Emerging SARS-CoV-2 Mutational Variants of Concern Should Not Vary in Susceptibility to Microbicidal Actives
Abstract
:1. Introduction
2. Methods
2.1. Challenge Viruses, Host Cell Lines, and Reagents
2.2. Standardized Efficacy Testing Methodologies
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Home—Johns Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/ (accessed on 31 May 2022).
- Centers for Disease Control and Prevention. SARS-CoV-2 Variant Classification and Definitions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html (accessed on 31 May 2022).
- Centers for Disease Control and Prevention. What You Need to Know About Variants. Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/about-variants.html?s_cid=11723:deltacron%20covid:sem.ga:p:RG:GM:gen:PTN:FY22 (accessed on 31 May 2022).
- World Health Organization. Statement on Omicron Sublineage BA.2. Available online: https://www.who.int/news/item/22-02-2022-statement-on-omicron-sublineage-ba.2 (accessed on 31 May 2022).
- Centers for Disease Control and Prevention. Delta Variant: What We Know About the Science. Available online: https://stacks.cdc.gov/view/cdc/108671 (accessed on 31 December 2021).
- Syed, A.M.; Taha, T.Y.; Tabata, T.; Chen, I.P.; Ciling, A.; Khalid, M.M.; Sreekumar, B.; Chen, P.Y.; Hayashi, J.M.; Soczek, K.M.; et al. Rapid assessment of SARS-CoV-2 evolved variants using virus-like particles. Science 2021, 374, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Mahase, E. Covid-19: What do we know about the Delta Omicron recombinant variant? BMJ 2022, 376, o792. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.P.; Qu, P.; Zeng, C.; Zheng, Y.-M.; Carlin, C.; Bednash, J.S.; Lozanski, G.; Mallampalli, R.K.; Saif, L.J.; Oltz, E.M.; et al. Neutralization of the SARS-CoV-2 Deltacron and BA.3 variants. N. Engl. J. Med. 2022, 386, 2340–2342. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.C.; Sinha, I.; Barr, I.G.; Zambon, M. Transmission of paediatric respiratory syncytial virus and influenza in the wake of the COVID-19 pandemic. EuroSurveillance 2021, 26, 2100186. [Google Scholar] [CrossRef]
- Siddle, K.J.; Krasilnikova, L.A.; Moreno, G.K.; Schaffner, S.F.; Vostok, J.; Fitzgerald, N.A.; Lemieux, J.E.; Barkas, N.; Loreth, C.; Specht, I.; et al. Transmission from vaccinated individuals in a large SARS-CoV-2 Delta variant outbreak. Cell 2022, 185, 485–492.e10. [Google Scholar] [CrossRef]
- Espenhain, L.; Funk, T.; Overvad, M.; Edslev, S.M.; Fonager, J.; Ingham, A.C.; Rasmussen, M.; Madsen, S.L.; Espersen, C.H.; Sieber, R.N.; et al. Epidemiological characterisation of the first 785 SARS-CoV-2 Omicron variant cases in Denmark, December 2021. EuroSurveillance 2021, 26, 2101146. [Google Scholar] [CrossRef]
- Liu, L.; Iketani, S.; Guo, Y.; Chan, J.F.-W.; Wang, M.; Liu, L.; Luo, Y.; Chu, H.; Huang, Y.; Nair, M.S.; et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 2022, 602, 676–681. [Google Scholar] [CrossRef]
- Rochman, N.D.; Wolf, Y.I.; Faure, G.; Mutz, P.; Zhang, F.; Koonin, E.V. Ongoing global and regional adaptive evolution of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2021, 118, e2104241118. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Sattar, S.A.; Rubino, J.R.; Nims, R.W.; Gerba, C.P. Combating SARS-CoV-2: Leveraging microbicidal experiences with other emerging/re-emerging viruses. PeerJ. 2020, 8, e9914. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Nims, R.W.; McKinney, J. SARS-CoV-2 mutational variants may represent a new challenge to society, but not to the virucidal armamentarium. J. Hosp. Infect. 2021, 112, 121–123. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Nims, R.W.; Zhou, S.S.; Whitehead, K.; Srinivasan, V.; Kapes, T.; Fanuel, S.; Epstein, J.H.; Daszak, P.; Rubino, J.R.; et al. Microbicidal actives with virucidal efficacy against SARS-CoV-2 and other beta- and alpha-coronaviruses and implications for future emerging coronaviruses and other enveloped viruses. Sci. Rep. 2021, 11, 5626. [Google Scholar] [CrossRef]
- Da Costa, C.H.S.; de Freitas, C.A.B.; Alves, C.N.; Lameira, J. Assessment of mutations on RBD in the spike protein of SARS-CoV-2 Alpha, Delta and Omicron variants. Sci. Rep. 2022, 12, 8540. [Google Scholar] [CrossRef]
- Kupferschmidt, K. New SARS-CoV-2 Variants Have Changed the Pandemic. What Will the Virus Do Next? 2021. Available online: https://www.science.org/content/article/new-sars-cov-2-variants-have-changed-pandemic-what-will-virus-do-next (accessed on 31 May 2022).
- ASTM International. ASTM E1053-20. Standard Practice to Assess Virucidal Activity of Chemicals Intended for Disinfection of Inanimate, Nonporous Environmental Surfaces. Available online: https://www.astm.org/Standards/E1053.htm (accessed on 22 December 2021).
- British Standards Institute. BS EN 14476:2013+A2:2019. Chemical Disinfectants and Antiseptics. Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical area. Test Method and Requirements (Phase 2/Step 1). Available online: https://infostore.saiglobal.com/en-us/Standards/BS-EN-14476-2013-A2-2019-238423_SAIG_BSI_BSI_2753744/ (accessed on 22 December 2021).
- Meister, T.L.; Fortmann, J.; Todt, D.; Heinen, N.; Ludwig, A.; Brueggemann, Y.; Elsner, C.; Dittmer, U.; Pfaender, S.; Steinmann, E. Comparable environmental stability and disinfection profiles of the currently circulating SARS-CoV-2 variants of concern B.1.1.7 and B.1.351. J. Infect. Dis. 2021, 224, 420–424. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Nims, R.W.; Cutts, T.A.; McKinney, J.; Gerba, C.P. Efficacies of microbicides for emerging and re-emerging viruses associated with WHO Priority Diseases. In Disinfection of Viruses; Nims, R.W., Ijaz, M.K., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. What Is an Emerging Viral Pathogen Claim? Available online: https://www.epa.gov/coronavirus/what-emerging-viral-pathogen-claim (accessed on 31 May 2022).
- U.S. Environmental Protection Agency. Emerging Viral Pathogen Guidance and Status for Antimicrobial Pesticides. Available online: https://www.epa.gov/pesticide-registration/emerging-viral-pathogen-guidance-and-status-antimicrobial-pesticides (accessed on 31 May 2022).
- World Health Organization. Enhancing Response to Omicron SARS-CoV-2 Variant. Available online: https://www.who.int/publications/m/item/enhancing-readiness-for-omicron-(b.1.1.529)-technical-brief-and-priority-actions-for-member-states (accessed on 31 May 2021).
- Dennehy, J.J.; Gupta, R.K.; Hanage, W.P.; Johnson, M.C.; Peacock, T.P. Where is the next SARS-CoV-2 variant of concern? Lancet 2022, 399, 1938–1939. [Google Scholar] [CrossRef]
- Kupferschmidt, K.; Vogel, G. How bad is Omicron? Some clues are emerging, and they’re not encouraging. Science 2021, 374, 1304–1305. [Google Scholar] [CrossRef]
- The World Health Organization. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. Available online: https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern (accessed on 31 May 2022).
- European Centre for Disease Prevention and Control (ECDC). Epidemiological Update: Omicron Variant of Concern (VOC)—Data as of 13 December 2021 (12:00). Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-omicron-data-13-december (accessed on 31 May 2022).
- Callaway, E. Heavily mutated Omicron variant puts scientists on alert. Nature 2021, 600, 21. [Google Scholar] [CrossRef]
- Goldman, E. Exaggerated risk of transmission of COVID-19 by fomites. Lancet Infect. Dis. 2020, 20, 892–893. [Google Scholar] [CrossRef]
- Meyerowitz, E.A.; Richterman, A.; Gandhi, R.T.; Sax, P.E. Transmission of SARS-CoV-2: A review of viral, host, and environmental factors. Ann. Intern. Med. 2021, 174, 69–79. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Nims, R.W.; McKinney, J. Indirect transmission of severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) infection; what do we know and what don’t we know? J. Infect. Control. Hosp. Epidemiol. 2021, 43, 676–678. [Google Scholar] [CrossRef]
- Mohamadi, M.; Babington-Ashaye, A.; Lefort, A.; Flahault, A. Risks of infection with SARS-CoV-2 due to contaminated surfaces: A scoping review. Int. J. Environ. Res. Publ. Health 2021, 18, 11019. [Google Scholar] [CrossRef]
- World Health Organization. Infection Prevention and Control of Epidemic- and Pandemic Prone Acute Respiratory Infections in Healthcare—WHO Guidelines. Available online: http://www.who.int/csr/bioriskreduction/infection_control/publication/en/ (accessed on 31 May 2022).
- Centers for Disease Control and Prevention. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings. Available online: https://www.cdc.gov/infectioncontrol/guidelines/isolation/index.html (accessed on 31 May 2022).
- Li, Y. Basic routes of transmission of respiratory pathogens—A new proposal for transmission categorization based on respiratory spray, inhalation, and touch. Indoor Air 2021, 31, 3–6. [Google Scholar] [CrossRef]
- Lei, H.; Li, Y.; Xiao, S.; Yang, X.; Lin, C.; Norris, S.L.; Wei, D.; Hu, Z.; Ji, S. Logistic growth of a surface contamination network and its role in disease spread. Sci. Rep. 2017, 7, 14826. [Google Scholar] [CrossRef]
- Dziedzinska, R.; Kralik, P.; Šerý, O. Occurrence of SARS-CoV-2 in indoor environments with increased circulation and gathering of people. Front. Public Health 2021, 9, 787841. [Google Scholar] [CrossRef]
- Eden, J.-S.; Sikazwe, C.; Xie, R.; Deng, Y.-M.; Sullivan, S.G.; Michie, A.; Levy, A.; Cutmore, E.; Blyth, C.C.; Britton, P.N.; et al. Off-season RSV epidemics in Australia after easing of COVID-19 restrictions. Nat. Commun. 2022, 13, 2884. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Nims, R.W.; Rubino, J.R.; McKinney, J.; Gerba, C.P. Lessons learned from the SARS-CoV-2 pandemic: Preparing for the next outbreak of respiratory and enteric viral infections. Appl. Microbiol. Open Access 2022, 8, 100229. [Google Scholar]
Species | Isolate | Strain | Source | Host Cell | Source | Description | Culture Medium |
---|---|---|---|---|---|---|---|
SARS-CoV-2 | Wuhan | Isolate USA-WA1/2020 | CDC, through BEI Resources NR-52281 | Vero E6 | ATCC CRL-1586 | African green monkey kidney | MEM+ 5% FBS |
SARS-CoV-2 | Beta VOC | hCoV-19/South Africa/KRISP-EC-K005321/2020 Lineage B.1.351 | CDC, through BEI Resources NR-54008 | ||||
SARS-CoV-2 | Delta VOC | hCoV-19/USA/PHC658/2021 Lineage B.1.617.2 | CDC, through BEI Resources NR-55611 | ||||
SARS-CoV-2 | Delta VOC | hCoV-19/England/204820464/2020 (UK/VUI/3/2020) Lineage B 1.1.7 | CDC, through BEI Resources NR-54000 |
Microbicidal Product Type (Active) | Contact Time | Temperature (°C) | Relative Humidity (%) | Organic Load | Log10 Reduction in Infectious Virus Titer h | ||
---|---|---|---|---|---|---|---|
SARS-CoV-2 | Delta VOC | Beta VOC g | |||||
Disinfectant spray (Ethanol (50%)/ QAC (0.086%)) b,c | 15 s | 20 ± 1 | 33–36 | 5% Bovine serum | ≥4.6, ≥4.7, ≥4.5 | ≥4.0, ≥4.0 e | ≥4.0, ≥4.0 |
Wipe (Lactic acid (3.2%)) d | 5 min | 20 ± 1 | Not recorded | BSA (3%), erythrocytes (3%) j | Not tested | ≥4.75 e | ≥4.50 |
Wipe (Lactic acid (3.2%)) d | 5 min | 18 | 55 | 5% Bovine serum | ≥4.6 | Not tested | Not tested |
Wipe (Citric acid (2.5%)) b | 15 s | 20 ± 1 | 36–40 | 5% Bovine serum | ≥3.0, ≥3.0, ≥3.0 | ≥3.75, ≥3.75 e | ≥4.0, ≥4.0 |
Wipe (QAC (0.2%)) b,i | 15 s | 20 ± 1 | 36–47 | 5% Bovine serum | ≥3.5, ≥3.5, ≥3.5 | ≥4.0, ≥4.0 f | ≥3.75, ≥3.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ijaz, M.K.; Nims, R.W.; McKinney, J. Emerging SARS-CoV-2 Mutational Variants of Concern Should Not Vary in Susceptibility to Microbicidal Actives. Life 2022, 12, 987. https://doi.org/10.3390/life12070987
Ijaz MK, Nims RW, McKinney J. Emerging SARS-CoV-2 Mutational Variants of Concern Should Not Vary in Susceptibility to Microbicidal Actives. Life. 2022; 12(7):987. https://doi.org/10.3390/life12070987
Chicago/Turabian StyleIjaz, M. Khalid, Raymond W. Nims, and Julie McKinney. 2022. "Emerging SARS-CoV-2 Mutational Variants of Concern Should Not Vary in Susceptibility to Microbicidal Actives" Life 12, no. 7: 987. https://doi.org/10.3390/life12070987
APA StyleIjaz, M. K., Nims, R. W., & McKinney, J. (2022). Emerging SARS-CoV-2 Mutational Variants of Concern Should Not Vary in Susceptibility to Microbicidal Actives. Life, 12(7), 987. https://doi.org/10.3390/life12070987