ridgway, N.; Xu, Z. Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update. J. Thorac. Dis. 2010, 2, 48. [Google Scholar]
- Tian, X.; Gu, T.; Lee, M.-H.; Dong, Z. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim. Et Biophys. Acta (BBA)—Rev. Cancer 2022, 1877, 188645. [Google Scholar] [CrossRef]
- Kim, D.-W.; Lee, D.H.; Han, J.-Y.; Lee, J.; Cho, B.C.; Kang, J.H.; Lee, K.H.; Cho, E.K.; Kim, J.-S.; Min, Y.J. Safety, tolerability, and anti-tumor activity of olmutinib in non-small cell lung cancer with T790M mutation: A single arm, open label, phase 1/2 trial. Lung Cancer 2019, 135, 66–72. [Google Scholar] [CrossRef]
- Wani, T.A.; Bakheit, A.H.; Zargar, S.; Alamery, S. Mechanistic competitive binding interaction study between olmutinib and colchicine with model transport protein using spectroscopic and computer simulation approaches. J. Photochem. Photobiol. A Chem. 2022, 426, 113794. [Google Scholar] [CrossRef]
- Obayashi, K.; Shimizu, K.; Nakazawa, S.; Ohtaki, Y.; Kawatani, N.; Takashi, I.; Yajima, T.; Mogi, A.; Shirabe, K. A leopard can’t change its spots: Can a T790M mutation-positive cancer change its spots after epidermal growth factor receptor-tyrosine kinase inhibitor therapy? J. Thorac. Dis. 2018, 10, S4113. [Google Scholar] [CrossRef]
- Akool, E.-S. Molecular mechanisms of the protective role of wheat germ oil against cyclosporin A-induced hepatotoxicity in rats. Pharm. Biol. 2015, 53, 1311–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, M.; Mohamed, N. Amelioration of liver and kidney functions disorders induced by sodium nitrate in rats using wheat germ oil. J. Radiat. Res. Appl. Sci. 2015, 8, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.; Yao, Y.; Qin, B.; Pan, M.; Ju, X.; Xu, F.; Wang, L. Screening and Identification of High Bioavailable Oligopeptides from Rapeseed Napin (Brassica napus) Protein-derived Hydrolysates via Caco-2/HepG2 Coculture Model. Food Res. Int. 2022, 155, 111101. [Google Scholar] [CrossRef] [PubMed]
- Heimbach, J.T.; Sebestyen, G.; Semjen, G.; Kennepohl, E. Safety studies regarding a standardized extract of fermented wheat germ. Int. J. Toxicol. 2007, 26, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Sepehrinezhad, A.; Shahbazi, A.; Negah, S.S.; Joghataei, M.T.; Larsen, F.S. Drug-induced-acute liver failure: A critical appraisal of the thioacetamide model for the study of hepatic encephalopathy. Toxicol. Rep. 2021, 8, 962–970. [Google Scholar] [CrossRef]
- Ejiofor, E.U.; Oyedemi, S.O.; Onoja, S.O.; Omeh, N.Y. Amaranthus hybridus Linn leaf extract ameliorates oxidative stress and hepatic damage abnormalities induced by thioacetamide in rats. S. Afr. J. Bot. 2022, 146, 213–221. [Google Scholar] [CrossRef]
- Kshirsagar, S.B.; Jain, V. Bioassays of lipids: A review. J. Pharmacogn. Phytochem. 2021, 10, 1523–1536. [Google Scholar]
- Shareef, S.H.; Ibrahim, I.A.A.; Alzahrani, A.R.; Al-Medhtiy, M.H.; Abdulla, M.A. Hepatoprotective effects of methanolic extract of green tea against Thioacetamide-Induced liver injury in Sprague Dawley rats. Saudi J. Biol. Sci. 2022, 29, 564–573. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, S.; Wu, Y.; Shi, L.; Xu, X.; Shen, B. Efficacy and safety of first-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) combined with chemotherapy or antiangiogenic therapy as first-line treatment in patients with EGFR-mutant non-small cell lung cancer: A systematic review and meta-analysis. Crit. Rev. Oncol./Hematol. 2021, 163, 103393. [Google Scholar]
- Park, K.; Lee, J.-S.; Lee, K.H.; Kim, J.-H.; Cho, B.C.; Min, Y.J.; Cho, J.Y.; Han, J.-Y.; Kim, B.-S.; Kim, J.-S. Olmutinib (BI 1482694; HM61713), an EGFR mutant-specific inhibitor, in T790M+ NSCLC: Efficacy and safety at the RP2D. J. Clin. Oncol. 2016, 34, abstr-9055. [Google Scholar] [CrossRef]
- Eisenmenger, M.; Dunford, N.T. Bioactive components of commercial and supercritical carbon dioxide processed wheat germ oil. J. Am. Oil Chem. Soc. 2008, 85, 55–61. [Google Scholar] [CrossRef]
- Rallidis, L.S.; Paschos, G.; Liakos, G.K.; Velissaridou, A.H.; Anastasiadis, G.; Zampelas, A. Dietary α-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients. Atherosclerosis 2003, 167, 237–242. [Google Scholar] [CrossRef]
- Yuldasheva, N.; Ul’chenko, N.; Glushenkova, A. Wheat germ oil. Chem. Nat. Compd. 2010, 46, 97–98. [Google Scholar] [CrossRef]
- Eissa, L.A.; Kenawy, H.I.; El-Karef, A.; Elsherbiny, N.M.; El-Mihi, K.A. Antioxidant and anti-inflammatory activities of berberine attenuate hepatic fibrosis induced by thioacetamide injection in rats. Chem. Biol. Interact. 2018, 294, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Didion, S.P. Cellular and oxidative mechanisms associated with interleukin-6 signaling in the vasculature. Int. J. Mol. Sci. 2017, 18, 2563. [Google Scholar] [CrossRef] [Green Version]
- Seyan, A.S.; Hughes, R.D.; Shawcross, D.L. Changing face of hepatic encephalopathy: Role of inflammation and oxidative stress. World J. Gastroenterol. WJG 2010, 16, 3347. [Google Scholar] [CrossRef]
- Hijona, E.; Hijona, L.; Arenas, J.I.; Bujanda, L. Inflammatory mediators of hepatic steatosis. Mediat. Inflamm. 2010, 2010, 837419. [Google Scholar] [CrossRef] [Green Version]
- Lavi, G.; Voronov, E.; Dinarello, C.A.; Apte, R.N.; Cohen, S. Sustained delivery of IL-1Ra from biodegradable microspheres reduces the number of murine B16 melanoma lung metastases. J. Control. Release 2007, 123, 123–130. [Google Scholar] [CrossRef]
- Zargar, S.; Al-Majed, A.-R.A.; Wani, T.A. Potentiating and synergistic effect of grapefruit juice on the antioxidant and anti-inflammatory activity of aripiprazole against hydrogen peroxide induced oxidative stress in mice. BMC Complementary Altern. Med. 2018, 18, 106. [Google Scholar] [CrossRef]
- Arewa, W. The balance between IL–1 and IL–Ra in disease cytokine growth factor. Cytokine Growth Factor Rev. 2003, 13, 323–340. [Google Scholar]
- Fattori, E.; Della Rocca, C.; Costa, P.; Giorgio, M.; Dente, B.; Pozzi, L.; Ciliberto, G. Development of progressive kidney damage and myeloma kidney in interleukin-6 transgenic mice. Blood 1994, 83, 2570–2579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansil, P.N.; Nitha, A.; Prabha, S.P.; Wills, P.J.; Jazaira, V.; Latha, M.S. Protective effect of Amorphophallus campanulatus (Roxb.) Blume. tuber against thioacetamide induced oxidative stress in rats. Asian Pac. J. Trop. Med. 2011, 4, 870–877. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Lei, C.-T.; Zhang, C. Interleukin-6 signaling pathway and its role in kidney disease: An update. Front. Immunol. 2017, 8, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radi, A.M.; Abdel-Azeem, N.M.; Mostafa, I.; Helmy, N.A.; Ahmed, W. The Protective Role of Wheat Germ Oil Against Adverse Effect of Deltamethrin on Reproductive Aspects of Male Albino Rats. J. Appl. Vet. Sci. 2021, 6, 70–75. [Google Scholar]
- Khalifa, F.K.; Khalil, F.A.; Barakat, H.A.; Hassan, M.M. Protective role of wheat germ and grape seed oils in chlorpyrifos-induced oxidative stress, biochemical and histological alterations in liver of rats. Aust. J. Basic Appl. Sci. 2011, 5, 54–66. [Google Scholar]
- Telekes, A.; Hegedűs, M.; Chae, C.-H.; Vékey, K. Avemar (wheat germ extract) in cancer prevention and treatment. Nutr. Cancer 2009, 61, 891–899. [Google Scholar] [CrossRef]
- Olivero-Verbel, J.; Guerrero-Castilla, A.; Ramos, N.R. Biochemical effects induced by the hexachlorocyclohexanes. Rev. Environ. Contam. Toxicol. 2011, 212, 1–28. [Google Scholar]
- Abdollahi, M.; Ranjbar, A.; Shadnia, S.; Nikfar, S.; Rezaie, A. Pesticides and oxidative stress: A review. Med. Sci. Monit. 2004, 10, 141–147. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamery, S.; Zargar, S.; Yaseen, F.; Wani, T.A.; Siyal, A. Evaluation of the Effect of Wheat Germ Oil and Olmutinib on the Thioacetamide-Induced Liver and Kidney Toxicity in Mice. Life 2022, 12, 900. https://doi.org/10.3390/life12060900
Alamery S, Zargar S, Yaseen F, Wani TA, Siyal A. Evaluation of the Effect of Wheat Germ Oil and Olmutinib on the Thioacetamide-Induced Liver and Kidney Toxicity in Mice. Life. 2022; 12(6):900. https://doi.org/10.3390/life12060900
Chicago/Turabian StyleAlamery, Salman, Seema Zargar, Fatimah Yaseen, Tanveer A. Wani, and Abdulaziz Siyal. 2022. "Evaluation of the Effect of Wheat Germ Oil and Olmutinib on the Thioacetamide-Induced Liver and Kidney Toxicity in Mice" Life 12, no. 6: 900. https://doi.org/10.3390/life12060900
APA StyleAlamery, S., Zargar, S., Yaseen, F., Wani, T. A., & Siyal, A. (2022). Evaluation of the Effect of Wheat Germ Oil and Olmutinib on the Thioacetamide-Induced Liver and Kidney Toxicity in Mice. Life, 12(6), 900. https://doi.org/10.3390/life12060900