Anti-Coronavirus Efficiency and Redox-Modulating Capacity of Polyphenol-Rich Extracts from Traditional Bulgarian Medicinal Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antiviral Investigations
2.1.1. Host Cell Culture
2.1.2. Virus
2.1.3. Researched Plant Material
2.1.4. Production of Dry Extract
2.1.5. Cytotoxicity Assay
2.1.6. Virucidal Assay
2.1.7. Effect on Viral Adsorption
2.1.8. Pretreatment of Healthy Cells
2.2. Redox-Modulating Capacity
2.2.1. Determination of the Total Flavonoid Content
2.2.2. Determination of the Total Polyphenol Content
2.2.3. Superoxide Anion Radical Generating System (●O2−)
2.2.4. DPPH Radical-Scavenging Assay
2.2.5. Ferric-Reducing Antioxidant Power (FRAP)
2.2.6. Cupric-Reducing Antioxidant Capacity (CUPRAC)
2.2.7. Iron-Chelating Power
2.3. Statistical Analysis
3. Results
3.1. Anticoronavirus Acitvities
3.1.1. Cytotoxicity of the Thirteen Extracts against the MRC-5 Cell Line
3.1.2. Virucidal Activity of Extracts against Human Coronavirus Virions
3.1.3. Effect of the Extracts on the Adsorption Step of HCoV Virions to Host Cells
3.1.4. Protective Effect of the Studied Extracts on Pretreated Healthy Cells
3.2. Content of Polyphenols, Total Polyphenols, and Redox-Modulating Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schippmann, U.; Leaman, D.; Cunningham, A.B. Medicinal and Aromatic Plants; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Piret, J.; Boivin, G. Resistance of herpes simplex viruses to nucleoside analogues: Mechanisms, prevalence, and management. Antimicrob. Agents Chemother. 2011, 55, 459–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarić, S.; Kostić, O.; Mataruga, Z.; Pavlović, D.; Pavlović, M.; Mitrović, M.; Pavlović, P. Traditional wound-healing plants used in the Balkan region (Southeast Europe). J. Ethnopharmacol. 2018, 211, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Todorov, D.; Hinkov, A.; Shishkova, K.; Shishkov, S. Antiviral potential of Bulgarian medicinal plants. Phytochem. Rev. 2014, 13, 525–538. [Google Scholar] [CrossRef]
- Mukhtar, M.; Arshad, M.; Ahmad, M.; Pomerantz, R.J.; Wigdahl, B.; Parveen, Z. Antiviral potentials of medicinal plants. Virus Res. 2008, 131, 111–120. [Google Scholar] [CrossRef]
- Chiang, L.C.; Ng, L.T.; Cheng, P.W.; Chiang, W.; Lin, C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharm. Physiol. 2005, 32, 811–816. [Google Scholar] [CrossRef]
- Patil, S.M.; Ramu, R.; Shirahatti, P.S.; Shivamallu, C.; Amachawadi, R.G. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon 2021, 7, e07054. [Google Scholar] [CrossRef]
- Tahmouzi, S.; Salek Nejat, M.R. New infertility therapy effects of polysaccharides from Althaea officinalis leaf with emphasis on characterization, antioxidant and anti-pathogenic activity. Int. J. Biol. Macromol. 2020, 145, 777–787. [Google Scholar] [CrossRef]
- Aygül, A.; Şerbetçi, T. The antibacterial and antivirulent potential of Hypericum lydium against Staphylococcus aureus: Inhibition of growth, biofilm formation, and hemolytic activity. Eur. J. Integr. Med. 2020, 35, 101061. [Google Scholar] [CrossRef]
- Bonaterra, G.A.; Bronischewski, K.; Hunold, P.; Schwarzbach, H.; Heinrich, E.U.; Fink, C.; Aziz-Kalbhenn, H.; Muller, J.; Kinscherf, R. Anti-inflammatory and Anti-oxidative Effects of Phytohustil((R)) and Root Extract of Althaea officinalis L. on Macrophages in vitro. Front. Pharm. 2020, 11, 290. [Google Scholar] [CrossRef]
- Brunakova, K.; Balintova, M.; Henzelyova, J.; Kolarcik, V.; Kimakova, A.; Petijova, L.; Cellarova, E. Phytochemical profiling of several Hypericum species identified using genetic markers. Phytochemistry 2021, 187, 112742. [Google Scholar] [CrossRef]
- de Oliveira, J.R.; de Jesus Viegas, D.; Martins, A.P.R.; Carvalho, C.A.T.; Soares, C.P.; Camargo, S.E.A.; de Oliveira, L.D. Thymus vulgaris L. extract has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and genotoxicity. Arch. Oral Biol. 2017, 82, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Nair, M.S.; Huang, Y.; Fidock, D.A.; Polyak, S.J.; Wagoner, J.; Towler, M.J.; Weathers, P.J. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. J. Ethnopharmacol. 2021, 274, 114016. [Google Scholar] [CrossRef]
- Osei Akoto, C.; Acheampong, A.; Boakye, Y.D.; Naazo, A.A.; Adomah, D.H. Anti-inflammatory, antioxidant, and anthelmintic activities of Ocimum basilicum (Sweet Basil) fruits. J. Chem. 2020, 2020, 2153534. [Google Scholar] [CrossRef]
- Samuelsen, A.B. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J. Ethnopharmacol. 2000, 71, 1–21. [Google Scholar] [CrossRef]
- Tomczyk, M.; Latte, K.P. Potentilla—A review of its phytochemical and pharmacological profile. J. Ethnopharmacol. 2009, 122, 184–204. [Google Scholar] [CrossRef]
- Jakovljević, M.R.; Grujičić, D.; Vukajlović, J.T.; Marković, A.; Milutinović, M.; Stanković, M.; Vuković, N.; Vukić, M.; Milošević-Djordjević, O. In vitro study of genotoxic and cytotoxic activities of methanol extracts of Artemisia vulgaris L. and Artemisia alba Turra. S. Afr. J. Bot. 2020, 132, 117–126. [Google Scholar] [CrossRef]
- Niksic, H.; Becic, F.; Koric, E.; Gusic, I.; Omeragic, E.; Muratovic, S.; Miladinovic, B.; Duric, K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci. Rep. 2021, 11, 13178. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, H.; Dhindsa, A.S. Glycyrrhiza glabra: A phytopharmacological review. Int. J. Pharm. Sci. Res. 2013, 4, 2470–2477. [Google Scholar]
- Khalil, A.T.; Khan, I.; Ahmad, K.; Khan, Y.A.; Khan, M.; Khan, M.J. Synergistic antibacterial effect of honey and Herba Ocimi Basilici against some bacterial pathogens. J. Tradit. Chin. Med. 2013, 33, 810–814. [Google Scholar] [CrossRef]
- Zubair, M.; Widen, C.; Renvert, S.; Rumpunen, K. Water and ethanol extracts of Plantago major leaves show anti-inflammatory activity on oral epithelial cells. J. Tradit. Complement. Med. 2019, 9, 169–171. [Google Scholar] [CrossRef]
- Oyedemi, S.O.; Oyedemi, B.O.; Prieto, J.M.; Coopoosamy, R.M.; Stapleton, P.; Gibbons, S. In vitro assessment of antibiotic-resistance reversal of a methanol extract from Rosa canina L. S. Afr. J. Bot. 2016, 105, 337–342. [Google Scholar] [CrossRef]
- Salinas, F.M.; Vazquez, L.; Gentilini, M.V.; Donohoe, A.O.; Regueira, E.; Nabaes Jodar, M.S.; Viegas, M.; Michelini, F.M.; Hermida, G.; Alche, L.E.; et al. Aesculus hippocastanum L. seed extract shows virucidal and antiviral activities against respiratory syncytial virus (RSV) and reduces lung inflammation in vivo. Antivir. Res. 2019, 164, 1–11. [Google Scholar] [CrossRef]
- Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Nahar, L.; Tiralongo, E.; Sarker, S.D. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol. 2020, 104, 219–234. [Google Scholar] [CrossRef]
- Torabian, G.; Valtchev, P.; Adil, Q.; Dehghani, F. Anti-influenza activity of elderberry (Sambucus nigra). J. Funct. Foods 2019, 54, 353–360. [Google Scholar] [CrossRef]
- Catella, C.; Camero, M.; Lucente, M.S.; Fracchiolla, G.; Sblano, S.; Tempesta, M.; Martella, V.; Buonavoglia, C.; Lanave, G. Virucidal and antiviral effects of Thymus vulgaris essential oil on feline coronavirus. Res. Vet. Sci. 2021, 137, 44–47. [Google Scholar] [CrossRef]
- Juan, C.A.; Perez de la Lastra, J.M.; Plou, F.J.; Perez-Lebena, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Collin, F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef] [Green Version]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Antioxidant characterization. Methodology and mechanism. Biochem. Pharm. 1995, 49, 1341–1348. [Google Scholar] [CrossRef]
- Al-Dabbagh, B.; Elhaty, I.A.; Elhaw, M.; Murali, C.; Al Mansoori, A.; Awad, B.; Amin, A. Antioxidant and anticancer activities of chamomile (Matricaria recutita L.). BMC Res. Notes 2019, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.I.; Pinho, C.; Sarmento, B.; Dias, A.C. Neuroprotective Activity of Hypericum perforatum and Its Major Components. Front. Plant Sci. 2016, 7, 1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owczarek, A.; Kolodziejczyk-Czepas, J.; Wozniak-Serwata, J.; Magiera, A.; Kobiela, N.; Wasowicz, K.; Olszewska, M.A. Potential Activity Mechanisms of Aesculus hippocastanum Bark: Antioxidant Effects in Chemical and Biological In Vitro Models. Antioxidant 2021, 10, 995. [Google Scholar] [CrossRef] [PubMed]
- Mahboubi, M. Sambucus nigra (black elder) as alternative treatment for cold and flu. Adv. Tradit. Med. 2021, 21, 405–414. [Google Scholar] [CrossRef]
- Chen, C.; Zuckerman, D.M.; Brantley, S.; Sharpe, M.; Childress, K.; Hoiczyk, E.; Pendleton, A.R. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet. Res. 2014, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Wieland, L.S.; Piechotta, V.; Feinberg, T.; Ludeman, E.; Hutton, B.; Kanji, S.; Seely, D.; Garritty, C. Elderberry for prevention and treatment of viral respiratory illnesses: A systematic review. BMC Complement. Med. Ther. 2021, 21, 112. [Google Scholar] [CrossRef]
- Asaadi, K.; Moradi, P.; Amini, K.; Habibi Lahiji, S. Investigating the most effective compounds in medicinal plant of Sambucus nigra in Azarbayjan region. Iran. J. Plant Physiol. 2012, 2, 485–488. [Google Scholar]
- Jabbari, M.; Daneshfard, B.; Emtiazy, M.; Khiveh, A.; Hashempur, M.H. Biological effects and clinical applications of dwarf elder (Sambucus ebulus L): A review. J. Evid.-Based Complement. Altern. Med. 2017, 22, 996–1001. [Google Scholar] [CrossRef] [Green Version]
- Zakay-Rones, Z.; Thom, E.; Wollan, T.; Wadstein, J. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. J. Int. Med. Res. 2004, 32, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Zakay-Rones, Z.; Varsano, N.; Zlotnik, M.; Manor, O.; Regev, L.; Schlesinger, M.; Mumcuoglu, M. Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L.) during an outbreak of influenza B Panama. J. Altern. Complement. Med. 1995, 1, 361–369. [Google Scholar] [CrossRef]
- Teshome, A.; Adane, A.; Girma, B.; Mekonnen, Z.A. The impact of vitamin D level on COVID-19 infection: Systematic review and meta-analysis. Front. Public Health 2021, 9, 169. [Google Scholar] [CrossRef]
- Redondo, G.L.M.; Loria, A.; Barrantes, J.B.; Navarro, M.P.; Monge, M.C.O.; Vargas, M.J.C. General aspects about Allium sativum—A review. Ars Pharm. 2021, 62, 471–481. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [Green Version]
- Kazempor, S.F. The analgesic effects of different extracts of aerial parts of Coriandrum Sativum in mice. Int. J. Biomed. Sci. IJBS 2015, 11, 23–28. [Google Scholar]
- Daka, D. Antibacterial effect of garlic (Allium sativum) on Staphyloccus aureus: An in vitro study. Afr. J. Biotechnol. 2011, 10, 666–669. [Google Scholar]
- Ahangar, N.; Bakhshi Jouybari, H.; Davoodi, A.; Shahani, S. Phytochemical Screening and Antinociceptive Activity of the Hydroalcoholic Extract of Potentilla reptans L. Pharm. Biomed. Res. 2021, 7, 277–284. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Mahomoodally, M.F.; Yilmaz, M.A.; Aktumsek, A. Chemical profile, antioxidant properties and enzyme inhibitory effects of the root extracts of selected Potentilla species. S. Afr. J. Bot. 2019, 120, 124–128. [Google Scholar] [CrossRef]
- Ayati, Z.; Amiri, M.S.; Ramezani, M.; Delshad, E.; Sahebkar, A.; Emami, S.A. Phytochemistry, traditional uses and pharmacological profile of rose hip: A review. Curr. Pharm. Des. 2018, 24, 4101–4124. [Google Scholar] [CrossRef]
- Christensen, R.; Bartels, E.M.; Altman, R.D.; Astrup, A.; Bliddal, H. Does the hip powder of Rosa canina (rosehip) reduce pain in osteoarthritis patients?—A meta-analysis of randomized controlled trials. Osteoarthr. Cartil. 2008, 16, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Parandin, R.; Mohammadi, L. Anti-inflammatory and Anti-nociceptive Activities of Hydroalcoholic Extract of Rosa canina L. Fruit Male Mice J. Ardabil. Univ. Med. Sci. 2019, 19, 161–171. [Google Scholar]
- Sargin, S.A. Potential anti-influenza effective plants used in Turkish folk medicine: A review. J. Ethnopharmacol. 2021, 265, 113319. [Google Scholar] [CrossRef]
- Raal, A.; Volmer, D.; Soukand, R.; Hratkevits, S.; Kalle, R. Complementary treatment of the common cold and flu with medicinal plants—Results from two samples of pharmacy customers in Estonia. PLoS ONE 2013, 8, e58642. [Google Scholar] [CrossRef] [Green Version]
- Segal, R.; Pilote, L. Warfarin interaction with Matricaria chamomilla. CMAJ 2006, 174, 1281–1282. [Google Scholar] [CrossRef] [Green Version]
- Jarrahi, M. An experimental study of the effects of Matricaria chamomilla extract on cutaneous burn wound healing in albino rats. Nat. Prod. Res. 2008, 22, 422–427. [Google Scholar] [CrossRef]
- Azimi, M.; Mojahedi, M.; Mokaberinejad, R.; Hasheminasab, F.S. Ethnomedicine Knowledge of Iranian Traditional Healers and the Novel Coronavirus Disease 2019 (COVID-19). J. Adv. Med. Biomed. Res. 2021, 29, 238–245. [Google Scholar] [CrossRef]
- Ruther, J.; Hilker, M. Attraction of forest cockchafer Melolontha hippocastani to (Z)-3-hexen-1-ol and 1, 4-benzoquinone: Application aspects. Entomol. Exp. Appl. 2003, 107, 141–147. [Google Scholar] [CrossRef]
- Rabinovich, A. Medicinal plants and their application in the USSR. In Proceedings of the International Symposium on Medicinal and Aromatic Plants, XXIII IHC 306, Hungary, Italy, 4 September 1990; pp. 161–168. [Google Scholar]
- Dudek-Makuch, M.; Studzińska-Sroka, E. Horse chestnut–efficacy and safety in chronic venous insufficiency: An overview. Rev. Bras. Farmacogn. 2015, 25, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Ianovici, N.; Latis, A.A.; Radac, A.I. Foliar traits of Juglans regia, Aesculus hippocastanum and Tilia platyphyllos in urban habitat. Rom. Biotechnol. Lett. 2017, 22, 12400–12408. [Google Scholar]
- Soltani Delroba, N.; Karamian, R.; Ranjbar, M. Interactive effects of salicylic acid and cold stress on activities of antioxidant enzymes in Glycyrrhiza glabra L. J. Med. Herbs 2011, 2, 7–13. [Google Scholar]
- Wahab, S.; Ahmad, I.; Irfan, S.; Siddiqua, A.; Usmani, S.; Ahmad, M.P. Pharmacological Efficacy and Safety of Glycyrrhiza glabra in the treatment of respiratory tract infections. Mini Rev. Med. Chem. 2021, 1476-–1494. [Google Scholar] [CrossRef]
- Thakur, A.K.; Raj, P. Pharmacological perspective of Glycyrrhiza glabra Linn: A mini-review. J. Anal. Pharm. Res. 2017, 5, 00156. [Google Scholar] [CrossRef] [Green Version]
- Rahimian, G.; Babaeian, M.; Kheiri, S.; Moradi, M.T.; Rafieian-Kopaei, M. Effect of Glycyrrhiza glabra (D-reglis tablet) on pain and defecation of patients with irritable bowel syndrome. J. Birjand Univ. Med. Sci. 2010, 17, 240–248. [Google Scholar]
- Parvaiz, M.; Hussain, K.; Khalid, S.; Hussnain, N.; Iram, N.; Hussain, Z.; Ali, M.A. A review: Medicinal importance of Glycyrrhiza glabra L. (Fabaceae family). Glob. J. Pharm. 2014, 8, 8–13. [Google Scholar]
- Alexyuk, P.G.; Bogoyavlenskiy, A.P.; Alexyuk, M.S.; Turmagambetova, A.S.; Zaitseva, I.A.; Omirtaeva, E.S.; Berezin, V.E. Adjuvant activity of multimolecular complexes based on Glycyrrhiza glabra saponins, lipids, and influenza virus glycoproteins. Arch. Virol. 2019, 164, 1793–1803. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.N.; Rastogi, S.; Agarwal, G.G.; Lakhotia, S.C. Influenza like illness related clinical trial on AYUSH-64 requires cautious interpretation. J. Ayurveda Integr. Med. 2022, 13, 100346. [Google Scholar] [CrossRef]
- Adebayo, S.A.; Ondua, M.; Shai, L.J.; Lebelo, S.L. Inhibition of nitric oxide production and free radical scavenging activities of four South African medicinal plants. J. Inflamm. Res. 2019, 12, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Rapior, S.; Weber, H.R.; Françoise, F. Evaluation of Efficacy of Plantago Species for Human Affections of Digestive System. In Proceedings of the iCEPS e-Conference 2021, Toulouse, France, 1–2 April 2021. [Google Scholar]
- Ozkol, H.U.; Akdeniz, N.; Ozkol, H.; Bilgili, S.G.; Calka, O. Development of phytophotodermatitis in two cases related to Plantago lanceolata. Cutan. Ocul. Toxicol. 2012, 31, 58–60. [Google Scholar] [CrossRef]
- Ondua, M.; Adebayo, S.A.; Shai, L.J.; Lebelo, S.L. The Anti-Inflammatory and Anti-Nociceptive Activities of Some Medicinal Plant Species Used to Treat Inflammatory Pain Conditions in Southern Africa. UPSpace 2016, 8, 1571–1575. [Google Scholar]
- Fayera, S.; Babu, G.N.; Dekebo, A.; Bogale, Y. Phytochemical investigation and antimicrobial study of leaf extract of Plantago lanceolata. Nat. Prod. Chem. Res. 2018, 6, 1–8. [Google Scholar] [CrossRef]
- Chen, H.; Muhammad, I.; Zhang, Y.; Ren, Y.; Zhang, R.; Huang, X.; Diao, L.; Liu, H.; Li, X.; Sun, X.; et al. Antiviral activity against infectious bronchitis virus and bioactive components of Hypericum perforatum L. Front. Pharmacol. 2019, 10, 1272. [Google Scholar] [CrossRef]
- Dastagir, G.; Ahmed, R.; Shereen, S. Elemental, nutritional, phytochemical and biological evaluation of Hypericum perforatum Linn. Pak. J. Pharm. Sci. 2016, 29, 547–555. [Google Scholar]
- Raak, C.; Scharbrodt, W.; Berger, B.; Bussing, A.; Geissen, R.; Ostermann, T. Hypericum perforatum to improve post-operative Pain Outcome after monosegmental Spinal microdiscectomy (HYPOS): A study protocol for a randomised, double-blind, placebo-controlled trial. Trials 2018, 19, 253. [Google Scholar] [CrossRef]
- Mehrbod, P.; Safari, H.; Mollai, Z.; Fotouhi, F.; Mirfakhraei, Y.; Entezari, H.; Goodarzi, S.; Tofighi, Z. Potential antiviral effects of some native Iranian medicinal plants extracts and fractions against influenza A virus. BMC Complement. Med. Ther. 2021, 21, 246. [Google Scholar] [CrossRef]
- Sardari, S.; Mobaiend, A.; Ghassemifard, L.; Kamali, K.; Khavasi, N. Therapeutic effect of thyme (Thymus vulgaris) essential oil on patients with COVID-19: A randomized clinical trial. J. Adv. Med. Biomed. Res. 2021, 29, 83–91. [Google Scholar]
- Taherian, A.A.; Babaei, M.; Vafaei, A.A.; Jarrahi, M.; Jadidi, M.; Sadeghi, H. Antinociceptive effects of hydroalcoholic extract of Thymus vulgaris. Pak. J. Pharm. Sci. 2009, 22, 83–89. [Google Scholar]
- Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The application of medicinal plants in traditional and modern medicine: A review of Thymus vulgaris. Int. J. Clin. Med. 2015, 6, 635. [Google Scholar] [CrossRef] [Green Version]
- Wani, A.R.; Yadav, K.; Khursheed, A.; Rather, M.A. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb. Pathog. 2021, 152, 104620. [Google Scholar] [CrossRef]
- Iqbal, S.; Younas, U.; Chan, K.W.; Zia-Ul-Haq, M.; Ismail, M. Chemical composition of Artemisia annua L. leaves and antioxidant potential of extracts as a function of extraction solvents. Molecules 2012, 17, 6020–6032. [Google Scholar] [CrossRef]
- Bussmann, R.W.; Batsatsashvili, K.; Kikvidze, Z.; Khajoei Nasab, F.; Ghorbani, A.; Paniagua-Zambrana, N.Y.; Tchelidze, D. Artemisia absinthium L. Artemisia annua L. Artemisia dracunculus L. Artemisia leucodes Schrenk Artemisia scoparia Waldst. & Kit. Artemisia vulgaris L. Eclipta prostrata (L.) L. Asteraceae. In Ethnobotany of the Mountain Regions of Far Eastern Europe: Ural, Northern Caucasus, Turkey, and Iran; Batsatsashvili, K., Kikvidze, Z., Bussmann, R.W., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–16. [Google Scholar]
- Stebbings, S.; Beattie, E.; McNamara, D.; Hunt, S. A pilot randomized, placebo-controlled clinical trial to investigate the efficacy and safety of an extract of Artemisia annua administered over 12 weeks, for managing pain, stiffness, and functional limitation associated with osteoarthritis of the hip and knee. Clin. Rheumatol. 2016, 35, 1829–1836. [Google Scholar] [CrossRef]
- Feng, X.; Cao, S.; Qiu, F.; Zhang, B. Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol. Ther. 2020, 216, 107650. [Google Scholar] [CrossRef]
- Haq, F.U.; Roman, M.; Ahmad, K.; Rahman, S.U.; Shah, S.M.A.; Suleman, N.; Ullah, S.; Ahmad, I.; Ullah, W. Artemisia annua: Trials are needed for COVID-19. Phytother. Res. 2020, 34, 2423–2424. [Google Scholar] [CrossRef]
- Lawan, K.M.; Bharti, J.; Kargo, M.A.; Bello, U.R. Impact of medicinal plants on treatment of SARS-CoV, SARS-CoV-2 and influenza virus in India. Asian J. Pharm. Pharmacol. 2020, 6, 306–311. [Google Scholar] [CrossRef]
- Mahboubi, M. Marsh Mallow (Althaea officinalis L.) and Its Potency in the Treatment of Cough. Complement. Med. Res. 2020, 27, 174–183. [Google Scholar] [CrossRef]
- Valiei, M.; Shafaghat, A.; Salimi, F. Chemical composition and antimicrobial activity of the flower and root hexane extracts of Althaea officinalis in Northwest Iran. J. Med. Plants Res. 2011, 5, 6972–6976. [Google Scholar]
- Kianitalaei, A.; Feyzabadi, Z.; Hamedi, S.; Qaraaty, M. Althaea officinalis in Traditional Medicine and modern phytotherapy. J. Adv. Pharm. Educ. Res. 2019, 9, 155. [Google Scholar]
- Bilal, A.; Jahan, N.; Ahmed, A.; Bilal, S.N.; Habib, S.; Hajra, S. Phytochemical and pharmacological studies on Ocimum basilicum Linn—A review. Int. J. Curr. Res. Rev. 2012, 4, 73–83. [Google Scholar]
- Eftekhar, N.; Moghimi, A.; Mohammadian Roshan, N.; Saadat, S.; Boskabady, M.H. Immunomodulatory and anti-inflammatory effects of hydro-ethanolic extract of Ocimum basilicum leaves and its effect on lung pathological changes in an ovalbumin-induced rat model of asthma. BMC Complement. Altern. Med. 2019, 19, 349. [Google Scholar] [CrossRef]
- Venancio, A.M.; Onofre, A.S.; Lira, A.F.; Alves, P.B.; Blank, A.F.; Antoniolli, A.R.; Marchioro, M.; Estevam Cdos, S.; de Araujo, B.S. Chemical composition, acute toxicity, and antinociceptive activity of the essential oil of a plant breeding cultivar of basil (Ocimum basilicum L.). Planta Med. 2011, 77, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. Int. J. Food Prop. 2020, 23, 1961–1970. [Google Scholar] [CrossRef]
- Choi, H.J. Chemical Constituents of Essential Oils Possessing Anti-Influenza A/WS/33 Virus Activity. Osong Public Health Res. Perspect 2018, 9, 348–353. [Google Scholar] [CrossRef]
- Gouveia, S.; Castilho, P.C. Characterisation of phenolic acid derivatives and flavonoids from different morphological parts of Helichrysum obconicum by a RP-HPLC–DAD-(−)–ESI-MSn method. Food Chem. 2011, 129, 333–344. [Google Scholar] [CrossRef]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Venditti, E.; Bacchetti, T.; Tiano, L.; Carloni, P.; Greci, L.; Damiani, E. Hot vs. cold water steeping of different teas: Do they affect antioxidant activity? Food Chem. 2010, 119, 1597–1604. [Google Scholar] [CrossRef]
- Aliyu, A.B.; Koorbanally, N.A.; Moodley, B.; Singh, P.; Chenia, H.Y. Quorum sensing inhibitory potential and molecular docking studies of sesquiterpene lactones from Vernonia blumeoides. Phytochemistry 2016, 126, 23–33. [Google Scholar] [CrossRef]
- Kazemian, H.; Ghafourian, S.; Heidari, H.; Amiri, P.; Yamchi, J.K.; Shavalipour, A.; Houri, H.; Maleki, A.; Sadeghifard, N. Antibacterial, anti-swarming and anti-biofilm formation activities of Chamaemelum nobile against Pseudomonas aeruginosa. Rev. Soc. Bras. Med. Trop. 2015, 48, 432–436. [Google Scholar] [CrossRef] [Green Version]
- Bacha, K.; Tariku, Y.; Gebreyesus, F.; Zerihun, S.; Mohammed, A.; Weiland-Brauer, N.; Schmitz, R.A.; Mulat, M. Antimicrobial and anti-Quorum Sensing activities of selected medicinal plants of Ethiopia: Implication for development of potent antimicrobial agents. BMC Microbiol. 2016, 16, 139. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Yao, L. Antiviral Effects of Plant-Derived Essential Oils and Their Components: An Updated Review. Molecules 2020, 25, 2627. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Navarro-Cruz, A.R.; Ochoa-Velasco, C.E.; Palou, E.; Lopez-Malo, A.; Avila-Sosa, R. Essential oils in vapor phase as alternative antimicrobials: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1641–1650. [Google Scholar] [CrossRef]
- Vilhelmova-Ilieva, N.; Jacquet, R.; Deffieux, D.; Pouysegu, L.; Sylla, T.; Chassaing, S.; Nikolova, I.; Quideau, S.; Galabov, A.S. Anti-Herpes Simplex Virus Type 1 Activity of Specially Selected Groups of Tannins. Drug Res. (Stuttg) 2019, 69, 374–381. [Google Scholar] [CrossRef]
- Kumar, D.S.; Hanumanram, G.; Suthakaran, P.K.; Mohanan, J.; Nair, L.D.V.; Rajendran, K. Extracellular Oxidative Stress Markers in COVID-19 Patients with Diabetes as Co-Morbidity. Clin. Pract. 2022, 12, 168–176. [Google Scholar] [CrossRef]
- Csepregi, K.; Neugart, S.; Schreiner, M.; Hideg, E. Comparative Evaluation of Total Antioxidant Capacities of Plant Polyphenols. Molecules 2016, 21, 208. [Google Scholar] [CrossRef] [Green Version]
- Winterbourn, C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett. 1995, 82–83, 969–974. [Google Scholar] [CrossRef]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 2008, 15, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef] [Green Version]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Gutteridge, J.M.C.; Halliwell, B. Mini-Review: Oxidative stress, redox stress or redox success? Biochem. Biophys. Res. Commun. 2018, 502, 183–186. [Google Scholar] [CrossRef]
Plant Species/Drug | Control of the Respiratory Infections | |||||
---|---|---|---|---|---|---|
Cold | Bronchitis | Cough | Pain | Fever | Viral Diseases | |
S. nigra | [34] | [35] | [36] | [37,38] | [34] | [34,36,39,40] |
A. sativum | [41] | [42] | [43] | [44] | [45] | [24] |
P. reptans | [46] | - | - | - | [47] | [47] |
R. canina | - | [48] | [48] | [49] | [50] | [51] |
M. chamomilla | [52] | [53] | [54] | - | [54] | [52,55] |
A. hippocastani | [56] | - | [57] | [58] | [59] | [57] |
G. glabra | [60] | [61] | [62] | [63] | [64] | [65,66] |
P. lanceolata | [67] | [68] | [69] | [70] | [71] | [67] |
H. perforatum | - | [72] | [73] | [74] | [73] | [73,75] |
T. vulgaris | [76] | [7] | [76] | [77] | [76] | [78,79] |
A. annua | [80] | [81] | [80] | [82] | [83] | [84,85] |
A. officinalis | [86] | [86] | [86] | [87] | [88] | [55] |
O. basilicum | [89] | [90] | [90] | [91] | [92] | [89,93] |
Plant Species | Area of the Collected Material | Cytotoxicity (µg/mL) | ||
---|---|---|---|---|
CC50 | MTC | |||
Sambucus nigra (elderberry) | Fruit | 1750 ± 35.2 | 1000 | |
Allium sativum (garlic) | Root | 1700 ± 33.2 | 1000 | |
Potentilla reptans (Creeping cinquefoil) | Steam | 1600 ± 13.6 | 200 | |
Rosa canina L. (rosehip) | Fruit | 1480 ± 32.4 | 1000 | |
Matricaria chamomilla L. (chamomile) | Flower | 820 ± 8.5 | 1000 | |
Aesculus hippocastanum (horse chestnut) | Seed | 1220 ± 23.6 | 800 | |
Glycyrrhiza glabra L. (licorice) | Root | 1700 ± 42.7 | 1000 | |
Plantago lanceolata (Ribwort plantain) | Stem | 1560 ± 41.3 | 1000 | |
Hypericum perforatum (St. John’s Wort) | Steam | 830 ± 12.4 | 500 | |
Thymus vulgaris (thyme) | Steam | 880 ± 18.4 | 320 | |
Artemisia annua (sweet wormwood) | Steam | 1150 ± 36.1 | 320 | |
Althaea officinalis (Marsh Mallow) | Steam | 2100 ± 42.1 | 1500 | |
Ocimum basilicum (basil) | Stem | 1250 ± 19.3 | 1000 |
Extract | Δlg | ||||
---|---|---|---|---|---|
15 min | 30 min | 60 min | 90 min | 120 min | |
Sambucus nigra | 0 | 0 | 0.5 | 0.5 | 0.5 |
Allium sativum | 2.0 | 2.0 | 2.0 | 2.25 | 2.25 |
Potentilla reptans | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 |
Rosa canina L. | 1.0 | 1.0 | 1.25 | 1.25 | 1.25 |
Matricaria chamomilla L. | 2.25 | 2.25 | 2.25 | 2.5 | 2.5 |
Aesculus hippocastanum | 1.0 | 1.0 | 1.25 | 1.5 | 1.75 |
Glycyrrhiza glabra L. | 1.5 | 1.75 | 1.75 | 2.0 | 2.0 |
Plantago lanceolata | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Hypericum perforatum | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Thymus vulgaris | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Artemisia annua | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
Althaea officinalis | 1.25 | 1.25 | 1.5 | 1.5 | 1.5 |
Ocimum basilicum | 1.25 | 1.25 | 1.5 | 2.25 | 2.25 |
Extract | Δlg | ||||
---|---|---|---|---|---|
15 min | 30 min | 60 min | 90 min | 120 min | |
Sambucus nigra | 0 | 0 | 0.5 | 0.5 | 0.5 |
Allium sativum | 2.0 | 2.0 | 2.0 | 2.25 | 2.25 |
Potentilla reptans | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 |
Rosa canina L. | 1.0 | 1.0 | 1.25 | 1.25 | 1.25 |
Matricaria chamomilla L. | 2.25 | 2.25 | 2.25 | 2.5 | 2.5 |
Aesculus hippocastanum | 1.0 | 1.0 | 1.25 | 1.25 | 1.25 |
Glycyrrhiza glabra L. | 1.5 | 1.75 | 1.75 | 2.0 | 2.0 |
Plantago lanceolata | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Hypericum perforatum | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Thymus vulgaris | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Artemisia annua | 1.25 | 1.25 | 1.5 | 1.5 | 2.0 |
Althaea officinalis | 1.25 | 1.25 | 1.5 | 1.5 | 2.0 |
Ocimum basilicum | 1.25 | 1.25 | 1.5 | 1.5 | 1.75 |
Extract | Δlg | ||||
---|---|---|---|---|---|
15 min | 30 min | 60 min | 90 min | 120 min | |
Sambucus nigra | 1.5 | 2.0 | 3.25 | 3.25 | 3.5 |
Allium sativum | 2.5 | 2.5 | 3.0 | 3.25 | 3.25 |
Potentilla reptans | 2.25 | 2.25 | 2.5 | 2.75 | 2.75 |
Rosa canina L. | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Matricaria chamomilla L. | 1.0 | 2.5 | 3.25 | 3.25 | 3.5 |
Aesculus hippocastanum | 1.75 | 1.75 | 4.25 | 4.5 | 4.5 |
Glycyrrhiza glabra L. | 1.75 | 1.75 | 2.0 | 2.0 | 2.0 |
Plantago lanceolata | 1.5 | 1.5 | 3.25 | 3.25 | 3.25 |
Hypericum perforatum | 1.75 | 1.75 | 2.0 | 2.0 | 2.0 |
Thymus vulgaris | 0.5 | 0.5 | 0.5 | 1.0 | 1.0 |
Artemisia annua | 0.5 | 0.5 | 0.5 | 1.0 | 1.0 |
Althaea officinalis | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Ocimum basilicum | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Plant Species | Total Polyphenols * [mg Gallic Acid/g Extract] | Total Flavonoids ** [mg Quercetin/g Extract] | FRAP # | CUPRAC ## | Fe (II) Chelating ++ | DPPH Scavenging Activity, % | Inhibition of Superoxide Generation, IC50 [mg/mL] |
---|---|---|---|---|---|---|---|
Sambucus nigra | 5.92 ± 0.23 | 0.98 ± 0.05 | 8.20 ± 0.13 | 126.80 ± 5.87 | 1.50 ± 0.03 | 53.93 | 2.85 |
Allium sativum | 0.36 ± 0.05 | 0.12 ± 0.00 | - | 2.23 ± 0.85 | 1.07 ± 0.05 | 5.53 | 3.02 |
Potentilla reptans | 4.14 ± 0.05 | 0.84 ± 0.11 | 7.32 ± 0.77 | 116.79 ± 13.99 | 1.56 ± 0.4 | 50.19 | 1.72 |
Rosa canina L. | 5.69 ± 1.64 | 0.44 ± 0.07 | 14.44 ± 1.46 | 217.72 ± 9.35 | 1.83 ± 0.14 | 48.48 | 1.12 |
Matricaria chamomilla L. | 2.07 ± 0.04 | 0.58 ± 0.10 | 2.07 ± 0.30 | 30.59 ± 0.00 | 1.22 ± 0.07 | 25.14 | 1.64 |
Aesculus hippocastanum | 2.05 ± 0.10 | 0.79 ± 0.11 | 1.41 ± 0.35 | 110.31 ± 2.00 | 2.43 ± 0.61 | 16.26 | 27.35 |
Glycyrrhiza glabra L. | 3.26 ± 0.06 | 1.81 ± 0.09 | 1.65 ± 0.16 | 135.09 ± 0.00 | 2.43 ± 0.61 | 16.26 | 10.76 |
Plantago lanceolata | 1.77 ± 0.02 | 0.40 ± 0.10 | 3.74 ± 0.20 | 108.22 ± 0.00 | 0.63 ± 0.12 | 25.76 | 0.66 |
Hypericum perforatum | 7.24 ± 0.23 | 1.60 ± 0.09 | 12.00 ± 1.43 | 172.93 ± 16.11 | 1.89 ± 0.11 | 64.36 | 1.05 |
Thymus vulgaris | 4.87 ± 0.08 | 1.04 ± 0.14 | 9.70 ± 0.77 | 141.88 ± 16.95 | 1.09 ± 0.13 | 52.53 | 7.33 |
Artemisia annua | 3.76 ± 0.20 | 1.05 ± 0.12 | 6.22 ± 0.54 | 46.62 ± 11.55 | 1.26 ± 0.18 | 48.64 | 1.1 |
Althaea officinalis | 1.45 ± 0.29 | 0.36 ± 0.10 | 1.46 ± 0.70 | 14.75 ± 2.05 | 1.17 ± 0.28 | 8.79 | 9.49 |
Ocimum basilicum | 7.32 ± 0.25 | 1.01 ± 0.15 | 14.24 ± 1.59 | 235.49 ± 22.50 | 0.98 ± 0.10 | 64.36 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilhelmova-Ilieva, N.; Petrova, Z.; Georgieva, A.; Tzvetanova, E.; Trepechova, M.; Mileva, M. Anti-Coronavirus Efficiency and Redox-Modulating Capacity of Polyphenol-Rich Extracts from Traditional Bulgarian Medicinal Plants. Life 2022, 12, 1088. https://doi.org/10.3390/life12071088
Vilhelmova-Ilieva N, Petrova Z, Georgieva A, Tzvetanova E, Trepechova M, Mileva M. Anti-Coronavirus Efficiency and Redox-Modulating Capacity of Polyphenol-Rich Extracts from Traditional Bulgarian Medicinal Plants. Life. 2022; 12(7):1088. https://doi.org/10.3390/life12071088
Chicago/Turabian StyleVilhelmova-Ilieva, Neli, Zdravka Petrova, Almira Georgieva, Elina Tzvetanova, Madlena Trepechova, and Milka Mileva. 2022. "Anti-Coronavirus Efficiency and Redox-Modulating Capacity of Polyphenol-Rich Extracts from Traditional Bulgarian Medicinal Plants" Life 12, no. 7: 1088. https://doi.org/10.3390/life12071088
APA StyleVilhelmova-Ilieva, N., Petrova, Z., Georgieva, A., Tzvetanova, E., Trepechova, M., & Mileva, M. (2022). Anti-Coronavirus Efficiency and Redox-Modulating Capacity of Polyphenol-Rich Extracts from Traditional Bulgarian Medicinal Plants. Life, 12(7), 1088. https://doi.org/10.3390/life12071088