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Abstract: Brain tumors reduce life expectancy due to the lack of a cure. Moreover, their diagnosis
involves complex and costly procedures such as magnetic resonance imaging (MRI) and lengthy,
careful examination to determine their severity. However, the timely diagnosis of brain tumors in
their early stages may save a patient’s life. Therefore, this work utilizes MRI with a machine learning
approach to diagnose brain tumor severity (glioma, meningioma, no tumor, and pituitary) in a
timely manner. MRI Gaussian and nonlinear scale features are extracted due to their robustness over
rotation, scaling, and noise issues, which are common in image processing features such as texture,
local binary patterns, histograms of oriented gradient, etc. For the features, each MRI is broken down
into multiple small 8 × 8-pixel MR images to capture small details. To counter memory issues, the
strongest features based on variance are selected and segmented into 400 Gaussian and 400 nonlinear
scale features, and these features are hybridized against each MRI. Finally, classical machine learning
classifiers are utilized to check the performance of the proposed hybrid feature vector. An available
online brain MRI image dataset is utilized to validate the proposed approach. The results show that
the support vector machine-trained model has the highest classification accuracy of 95.33%, with a
low computational time. The results are also compared with the recent literature, which shows that
the proposed model can be helpful for clinicians/doctors for the early diagnosis of brain tumors.

Keywords: magnetic resonance imaging (MRI); brain tumor; machine learning

1. Introduction

The brain is the most complex organ in the human body. It has over 100 billion nerve
cells with trillions of synapses [1]. In other words, the human brain is the primary command
and control center of the neurological system. Therefore, an injury in the brain has a
catastrophic influence on human health. For example, in a brain tumor, the development of
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abnormal brain cells may damage the brain and may even threaten a patient’s life. Because
brain tumors have long-term and life-altering physical and psychological implications, they
can significantly influence a patient’s living quality and affect their entire life [2]. According
to a World Health Organization (WHO) report [3], cancer is the second greatest cause of
mortality globally. It is responsible for around 10 million fatalities. Therefore, early cancer
identification improves the patient’s survival chances. According to a National Brain Tumor
Foundation (NBTF) report [4], around 29,000 persons in the USA have primary malignant
tumors, and 13,000 people die due to this type of brain tumor.

The location, progression stage, type, and rate of growth of brain tumors determine
whether they are benign or malignant [5,6]. The affected cells rarely attack nearly healthy
cells in benign brain tumors. They also progress slowly and have clear limits, such as in
meningioma and pituitary tumors. In contrast, neighboring healthy cells are influenced
by affected cells in malignant brain tumors. These tumors also have a fast advancement
rate with broad limitations, such as gliomas. Furthermore, brain tumors may be divided
into two types based on their origin: primary and secondary brain tumors [7]. The brain
tumors that start in the brain tissues are known as primary tumors. In contrast, secondary
brain tumors develop in many areas of the central nervous system (CNS) and move to the
brain via the blood vessels. Therefore, early cancer type detection (meningioma, pituitary,
and glioma) is crucial for cancer treatment to save the patient’s life.

For brain tumor detection, several diagnostic methods, both invasive and non-invasive,
are utilized [8]. A biopsy is an invasive approach: a sample is retrieved by an incision
and is inspected under a microscope to assess malignancy. Unlike other tumors in other
areas of the body, the biopsy is usually delayed until the final brain surgery. Due to
this, computer-aided diagnostics (CAD) (non-invasive) such as computed tomography
(CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) are
thought to be faster and safer than a biopsy for diagnosing brain tumors. Brain MRI is
considered to be the most recommended method owing to its ability to provide extensive
information regarding the position, extension, nature, and size of the brain tumor [9].
Meanwhile, manual MRI scan interpretation takes a long time and has a significant risk
of mistakes. Therefore, an automatic computer-aided diagnostic approach is required for
injury detection in the brain.

The evolution of machine learning methods has increased CAD systems’ efficiency in
assisting doctors in identifying brain tumors [7,10,11]. Numerous learning methods have
been presented in the literature to diagnose brain tumors; they can be further categorized as
deep learning and classical learning methods based on the literature [12]. In deep learning
approaches, convolution neural networks (CNNs) are generally utilized to identify brain
tumors using MRI [13]. Various researchers have used pre-trained and developed learning
models to classify MRI images. In one work [14], the authors developed a CNN model to
classify brain MRI images into two classes (tumor and no tumor). The main shortcoming
of their model was the detection of the subclasses of the tumor. Abiwinanda et al. [15] de-
signed a CNN model to detect brain tumor subclasses (glioma, meningioma, and pituitary).
However, their model had a low accuracy of only 84.19%. Recently, a new CNN model
was developed to classify brain MRI images into three subclasses [8]. The authors also
performed data augmentation to enhance the classification accuracy of brain MRI images.
A classification accuracy of 96.56% was achieved using a 10-fold cross-validation approach.
Irmak [16] developed a 25-layer CNN model to classify brain images into five classes, with
an accuracy of 92.66%. Pre-trained networks such as GoogLeNet and ResNet-50 are also
used to classify brain images [17–19]. However, the deep networks require long training
times, have a complex architecture, high memory requirements, a strong processing unit
(GPU), etc.

In contrast to deep learning models, classical models require the most basic features
of brain MRI images to diagnose a brain tumor. Therefore, they require less time to
train the models; methods include support vector machine (SVM), tree, Naïve Bayes, etc.
Kumari et al. [20] computed the gray-level co-occurrence matrix of brain MRI images to
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classify them into two classes. The model’s accuracy was high; however, the authors
only detected the tumors on the brain MRI images. The accuracy of these global-level
features is not high due to the high similarity in the brain MRI images. Therefore, local-
level features such as the bag of words [21], Fisher vector [22], and scale-invariant feature
transformation [23] are also used to classify brain MRI images. In one study [24], the authors
hybridized the gray-level co-occurrence matrix, histogram intensity, and bag of words
to classify brain MRI images. They achieved a classification accuracy of 91.28% for the
three-class classification MRI dataset. In a recent study [25], the authors calculated the deep
features of brain MRI image datasets using pre-trained CNN models. The results showed
that the hybrid features of the pre-trained model had the best accuracy of 93.72% when
using an SVM classifier. However, the size of their dataset was large, and it required a long
training time. Moreover, in machine learning images/MRI feature extraction approaches,
features such as texture (extracted through gray-level co-occurrence matrix), local binary
pattern, histogram of oriented gradient, etc., are quite sensitive to noise, scaling, rotation,
visibility, etc., which affect the performance, memory requirement, execution time, etc.

Considering the shortcomings of deep and machine learning approaches, the following
are the main contributions of this work:

1. This study presents a fast automatic approach for brain tumor detection and differen-
tiation using brain MRI images to increase the accuracy, grading, robustness to noise,
rotation, and scaling with the least memory and processing system requirements.

2. The Gaussian scale-space features are extracted through speeded up robust features
(SURF) and nonlinear scale-space features are extracted through KAZE of brain
MRI images.

3. Each MRI is divided into sub-MRIs of 8 × 8-pixel images to capture the small de-
tails/tumor information.

4. Afterwards, to reduce the memory requirements, the strongest features are selected
based on variance and subjected to segmentation into 400 Gaussian features and
400 nonlinear features against each brain MRI scan (a total of 800 features).

5. Various classical machine learning models are trained to check their performance.
6. Finally, two available online datasets are used to validate the proposed approach.
7. The findings of the work are also compared with the approaches present in the literature.

The paper’s organization is as follows: Section 2 presents the feature extraction and
the workings of the proposed approach. Then, the dataset and results are presented in the
third section. Finally, the results are discussed and concluded in Sections 4 and 5.

2. Materials and Methods
2.1. Feature Extraction

In computer image processing, feature detection and description are hot topics. In
image classification applications, computing features that are repeatable and distinct in the
face of various image transformations are of high importance. The classification of brain
tumors also mainly relies on retrieving the relevant and relatable features from brain MRI
images. Therefore, many global [20] and local features [22,23] are used to classify brain
MRI images. The global-level features have accuracy problems in a multiclass environment,
as discussed in Section 1. Various local features such as scale-invariant feature transform
(SIFT) [26], speeded up robust features (SURF) [27], and KAZE [28] compute distinctive
features at various interest point locations. These distinctive features primarily relate to
the local maxima/minima/mean in regard to the computed feature. A descriptor vector
represents the intensity patterns surrounding these interest points. Lowe [26] introduced
the SIFT feature descriptor. It gained much attention owing to its translation invariance,
robustness to image noise, invariance to scale, and rotation invariance properties. However,
the computational cost of SIFT feature extraction is very high, so it is not recommended for
real-time applications [29].
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2.1.1. Speeded up Robust Feature (SURF)

To overcome the issues related to SIFT, Bay et al. [27] introduced the SURF method
to tackle the robustness issues of the SIFT approach. The SURF approach is based on
Gaussian scale-space image analysis, similar to the SIFT method. Unlike the SIFT detector,
the SURF approach depends on the Hessian Matrix determinant. It employs integrated
images to enhance the speed of feature detection. SURF’s 64-bin descriptor characterizes
each detected feature using a dispersion of Haar wavelet responses within a specific area.
Unlike SIFT, the SURF features show limited affine invariance. However, to deal with
more considerable viewpoint shifts, the descriptor can be expanded to 128-bin values. The
Hessian Matrix is generated at the point “m = (m, n)” at scale “σ”.

H(m, σ) =

[
Lmm(m, σ) Lmn(m, σ)
Lmn(m, σ) Lnn(m, σ)

]
(1)

where Lmm(m, σ) is the Gaussian second-order derivate convolution ∂2

∂x2 g(σ) with the
image I at a point m, similar to Lmn(m, σ) and Lnn(m, σ).

2.1.2. KAZE

KAZE is a revolutionary 2D feature identification and description approach that
works entirely in nonlinear scale-space using nonlinear diffusion and the additive operator
splitting method [28]. Thus, blurring in images becomes locally adaptable to feature points,
resulting in noise reduction without affecting the image region boundaries. The KAZE is
derived by the Hessian Matrix determinant with a normalized scale and is calculated at
different scale levels. A moving window identifies the maxima/minima/mean of detector
response as feature points (mean is used in this work). In the feature description, the
rotation invariance property is introduced by determining the prevalent orientation in
a rounded region surrounding each detected feature. It has the properties of scale and
rotation invariance, little invariance to affine, and has greater distinctness at different
scales, with a slight increase in computational cost. The nonlinear diffusion equation is
presented below.

∂L
∂t

= div(c(m, n, t).∇L) (2)

where c, div, ∇, and L are the conductivity function, divergence, gradient operator, and
luminance of the image, respectively.

2.2. Support Vector Machine (SVM)

Cortes and Vapnik [30] proposed the SVM model in 1995, and it is a very popular
and powerful classifier used in various fields [31–33]. The SVM algorithm uses kernel
functions K(x, xa) to transfer the nonlinear low-dimensional input data space into a high-
dimensional linear data space. The hyperplane function used to separate the transferred
data (high-dimensional linear data) is presented in Equation (3).

y(x) =
n

∑
a=1

βaK(x, xa) + b1 (3)

Meanwhile, various kernel functions, such as linear kernel, sigmoid kernel, and RBF
kernel, can be used to classify the data. Further details about SVM can be found in [30,32].

2.3. Proposed Framework

This section discusses the overall framework of the proposed approach in detail. The
proposed approach consists of 4 main components, namely brain MRI image acquisition,
pre-processing, feature extraction, and model training, as shown in Figure 1.
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Figure 1. Framework of the proposed hybrid brain MRI image classification model.

The brain images were acquired using the brain MRI machine in the first step. Next,
the acquired brain MRI images were pre-processed from the RGB images into grayscale
images. Then, an 8 × 8-pixel grid was defined as a selection point for the feature extraction
of the brain MRI images. Variations in pixel size affect the computational cost and feature
vector size. Furthermore, the four-element vectors ([16, 32, 48, 64] and [17, 34, 51, 68])
were used to extract the KAZE and SURF features, respectively. The details of KAZE and
SURF extraction were already provided in Section 2.1. After this, 20% of the redundant
features were discarded to reduce the feature vector size. Finally, based on the simplicity
and robustness, the k-means clustering algorithm was utilized for feature segmentation.
Furthermore, it kept observations inside each cluster as close to each other and as far
away from objects in other clusters as possible Therefore, 400-feature histograms were
created using the k-means clustering approach. Further details about the k-means clustering
approach can be found in [34,35]. After this, various machine learning classifiers, such as
SVM, tree [36], Naïve Bayes [37], k-nearest neighbors (K-NN) [38], ensemble, and neural
network (NN), were used to train the models. The results of the proposed method are
presented in the subsequent section.

3. Brain MRI Dataset and Results

This study validates the suggested paradigm using an online collection of brain MRI
images [39]. The dataset for this study was obtained from the Kaggle website [39]. It
contains three tumor classes (glioma, pituitary, and meningioma) and one class of no tumor.
It has 2870 brain MRI images in total. Additionally, 80% of the data of each class were
utilized for the training of the models. The remaining 20% of the data were used to test the
trained models. The brain MRI images and percentage distribution of images per class are
shown in Figure 2.
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In this work, MATLAB 2021 was utilized for training the models in the 64-bit Windows
11 operating system (core i7, 11th generation, 32 GB RAM, NVIDIA GeForce GTX 1060, and
1 TB SSD). In addition, the classification accuracy was used as a comparison metric for the
various trained models (SVM, tree, Naïve Bayes, K-NN, ensemble, and NN). The results of
the KAZE- and SURF-trained models are presented in Figure 3.
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Figure 3. The comparison of various machine learning models for SURF and KAZE features.

It is evident from Figure 3 that the SVM model trained with SURF and KAZE features
shows accuracies of 93.4% and 93.7%, respectively, which are the highest among all methods.
Therefore, it may be fruitful to concatenate the features of SURF and KAZE to determine
the model’s performance in classifying brain MRI images. Furthermore, the confusion
matrixes of the SURF-, KAZE-, and SURF + KAZE- (hybrid) trained SVM models are shown
in Figure 4.
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The SVM model trained with concatenation features shows the highest accuracy of
95.33%, almost 2% higher than the SVM model trained with SURF features. Therefore,
the proposed SURF + KAZE-trained SVM model has true positive rates (TPRs) of 97.75%
and 98.42% for the glioma and pituitary tumor classes. Furthermore, the proposed model
correctly classifies 19 more MRI brain images for the no tumor class than the KAZE-trained
model. Similarly, 36 more brain MRI images are correctly classified for the meningioma
tumor class compared to the SURF-trained model. Finally, the proposed model is compared
with the pre-trained deep-feature-trained SVM model presented by Kang et al. [25]. The
comparison results of various SVM models are presented in Figure 5.

Life 2022, 12, x FOR PEER REVIEW 8 of 12 
 

 

The SVM model trained with concatenation features shows the highest accuracy of 
95.33%, almost 2% higher than the SVM model trained with SURF features. Therefore, the 
proposed SURF + KAZE-trained SVM model has true positive rates (TPRs) of 97.75% and 
98.42% for the glioma and pituitary tumor classes. Furthermore, the proposed model cor-
rectly classifies 19 more MRI brain images for the no tumor class than the KAZE-trained 
model. Similarly, 36 more brain MRI images are correctly classified for the meningioma 
tumor class compared to the SURF-trained model. Finally, the proposed model is com-
pared with the pre-trained deep-feature-trained SVM model presented by Kang et al. [25]. 
The comparison results of various SVM models are presented in Figure 5. 

 
(a) 

 
(b) 

Figure 5. Comparison of SVM model trained with deep features with the proposed model: (a) accu-
racy comparison; (b) accuracy and computational complexity. 

For further validation of the proposed approach, another public dataset is utilized 
[40]. The dataset contains a total of 3064 brain MRI scans. Further details about the dataset 
are shown in Figure 6. The classification result of the new dataset is presented in Figure 
7. 

Figure 5. Comparison of SVM model trained with deep features with the proposed model: (a) accu-
racy comparison; (b) accuracy and computational complexity.

For further validation of the proposed approach, another public dataset is utilized [40].
The dataset contains a total of 3064 brain MRI scans. Further details about the dataset are
shown in Figure 6. The classification result of the new dataset is presented in Figure 7.
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4. Discussion

Computer-aided detection/diagnosis involves a computer-based system that assists
clinicians in making quick judgments in the field of medical imaging. Several studies have
reported several training methods for categorizing brain MRI images [8,16,22,25,41].

In this work, an SVM model for brain MRI images trained with hybrid SURF and
KAZE features is proposed for brain tumor classification. First, the acquired brain MRI
images were processed using the 8 × 8-pixel uniform grid to extract the SURF and KAZE
features, as discussed in Sections 2.1.1 and 2.1.2. As a result, 16,577,120 features were
extracted for the whole dataset containing 2870 brain MRI images of various classes (see
Section 3 for details). In addition, 80% of the strongest features were computed using the
computer vision toolbox of MATLAB, which reduced the feature vector size to 7,300,864
for all of the brain MRI images. Finally, k-means clustering was utilized to form feature
vectors with a size of 400 for each image. As a result, the SVM-trained model showed
the best accuracies of 93.4% and 93.7% for SURF and KAZE, respectively (see Figure 3).
Furthermore, the concatenation of both the SURF and KAZE features resulted in a better
accuracy of 95.3% for brain MRI multiclass classification.

Kang et al. [25] trained the SVM model using pre-trained network deep features. The
results suggested that the DenseNet-169 + Shufflenet + MnasNet-trained SVM model had
the best classification accuracy of 93.72% for a similar dataset (see Figure 5). The proposed
SURF + KAZE-trained SVM model showed an accuracy of 95.33%, almost 1.5% higher
than the model proposed by Kang et al. (see Figure 5a). The computational cost of
the proposed model was also almost two times lower than their proposed model (see
Figure 5b). In a study [41], pre-trained CNN models (GoogleNet, VGGNet, and AlexNet)
were utilized to classify brain MRI images. The model showed high classification accuracy
with a high training time of around 1 h and 30 min for the fine-tuned VGGNet CNN
model. The model presented in our study (SURF + KAZE) showed an accuracy of 95.33%
and had a computational complexity of only 1.8992 s. For further validation, a new
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public dataset that had three classes was used to check the performance of the proposed
framework (see Figure 6). The proposed approach showed similar accuracy (95.9%) for
the classification in the new brain MRI dataset, as shown in Figure 7. The results validate
the adeptness, robustness, and high classification accuracy of the proposed approach. This
demonstrates that the presented model is relatively straightforward to implement for real-
time applications. As a result, the suggested technique has the potential to play a critical
role in assisting clinicians/doctors for early brain cancer detection.

5. Conclusions

This study presents an automatic brain tumor diagnostic approach using brain MRI
images. First, the proposed approach computes the SURF and KAZE features using a
grid of 8 × 8 pixels in size of brain MRI images. Then, 80% of the strongest features are
considered for segmentation using k-means clustering. The final feature vector has a size
of 400 per image for each feature (SURF and KAZE). Finally, the proposed hybrid feature
vector is used to train the SVM model. The classification accuracies of the proposed model
(SURF + KAZE) are 95.33% and 95.9%, almost 2% higher than the SURF-trained SVM model.
The comparison of the proposed approach with the findings presented in the literature also
shows its superiority due to its high accuracy and lower computational time. Thus, the
proposed approach can be used for the automatic detection of brain tumors.
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