The Influence of Dietary Supplementations on Neuropathic Pain
Abstract
:1. Introduction
2. Neuropathic Pain
2.1. Epidemiology
2.2. Pathophysiology
3. Nutritional Supplements in Neuropathic Pain
3.1. Vitamins in Neuropathic Pain
3.2. Minerals in Neuropathic Pain
3.3. Botanicals in Neuropathic Pain
3.4. Amino Acids in Neuropathic Pain
3.5. Fatty Acids in Neuropathic Pain
3.6. Probiotics in Neuropathic Pain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghoreishi, Z.; Esfahani, A.; Djazayeri, A.; Djalali, M.; Golestan, B.; Ayromlou, H.; Hashemzade, S.; Asghari Jafarabadi, M.; Montazeri, V.; Keshavarz, S.A.; et al. Omega-3 Fatty Acids Are Protective against Paclitaxel-Induced Peripheral Neuropathy: A Randomized Double-Blind Placebo Controlled Trial. BMC Cancer 2012, 12, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhlwein, A.; Meyer, H.J.; Koehler, C.O. Reduced diclofenac administration by B vitamins: Results of a randomized double-blind study with reduced daily doses of diclofenac (75 mg diclofenac versus 75 mg diclofenac plus B vitamins) in acute lumbar vertebral syndromes. Klin. Wochenschr. 1990, 68, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.S.; Baron, R.; Haanpää, M.; Kalso, E.; Loeser, J.D.; Rice, A.S.C.; Treede, R.-D. A New Definition of Neuropathic Pain. Pain 2011, 152, 2204–2205. [Google Scholar] [CrossRef] [PubMed]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic Pain. Nat. Rev. Dis. Primers 2017, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Scholz, J.; Finnerup, N.B.; Attal, N.; Aziz, Q.; Baron, R.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Cruccu, G.; Davis, K.D.; et al. The IASP Classification of Chronic Pain for ICD-11: Chronic Neuropathic Pain. Pain 2019, 160, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Bannister, K.; Sachau, J.; Baron, R.; Dickenson, A.H. Neuropathic Pain: Mechanism-Based Therapeutics. Annu. Rev. Pharm. Toxicol. 2020, 60, 257–274. [Google Scholar] [CrossRef]
- Rosenberger, D.C.; Blechschmidt, V.; Timmerman, H.; Wolff, A.; Treede, R.-D. Challenges of Neuropathic Pain: Focus on Diabetic Neuropathy. J. Neural Transm. 2020, 127, 589–624. [Google Scholar] [CrossRef] [Green Version]
- Burgess, J.; Ferdousi, M.; Gosal, D.; Boon, C.; Matsumoto, K.; Marshall, A.; Mak, T.; Marshall, A.; Frank, B.; Malik, R.A.; et al. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol. Ther. 2021, 9, 385–450. [Google Scholar] [CrossRef]
- Abdelrahman, K.M.; Hackshaw, K.V. Nutritional Supplements for the Treatment of Neuropathic Pain. Biomedicines 2021, 9, 674. [Google Scholar] [CrossRef]
- Bouhassira, D.; Lantéri-Minet, M.; Attal, N.; Laurent, B.; Touboul, C. Prevalence of Chronic Pain with Neuropathic Characteristics in the General Population. Pain 2008, 136, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Attal, N.; Bouhassira, D.; Baron, R. Diagnosis and Assessment of Neuropathic Pain through Questionnaires. Lancet Neurol. 2018, 17, 456–466. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Scholz, J.; Attal, N.; Baron, R.; Haanpää, M.; Hansson, P.; Raja, S.N.; Rice, A.S.C.; Rief, W.; Rowbotham, M.C.; et al. Neuropathic Pain Needs Systematic Classification: Neuropathic Pain Classification. Eur. J. Pain 2013, 17, 953–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulin, D.; Boulanger, A.; Clark, A.; Clarke, H.; Dao, T.; Finley, G.; Furlan, A.; Gilron, I.; Gordon, A.; Morley-Forster, P.; et al. Pharmacological Management of Chronic Neuropathic Pain: Revised Consensus Statement from the Canadian Pain Society. Pain Res. Manag. 2014, 19, 328–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawroth, P.P.; Bendszus, M.; Pham, M.; Jende, J.; Heiland, S.; Ries, S.; Schumann, C.; Schmelz, M.; Schuh-Hofer, S.; Treede, R.D.; et al. The Quest for More Research on Painful Diabetic Neuropathy. Neuroscience 2018, 387, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Seretny, M.; Currie, G.L.; Sena, E.S.; Ramnarine, S.; Grant, R.; MacLeod, M.R.; Colvin, L.A.; Fallon, M. Incidence, Prevalence, and Predictors of Chemotherapy-Induced Peripheral Neuropathy: A Systematic Review and Meta-Analysis. Pain 2014, 155, 2461–2470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, E.H.; Greenwald, M.K.; Schwartz, A.G. Chemotherapy-Induced Peripheral Neuropathy: Mechanisms and Therapeutic Avenues. Neurotherapeutics 2021, 18, 2384–2396. [Google Scholar] [CrossRef]
- Iqbal, Z.; Azmi, S.; Yadav, R.; Ferdousi, M.; Kumar, M.; Cuthbertson, D.J.; Lim, J.; Malik, R.A.; Alam, U. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Oncol. Ther. 2018, 40, 828–849. [Google Scholar] [CrossRef] [Green Version]
- Abbott, C.A.; Malik, R.A.; van Ross, E.R.E.; Kulkarni, J.; Boulton, A.J.M. Prevalence and Characteristics of Painful Diabetic Neuropathy in a Large Community-Based Diabetic Population in the U.K. Diabetes Care 2011, 34, 2220–2224. [Google Scholar] [CrossRef] [Green Version]
- Alleman, C.J.M.; Westerhout, K.Y.; Hensen, M.; Chambers, C.; Stoker, M.; Long, S.; van Nooten, F.E. Humanistic and Economic Burden of Painful Diabetic Peripheral Neuropathy in Europe: A Review of the Literature. Diabetes Res. Clin. Pract. 2015, 109, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Sloan, G.; Shillo, P.; Selvarajah, D.; Wu, J.; Wilkinson, I.D.; Tracey, I.; Anand, P.; Tesfaye, S. A New Look at Painful Diabetic Neuropathy. Diabetes Res. Clin. Pract. 2018, 144, 177–191. [Google Scholar] [CrossRef]
- Truini, A.; Spallone, V.; Morganti, R.; Tamburin, S.; Zanette, G.; Schenone, A.; De Michelis, C.; Tugnoli, V.; Simioni, V.; Manganelli, F.; et al. A Cross-Sectional Study Investigating Frequency and Features of Definitely Diagnosed Diabetic Painful Polyneuropathy. Pain 2018, 159, 2658–2666. [Google Scholar] [CrossRef] [PubMed]
- Tsantoulas, C.; McMahon, S.B. Opening Paths to Novel Analgesics: The Role of Potassium Channels in Chronic Pain. Trends Neurosci. 2014, 37, 146–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyklicky, V.; Korinek, M.; Smejkalova, T.; Balik, A.; Krausova, B.; Kaniakova, M.; Lichnerova, K.; Cerny, J.; Krusek, J.; Dittert, I.; et al. Structure, Function, and Pharmacology of NMDA Receptor Channels. Physiol. Res. 2014, 63, S191–S203. [Google Scholar] [CrossRef] [PubMed]
- Comitato, A.; Bardoni, R. Presynaptic Inhibition of Pain and Touch in the Spinal Cord: From Receptors to Circuits. Int. J. Mol. Sci. 2021, 22, 414. [Google Scholar] [CrossRef]
- François, A.; Low, S.A.; Sypek, E.I.; Christensen, A.J.; Sotoudeh, C.; Beier, K.T.; Ramakrishnan, C.; Ritola, K.D.; Sharif-Naeini, R.; Deisseroth, K.; et al. A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins. Neuron 2017, 93, 822–839.e6. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.M.W. Corticolimbic Circuitry in the Modulation of Chronic Pain and Substance Abuse. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 87, 263–268. [Google Scholar] [CrossRef]
- Devor, M. Sodium Channels and Mechanisms of Neuropathic Pain. J. Pain 2006, 7, S3–S12. [Google Scholar] [CrossRef]
- Campbell, J.N.; Meyer, R.A. Mechanisms of Neuropathic Pain. Neuron 2006, 52, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanyan, S.; Stemkowski, P.L.; Stebbing, M.J.; Smith, P.A. Sciatic Chronic Constriction Injury Produces Cell-Type-Specific Changes in the Electrophysiological Properties of Rat Substantia Gelatinosa Neurons. J. Neurophysiol. 2006, 96, 579–590. [Google Scholar] [CrossRef]
- Hains, B.C.; Waxman, S.G. Sodium Channel Expression and the Molecular Pathophysiology of Pain after SCI. Prog. Brain Res. 2007, 161, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Mickle, A.D.; Shepherd, A.J.; Mohapatra, D.P. Sensory TRP Channels: The Key Transducers of Nociception and Pain. Prog. Mol. Biol. Transl. Sci. 2015, 131, 73–118. [Google Scholar] [CrossRef] [Green Version]
- Mickle, A.D.; Shepherd, A.J.; Mohapatra, D.P. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies. Pharmaceuticals 2016, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Dubner, R. Interactions between the Immune and Nervous Systems in Pain. Nat. Med. 2010, 16, 1267–1276. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism Pathways of Arachidonic Acids: Mechanisms and Potential Therapeutic Targets. Sig. Transduct. Target. Ther. 2021, 6, 1–30. [Google Scholar] [CrossRef]
- Osthues, T.; Sisignano, M. Oxidized Lipids in Persistent Pain States. Front. Pharmacol. 2019, 10, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tessaro, F.H.G.; Ayala, T.S.; Martins, J.O. Lipid Mediators Are Critical in Resolving Inflammation: A Review of the Emerging Roles of Eicosanoids in Diabetes Mellitus. Biomed. Res. Int. 2015, 2015, 568408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative Stress and Nerve Damage: Role in Chemotherapy Induced Peripheral Neuropathy. Redox Biol. 2014, 2, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef] [Green Version]
- Herbert, B. Chronic Pelvic Pain. Altern. Health Med. 2010, 16, 28–33. [Google Scholar]
- Commissioner, O. Of the FDA 101: Dietary Supplements; FDA: Silver Spring, MD, USA, 2022.
- Jaggi, A.S.; Jain, V.; Singh, N. Animal Models of Neuropathic Pain. Fundam. Clin. Pharm. 2011, 25, 1–28. [Google Scholar] [CrossRef]
- Palandi, J.; Bobinski, F.; de Oliveira, G.M.; Ilha, J. Neuropathic Pain after Spinal Cord Injury and Physical Exercise in Animal Models: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2020, 108, 781–795. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Z.G.; Swai, A.B. Evaluation of the Efficacy of Thiamine and Pyridoxine in the Treatment of Symptomatic Diabetic Peripheral Neuropathy. East. Afr. Med. J. 1997, 74, 803–808. [Google Scholar] [PubMed]
- Negrão, L.; Nunes, P.; Portuguese Group for the Study of Peripheral Neuropathy. Uridine Monophosphate, Folic Acid and Vitamin B12 in Patients with Symptomatic Peripheral Entrapment Neuropathies. Pain Manag. 2016, 6, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V.A.; Lavery, L.A.; Thethi, T.K.; Daoud, Y.; DeSouza, C.; Ovalle, F.; Denham, D.S.; Bottiglieri, T.; Sheehan, P.; Rosenstock, J. Metanx in Type 2 Diabetes with Peripheral Neuropathy: A Randomized Trial. Am. J. Med. 2013, 126, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Miranpuri, G.S.; Meethal, S.V.; Sampene, E.; Chopra, A.; Buttar, S.; Nacht, C.; Moreno, N.; Patel, K.; Liu, L.; Singh, A.; et al. Folic Acid Modulates Matrix Metalloproteinase-2 Expression, Alleviates Neuropathic Pain, and Improves Functional Recovery in Spinal Cord-Injured Rats. Ann. Neurosci. 2017, 24, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Xu, K.; Liu, L.; Zhang, K.; Xia, L.; Zhang, M.; Teng, C.; Tong, H.; He, Y.; Xue, Y.; et al. Vitamin B12 Enhances Nerve Repair and Improves Functional Recovery After Traumatic Brain Injury by Inhibiting ER Stress-Induced Neuron Injury. Front. Pharm. 2019, 10, 406. [Google Scholar] [CrossRef]
- Didangelos, T.; Karlafti, E.; Kotzakioulafi, E.; Margariti, E.; Giannoulaki, P.; Batanis, G.; Tesfaye, S.; Kantartzis, K. Vitamin B12 Supplementation in Diabetic Neuropathy: A 1-Year, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 395. [Google Scholar] [CrossRef]
- Staff, N.P.; Windebank, A.J. Peripheral Neuropathy Due to Vitamin Deficiency, Toxins, and Medications. Continuum 2014, 20, 1293–1306. [Google Scholar] [CrossRef] [Green Version]
- Boston, 677 Huntington Avenue; Ma 02115 +1495-1000 Thiamin—Vitamin B1. Available online: https://www.hsph.harvard.edu/nutritionsource/vitamin-b1/ (accessed on 1 July 2022).
- Office of Dietary Supplements—Vitamin B6. Available online: https://ods.od.nih.gov/factsheets/VitaminB6-HealthProfessional/ (accessed on 1 July 2022).
- Boston, 677 Huntington Avenue; Ma 02115 +1495-1000 Folate (Folic Acid)—Vitamin B9. Available online: https://www.hsph.harvard.edu/nutritionsource/folic-acid/ (accessed on 1 July 2022).
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Vitamin B12; National Academies Press: Washington, DC, USA, 1998. [Google Scholar]
- Bai, A.; Abdullah, F.; Kumar, J.; Lal, A.; Abbas, M.; Sandesh, R.; Naz, S.; Shahid, S.; Anees, F.; Memon, S. The Role of Vitamin C in Reducing Pain Associated with Diabetic Neuropathy. Cureus 2022, 13, e15895. [Google Scholar] [CrossRef]
- Farvid, M.S.; Homayouni, F.; Amiri, Z.; Adelmanesh, F. Improving Neuropathy Scores in Type 2 Diabetic Patients Using Micronutrients Supplementation. Diabetes Res. Clin. Pract. 2011, 93, 86–94. [Google Scholar] [CrossRef]
- Vitamin C—Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids—NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK225480/ (accessed on 1 July 2022).
- Helde-Frankling, M.; Björkhem-Bergman, L. Vitamin D in Pain Management. Int. J. Mol. Sci. 2017, 18, 2170. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-H.; Kim, Y.B.; Choi, H.S.; Jeong, T.-D.; Kim, J.T.; Sung, Y.A. Association of Vitamin D Deficiency with Diabetic Nephropathy. Endocrinol. Metab. 2021, 36, 106–113. [Google Scholar] [CrossRef]
- Isaia, G.; Giorgino, R.; Adami, S. High Prevalence of Hypovitaminosis D in Female Type 2 Diabetic Population. Diabetes Care 2001, 24, 1496. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.; Chen, R. Vitamin D as an Analgesic for Patients with Type 2 Diabetes and Neuropathic Pain. Arch. Intern. Med. 2008, 168, 771–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basit, A.; Basit, K.A.; Fawwad, A.; Shaheen, F.; Fatima, N.; Petropoulos, I.N.; Alam, U.; Malik, R.A. Vitamin D for the Treatment of Painful Diabetic Neuropathy. BMJ Open Diabetes Res. Care 2016, 4, e000148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sari, A.; Akdoğan Altun, Z.; Arifoglu Karaman, C.; Bilir Kaya, B.; Durmus, B. Does Vitamin D Affect Diabetic Neuropathic Pain and Balance? J. Pain Res. 2020, 13, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Grim, J.; Ticha, A.; Hyspler, R.; Valis, M.; Zadak, Z. Selected Risk Nutritional Factors for Chemotherapy-Induced Polyneuropathy. Nutrients 2017, 9, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamberg-Allardt, C. Vitamin D in Foods and as Supplements. Prog. Biophys. Mol. Biol. 2006, 92, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Bavencoffe, A.; Yang, P.; Feng, J.; Yin, S.; Qian, A.; Yu, W.; Liu, S.; Gong, X.; Cai, T.; et al. Zinc Inhibits TRPV1 to Alleviate Chemotherapy-Induced Neuropathic Pain. J. Neurosci. 2018, 38, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.; Fathy, W.; Hassan, A.; Elkareem, R.A.; Marzouk, S.; Kamal, Y.S. Zinc Deficiency Correlates with Severity of Diabetic Polyneuropathy. Brain Behav. 2021, 11, e2349. [Google Scholar] [CrossRef] [PubMed]
- Office of Dietary Supplements—Zinc. Available online: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/ (accessed on 15 July 2022).
- Cardozo, L.F.M.F.; Mafra, D. Don’t Forget the Zinc. Nephrol. Dial. Transplant. 2020, 35, 1094–1098. [Google Scholar] [CrossRef] [PubMed]
- Fosmire, G.J. Zinc Toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Yousef, A.A.; Al-deeb, A.E. A Double-Blinded Randomised Controlled Study of the Value of Sequential Intravenous and Oral Magnesium Therapy in Patients with Chronic Low Back Pain with a Neuropathic Component. Anaesthesia 2013, 68, 260–266. [Google Scholar] [CrossRef] [PubMed]
- The Safety and Efficacy of a Single Dose (500 Mg or 1 g) of Intravenous Magnesium Sulfate in Neuropathic Pain Poorly Responsive to Strong Opioid Analgesics in Patients with Cancer—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/10687324/ (accessed on 24 June 2022).
- Pickering, G.; Morel, V.; Simen, E.; Cardot, J.-M.; Moustafa, F.; Delage, N.; Picard, P.; Eschalier, S.; Boulliau, S.; Dubray, C. Oral Magnesium Treatment in Patients with Neuropathic Pain: A Randomized Clinical Trial. Magnes. Res. 2011, 24, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketamine and Magnesium for Refractory Neuropathic Pain: A Randomized, Double-Blind, Crossover Trial—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32384291/ (accessed on 24 June 2022).
- Kimmatkar, N.; Thawani, V.; Hingorani, L.; Khiyani, R. Efficacy and Tolerability of Boswellia Serrata Extract in Treatment of Osteoarthritis of Knee—A Randomized Double Blind Placebo Controlled Trial. Phytomedicine 2003, 10, 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, R.R.; Patki, P.S.; Jog, V.P.; Gandage, S.G.; Patwardhan, B. Treatment of Osteoarthritis with a Herbomineral Formulation: A Double-Blind, Placebo-Controlled, Cross-over Study. J. Ethnopharmacol. 1991, 33, 91–95. [Google Scholar] [CrossRef]
- Marchesi, N.; Govoni, S.; Allegri, M. Non-Drug Pain Relievers Active on Non-Opioid Pain Mechanisms. Pain Pract. 2022, 22, 255–275. [Google Scholar] [CrossRef]
- Effectiveness of Boswellia and Boswellia Extract for Osteoarthritis Patients: A Systematic Review and Meta-Analysis|BMC Complementary Medicine and Therapies|Full Text. Available online: https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-020-02985-6 (accessed on 1 July 2022).
- Assiri, K.; Alyami, Y.; Uyanik, J.M.; Romero-Reyes, M. Hypericum Perforatum (St. John’s Wort) as a Possible Therapeutic Alternative for the Management of Trigeminal Neuralgia (TN)—A Case Report. Complement. Med. 2017, 30, 36–39. [Google Scholar] [CrossRef]
- Sindrup, S.H.; Madsen, C.; Bach, F.W.; Gram, L.F.; Jensen, T.S. St. John’s Wort Has No Effect on Pain in Polyneuropathy. Pain 2001, 91, 361–365. [Google Scholar] [CrossRef]
- Knüppel, L.; Linde, K. Adverse Effects of St. John’s Wort: A Systematic Review. J. Clin. Psychiatry 2004, 65, 1470–1479. [Google Scholar] [CrossRef]
- Belcaro, G.; Hosoi, M.; Pellegrini, L.; Appendino, G.; Ippolito, E.; Ricci, A.; Ledda, A.; Dugall, M.; Cesarone, M.R.; Maione, C.; et al. A Controlled Study of a Lecithinized Delivery System of Curcumin (Meriva®) to Alleviate the Adverse Effects of Cancer Treatment. Phytother. Res. 2014, 28, 444–450. [Google Scholar] [CrossRef]
- Lao, C.D.; Ruffin, M.T.; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose Escalation of a Curcuminoid Formulation. BMC Complement. Altern. Med. 2006, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssens, P.L.H.R.; Hursel, R.; Martens, E.A.P.; Westerterp-Plantenga, M.S. Acute Effects of Capsaicin on Energy Expenditure and Fat Oxidation in Negative Energy Balance. PLoS ONE 2013, 8, e67786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Baitha, U.; Aggarwal, P.; Jamshed, N. A Fatal Case of Menthol Poisoning. Int. J. Appl. Basic Med. Res. 2016, 6, 137–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bromelain (Bromelin): Supplement Information from WebMD. Available online: https://www.webmd.com/diet/supplement-guide-bromelain-bromelin (accessed on 1 July 2022).
- De Grandis, D.; Minardi, C. Acetyl-L-Carnitine (Levacecarnine) in the Treatment of Diabetic Neuropathy: A Long-Term, Randomised, Double-Blind, Placebo-Controlled Study. Drugs R D 2002, 3, 223–231. [Google Scholar] [CrossRef]
- Sima, A.A.F.; Calvani, M.; Mehra, M.; Amato, A. Acetyl-L-Carnitine Study Group Acetyl-L-Carnitine Improves Pain, Nerve Regeneration, and Vibratory Perception in Patients with Chronic Diabetic Neuropathy: An Analysis of Two Randomized Placebo-Controlled Trials. Diabetes Care 2005, 28, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Hershman, D.L.; Unger, J.M.; Crew, K.D.; Minasian, L.M.; Awad, D.; Moinpour, C.M.; Hansen, L.; Lew, D.L.; Greenlee, H.; Fehrenbacher, L.; et al. Randomized Double-Blind Placebo-Controlled Trial of Acetyl-L-Carnitine for the Prevention of Taxane-Induced Neuropathy in Women Undergoing Adjuvant Breast Cancer Therapy. J. Clin. Oncol. 2013, 31, 2627–2633. [Google Scholar] [CrossRef] [Green Version]
- Acetyl-L-Carnitine Uses, Benefits & Side Effects—Drugs.Com Herbal Database. Available online: https://www.drugs.com/npc/acetyl-l-carnitine.html (accessed on 1 July 2022).
- Heidari, N.; Sajedi, F.; Mohammadi, Y.; Mirjalili, M.; Mehrpooya, M. Ameliorative Effects of N-Acetylcysteine as Adjunct Therapy on Symptoms of Painful Diabetic Neuropathy. J. Pain Res. 2019, 12, 3147–3159. [Google Scholar] [CrossRef] [Green Version]
- Khalefa, H.G.; Shawki, M.A.; Aboelhassan, R.; El Wakeel, L.M. Evaluation of the Effect of N-Acetylcysteine on the Prevention and Amelioration of Paclitaxel-Induced Peripheral Neuropathy in Breast Cancer Patients: A Randomized Controlled Study. Breast Cancer Res. Treat. 2020, 183, 117–125. [Google Scholar] [CrossRef]
- Šalamon, Š.; Kramar, B.; Marolt, T.P.; Poljšak, B.; Milisav, I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants 2019, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Omega-3 Fatty Acids Uses, Benefits & Dosage—Drugs.Com Herbal Database. Available online: https://www.drugs.com/npp/omega-3-fatty-acids.html (accessed on 1 July 2022).
- Scaturro, D.; Asaro, C.; Lauricella, L.; Tomasello, S.; Varrassi, G.; Letizia Mauro, G. Combination of Rehabilitative Therapy with Ultramicronized Palmitoylethanolamide for Chronic Low Back Pain: An Observational Study. Pain 2020, 9, 319–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Giorno, R.; Skaper, S.; Paladini, A.; Varrassi, G.; Coaccioli, S. Palmitoylethanolamide in Fibromyalgia: Results from Prospective and Retrospective Observational Studies. Pain 2015, 4, 169–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, D.; Low, P.A.; Litchy, W.J.; Boulton, A.J.M.; Vinik, A.I.; Freeman, R.; Samigullin, R.; Tritschler, H.; Munzel, U.; Maus, J.; et al. Efficacy and Safety of Antioxidant Treatment with α-Lipoic Acid over 4 Years in Diabetic Polyneuropathy: The NATHAN 1 Trial. Diabetes Care 2011, 34, 2054–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weizman, Z.; Abu-Abed, J.; Binsztok, M. Lactobacillus Reuteri DSM 17938 for the Management of Functional Abdominal Pain in Childhood: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Pediatr. 2016, 174, 160–164.e1. [Google Scholar] [CrossRef]
- Office of Dietary Supplements—Probiotics. Available online: https://ods.od.nih.gov/factsheets/Probiotics-HealthProfessional/ (accessed on 1 July 2022).
- Zhou, J.S.; Shu, Q.; Rutherfurd, K.J.; Prasad, J.; Gopal, P.K.; Gill, H.S. Acute Oral Toxicity and Bacterial Translocation Studies on Potentially Probiotic Strains of Lactic Acid Bacteria. Food Chem. Toxicol. 2000, 38, 153–161. [Google Scholar] [CrossRef]
- Depeint, F.; Bruce, W.R.; Shangari, N.; Mehta, R.; O’Brien, P.J. Mitochondrial Function and Toxicity: Role of the B Vitamin Family on Mitochondrial Energy Metabolism. Chem. Biol. Interact. 2006, 163, 94–112. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Refsum, H.; Bottiglieri, T.; Fenech, M.; Hooshmand, B.; McCaddon, A.; Miller, J.W.; Rosenberg, I.H.; Obeid, R. Homocysteine and Dementia: An International Consensus Statement. J. Alzheimer’s Dis. 2018, 62, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Jolivalt, C.G.; Mizisin, L.M.; Nelson, A.; Cunha, J.M.; Ramos, K.M.; Bonke, D.; Calcutt, N.A. B Vitamins Alleviate Indices of Neuropathic Pain in Diabetic Rats. Eur. J. Pharm. 2009, 612, 41–47. [Google Scholar] [CrossRef]
- Wiernik, P.H.; Yeap, B.; Vogl, S.E.; Kaplan, B.H.; Comis, R.L.; Falkson, G.; Davis, T.E.; Fazzini, E.; Cheuvart, B.; Horton, J. Hexamethylmelamine and Low or Moderate Dose Cisplatin with or without Pyridoxine for Treatment of Advanced Ovarian Carcinoma: A Study of the Eastern Cooperative Oncology Group. Cancer Investig. 1992, 10, 1–9. [Google Scholar] [CrossRef]
- May, J.M.; Qu, Z.; Meredith, M.E. Mechanisms of Ascorbic Acid Stimulation of Norepinephrine Synthesis in Neuronal Cells. Biochem. Biophys. Res. Commun. 2012, 426, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Jeon, Y.; Park, J.S.; Moon, S.; Yeo, J. Effect of Intravenous High Dose Vitamin C on Postoperative Pain and Morphine Use after Laparoscopic Colectomy: A Randomized Controlled Trial. Pain Res. Manag. 2016, 2016, 9147279. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N. L-Ascorbic Acid Biosynthesis. Vitam Horm. 2001, 61, 241–266. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Tuohimaa, P. Neurosteroid Hormone Vitamin D and Its Utility in Clinical Nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Eyles, D.W.; Smith, S.; Kinobe, R.; Hewison, M.; McGrath, J.J. Distribution of the Vitamin D Receptor and 1 Alpha-Hydroxylase in Human Brain. J. Chem. Neuroanat. 2005, 29, 21–30. [Google Scholar] [CrossRef]
- Garcion, E.; Wion-Barbot, N.; Montero-Menei, C.N.; Berger, F.; Wion, D. New Clues about Vitamin D Functions in the Nervous System. Trends Endocrinol. Metab. 2002, 13, 100–105. [Google Scholar] [CrossRef]
- Feldman, D.; Krishnan, A.; Moreno, J.; Swami, S.; Peehl, D.M.; Srinivas, S. Vitamin D Inhibition of the Prostaglandin Pathway as Therapy for Prostate Cancer. Nutr. Rev. 2007, 65, S113–S115. [Google Scholar] [CrossRef]
- Zinc Alleviates Pain through High-Affinity Binding to the NMDA Receptor NR2A Subunit—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/21725314/ (accessed on 24 June 2022).
- Prasad, A.S.; Bao, B. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants 2019, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S. Zinc Is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front. Nutr. 2014, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Kuliyev, E.; Zhang, C.; Sui, D.; Hu, J. Zinc Transporter Mutations Linked to Acrodermatitis Enteropathica Disrupt Function and Cause Mistrafficking. J. Biol. Chem. 2021, 296, 100269. [Google Scholar] [CrossRef]
- Hennigar, S.R.; Kelley, A.M.; Anderson, B.J.; Armstrong, N.J.; McClung, H.L.; Berryman, C.E.; Karl, J.P.; McClung, J.P. Sensitivity and Reliability of Zinc Transporter and Metallothionein Gene Expression in Peripheral Blood Mononuclear Cells as Indicators of Zinc Status: Responses to Ex Vivo Zinc Exposure and Habitual Zinc Intake in Humans. Br. J. Nutr. 2021, 125, 361–368. [Google Scholar] [CrossRef]
- Safieh-Garabedian, B.; Poole, S.; Allchorne, A.; Kanaan, S.; Saade, N.; Woolf, C.J. Zinc Reduces the Hyperalgesia and Upregulation of NGF and IL-1 Beta Produced by Peripheral Inflammation in the Rat. Neuropharmacology 1996, 35, 599–603. [Google Scholar] [CrossRef]
- Nerve Growth Factor Signaling and Its Contribution to Pain—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32547184/ (accessed on 24 June 2022).
- Liu, F.; Ma, F.; Kong, G.; Wu, K.; Deng, Z.; Wang, H. Zinc Supplementation Alleviates Diabetic Peripheral Neuropathy by Inhibiting Oxidative Stress and Upregulating Metallothionein in Peripheral Nerves of Diabetic Rats. Biol. Trace Elem. Res. 2014, 158, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, H.; Hershman, D.L.; Shi, Z.; Kwan, M.L.; Ergas, I.J.; Roh, J.M.; Kushi, L.H. BMI, Lifestyle Factors and Taxane-Induced Neuropathy in Breast Cancer Patients: The Pathways Study. J. Natl. Cancer Inst. 2017, 109, djw206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saris, N.E.; Mervaala, E.; Karppanen, H.; Khawaja, J.A.; Lewenstam, A. Magnesium. An Update on Physiological, Clinical and Analytical Aspects. Clin. Chim. Acta 2000, 294, 1–26. [Google Scholar] [CrossRef]
- Magnesium Acts as a Second Messenger in the Regulation of NMDA Receptor-Mediated CREB Signaling in Neurons—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32215817/ (accessed on 24 June 2022).
- Rondón, L.J.; Privat, A.M.; Daulhac, L.; Davin, N.; Mazur, A.; Fialip, J.; Eschalier, A.; Courteix, C. Magnesium Attenuates Chronic Hypersensitivity and Spinal Cord NMDA Receptor Phosphorylation in a Rat Model of Diabetic Neuropathic Pain: Magnesium Supplementation Improves Diabetic Neuropathic Pain. J. Physiol. 2010, 588, 4205–4215. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Tawab, M.; Werz, O.; Schubert-Zsilavecz, M. Boswellia Serrata: An Overall Assessment of in Vitro, Preclinical, Pharmacokinetic and Clinical Data. Clin. Pharm. 2011, 50, 349–369. [Google Scholar] [CrossRef]
- Umar, S.; Umar, K.; Sarwar, A.H.M.G.; Khan, A.; Ahmad, N.; Ahmad, S.; Katiyar, C.K.; Husain, S.A.; Khan, H.A. Boswellia Serrata Extract Attenuates Inflammatory Mediators and Oxidative Stress in Collagen Induced Arthritis. Phytomedicine 2014, 21, 847–856. [Google Scholar] [CrossRef]
- Moussaieff, A.; Mechoulam, R. Boswellia Resin: From Religious Ceremonies to Medical Uses; a Review of in-Vitro, in-Vivo and Clinical Trials. J. Pharm. Pharm. 2009, 61, 1281–1293. [Google Scholar] [CrossRef]
- Peterson, B.; Nguyen, H. St. John’s Wort. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Galeotti, N.; Vivoli, E.; Bilia, A.R.; Vincieri, F.F.; Ghelardini, C. St. John’s Wort Reduces Neuropathic Pain through a Hypericin-Mediated Inhibition of the Protein Kinase Cgamma and Epsilon Activity. Biochem. Pharm. 2010, 79, 1327–1336. [Google Scholar] [CrossRef] [Green Version]
- Butterweck, V. Mechanism of Action of St John’s Wort in Depression: What Is Known? CNS Drugs 2003, 17, 539–562. [Google Scholar] [CrossRef]
- Apaydin, E.A.; Maher, A.R.; Shanman, R.; Booth, M.S.; Miles, J.N.V.; Sorbero, M.E.; Hempel, S. A Systematic Review of St. John’s Wort for Major Depressive Disorder. Syst Rev. 2016, 5, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halat, K.M.; Dennehy, C.E. Botanicals and Dietary Supplements in Diabetic Peripheral Neuropathy. J. Am. Board Fam. Pract. 2003, 16, 47–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Kulkarni, S.K.; Agrewala, J.N.; Chopra, K. Curcumin Attenuates Thermal Hyperalgesia in a Diabetic Mouse Model of Neuropathic Pain. Eur. J. Pharm. 2006, 536, 256–261. [Google Scholar] [CrossRef]
- Jeon, Y.; Kim, C.-E.; Jung, D.; Kwak, K.; Park, S.; Lim, D.; Kim, S.; Baek, W. Curcumin Could Prevent the Development of Chronic Neuropathic Pain in Rats with Peripheral Nerve Injury. Curr. Ther. Res. Clin. Exp. 2013, 74, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, Q.; Zhang, M.-T.; Mao-Ying, Q.-L.; Hu, L.-Y.; Wu, G.-C.; Mi, W.-L.; Wang, Y.-Q. Curcumin Ameliorates Neuropathic Pain by Down-Regulating Spinal IL-1β via Suppressing Astroglial NALP1 Inflammasome and JAK2-STAT3 Signalling. Sci. Rep. 2016, 6, 28956. [Google Scholar] [CrossRef]
- Fattori, V.; Hohmann, M.S.N.; Rossaneis, A.C.; Pinho-Ribeiro, F.A.; Verri, W.A. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules 2016, 21, 844. [Google Scholar] [CrossRef] [Green Version]
- Clinical Applications of Capsaicinoids—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/10870746/ (accessed on 24 June 2022).
- Anand, P.; Bley, K. Topical Capsaicin for Pain Management: Therapeutic Potential and Mechanisms of Action of the New High-Concentration Capsaicin 8% Patch. Br. J. Anaesth. 2011, 107, 490–502. [Google Scholar] [CrossRef] [Green Version]
- Janssens, P.L.H.R.; Hursel, R.; Westerterp-Plantenga, M.S. Capsaicin Increases Sensation of Fullness in Energy Balance, and Decreases Desire to Eat after Dinner in Negative Energy Balance. Appetite 2014, 77, 44–49. [Google Scholar] [CrossRef]
- Chung, M.-K.; Caterina, M.J. TRP Channel Knockout Mice Lose Their Cool. Neuron 2007, 54, 345–347. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Fan, L.; Balakrishna, S.; Sui, A.; Morris, J.B.; Jordt, S.-E. TRPM8 Is the Principal Mediator of Menthol-Induced Analgesia of Acute and Inflammatory Pain. Pain 2013, 154, 2169–2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakare, A.O.; Owoyele, B.V. Antinociceptive and Neuroprotective Effects of Bromelain in Chronic Constriction Injury-Induced Neuropathic Pain in Wistar Rats. Korean J. Pain 2020, 33, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiechio, S.; Copani, A.; Gereau, R.W.; Nicoletti, F. Acetyl-L-Carnitine in Neuropathic Pain: Experimental Data. CNS Drugs 2007, 21 (Suppl. S1), 31–38; discussion 45–46. [Google Scholar] [CrossRef]
- Szklener, K.; Szklener, S.; Michalski, A.; Żak, K.; Kuryło, W.; Rejdak, K.; Mańdziuk, S. Dietary Supplements in Chemotherapy-Induced Peripheral Neuropathy: A New Hope? Nutrients 2022, 14, 625. [Google Scholar] [CrossRef]
- Vasdev, S.; Singal, P.; Gill, V. The Antihypertensive Effect of Cysteine. Int. J. Angiol. 2009, 18, 7–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwalfenberg, G.K. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J. Nutr. Metab. 2021, 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sagara, M.; Satoh, J.; Wada, R.; Yagihashi, S.; Takahashi, K.; Fukuzawa, M.; Muto, G.; Muto, Y.; Toyota, T. Inhibition of Development of Peripheral Neuropathy in Streptozotocin-Induced Diabetic Rats with N-Acetylcysteine. Diabetologia 1996, 39, 263–269. [Google Scholar] [CrossRef]
- Nogueira, G.B.; Punaro, G.R.; Oliveira, C.S.; Maciel, F.R.; Fernandes, T.O.; Lima, D.Y.; Rodrigues, A.M.; Mouro, M.G.; Araujo, S.R.R.; Higa, E.M.S. N-Acetylcysteine Protects against Diabetic Nephropathy through Control of Oxidative and Nitrosative Stress by Recovery of Nitric Oxide in Rats. Nitric Oxide 2018, 78, 22–31. [Google Scholar] [CrossRef]
- Casale, R.; Symeonidou, Z.; Ferfeli, S.; Micheli, F.; Scarsella, P.; Paladini, A. Food for Special Medical Purposes and Nutraceuticals for Pain: A Narrative Review. Pain 2021, 10, 225–242. [Google Scholar] [CrossRef]
- Lambert, D.M.; Vandevoorde, S.; Jonsson, K.-O.; Fowler, C.J. The Palmitoylethanolamide Family: A New Class of Anti-Inflammatory Agents? Curr. Med. Chem. 2002, 9, 663–674. [Google Scholar] [CrossRef] [Green Version]
- Truini, A.; Biasiotta, A.; Di Stefano, G.; La Cesa, S.; Leone, C.; Cartoni, C.; Federico, V.; Petrucci, M.T.; Cruccu, G. Palmitoylethanolamide Restores Myelinated-Fibre Function in Patients with Chemotherapy-Induced Painful Neuropathy. CNS Neurol. Disord. Drug Targets 2011, 10, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Comelli, F.; Bettoni, I.; Colleoni, M.; Giagnoni, G. The Endogenous Fatty Acid Amide, Palmitoylethanolamide, Has Anti-Allodynic and Anti-Hyperalgesic Effects in a Murine Model of Neuropathic Pain: Involvement of CB(1), TRPV1 and PPARgamma Receptors and Neurotrophic Factors. Pain 2008, 139, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Aldossary, S.A.; Alsalem, M.; Kalbouneh, H.; Haddad, M.; Azab, B.; Al-Shboul, O.; Mustafa, A.G.; Obiedat, S.; El-Salem, K. The Role of Transient Receptor Potential Vanilloid Receptor 1 and Peroxisome Proliferator-Activated Receptors-α in Mediating the Antinociceptive Effects of Palmitoylethanolamine in Rats. Neuroreport 2019, 30, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Shay, K.P.; Moreau, R.F.; Smith, E.J.; Smith, A.R.; Hagen, T.M. Alpha-Lipoic Acid as a Dietary Supplement: Molecular Mechanisms and Therapeutic Potential. Biochim. Biophys. Acta 2009, 1790, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Defaye, M.; Gervason, S.; Altier, C.; Berthon, J.-Y.; Ardid, D.; Filaire, E.; Carvalho, F.A. Microbiota: A Novel Regulator of Pain. J. Neural Transm. 2020, 127, 445–465. [Google Scholar] [CrossRef]
- Guo, R.; Chen, L.-H.; Xing, C.; Liu, T. Pain Regulation by Gut Microbiota: Molecular Mechanisms and Therapeutic Potential. Br. J. Anaesth. 2019, 123, 637–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, N.J.; Chiu, I.M. Bacterial Signaling to the Nervous System through Toxins and Metabolites. J. Mol. Biol. 2017, 429, 587–605. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Dong, J.-Y.; Wu, Z.-W.; Li, W.; Qin, L.-Q. Dairy Consumption and Risk of Type 2 Diabetes Mellitus: A Meta-Analysis of Cohort Studies. Eur. J. Clin. Nutr. 2011, 65, 1027–1031. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef] [Green Version]
- Cuozzo, M.; Castelli, V.; Avagliano, C.; Cimini, A.; d’Angelo, M.; Cristiano, C.; Russo, R. Effects of Chronic Oral Probiotic Treatment in Paclitaxel-Induced Neuropathic Pain. Biomedicines 2021, 9, 346. [Google Scholar] [CrossRef]
- Zhao, K.; Yu, L.; Wang, X.; He, Y.; Lu, B. Clostridium Butyricum Regulates Visceral Hypersensitivity of Irritable Bowel Syndrome by Inhibiting Colonic Mucous Low Grade Inflammation through Its Action on NLRP6. Acta Biochim. Biophys. Sin. 2018, 50, 216–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Song, L.; Wang, Y.; Liu, C.; Zhang, L.; Zhu, S.; Liu, S.; Duan, L. Beneficial Effect of Butyrate-Producing Lachnospiraceae on Stress-Induced Visceral Hypersensitivity in Rats. J. Gastroenterol. Hepatol. 2019, 34, 1368–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.-J.; Dai, C.; Jiang, M. Mechanisms of Probiotic VSL#3 in a Rat Model of Visceral Hypersensitivity Involves the Mast Cell-PAR2-TRPV1 Pathway. Dig. Dis. Sci. 2019, 64, 1182–1192. [Google Scholar] [CrossRef] [PubMed]
- Desideri, I.; Francolini, G.; Becherini, C.; Terziani, F.; Delli Paoli, C.; Olmetto, E.; Loi, M.; Perna, M.; Meattini, I.; Scotti, V.; et al. Use of an Alpha Lipoic, Methylsulfonylmethane and Bromelain Dietary Supplement (Opera®) for Chemotherapy-Induced Peripheral Neuropathy Management, a Prospective Study. Med. Oncol. 2017, 34, 46. [Google Scholar] [CrossRef] [Green Version]
Nutritional Supplements | Dietary Doses | Supplement Doses | Toxicity Level | References | ||||
---|---|---|---|---|---|---|---|---|
Supplementation Effect | Other | |||||||
Male | Female | Positive | Negative | |||||
Vitamins | B1 | 1.2 mg/d | 1.2 mg/d | 50–100 mg/d | N/A | [43,44,45,46,47,48] | [49] | [50] |
B6 | 1.30 mg/d | 1.30 mg/d | 100–130 mg/d | 300–600 mg/d | [51] | |||
B9 | 400 mg/d DFE 1 | 400 mg/d DFE | 400–1000 mg DFE | N/A | [52] | |||
B12 | 2.4 mg/d | 2.4 mg/d | 500–1000 mg | N/A | [53] | |||
Vitamin C | 90–200 mg/d | 75–200 mg/d | Up to 2000 mg/d | >2000 mg/d | [54,55] | N/A | [56] | |
Vitamin D | 600–800 IU/d | 600–800 IU/d | 400–5000 IU | 10000 IU/d | [57,58,59,60,61,62,63] | N/A | [64] | |
Zinc | 11 mg/d | 8 mg/d | 30–50 mg | 100 mg/d | [65,66] | [67] | [68,69] | |
Magnesium | 400–420 mg/d | 310–320 mg/d | 250–500 mg | 5000 mg/d | [70,71] | [72,73] | [72] | |
Boswellia serrata | N/A | N/A | 1200 mg/d | 1000 mg/kg | [74,75] | N/A | [76,77] | |
Hypericum perforatum | N/A | N/A | 100–900 mg | Drug interactions | [78] | [79,80] | [79] | |
Curcumin | N/A | N/A | 500–1000 mg | 8000 g/d | [81] | N/A | [82] | |
Capsaicin | 0.25% | 0.25% | N/A | >8% | N/A | N/A | [83] | |
Menthol | N/A | N/A | 180–400 mg 3 times daily | 1000 mg/kg | N/A | N/A | [84] | |
Bromelain | N/A | N/A | 80–300 mg 2 or 3 times daily | N/A | N/A | N/A | [85] | |
Acetyl-L-Carnitine | 250–330 mg | 250–330 mg | 1500–3000 mg/d | >3000 mg/d | [86] | [87,88] | [89] | |
N-Acetyl-Cysteine | 400–1200 mg/d | 400–1200 mg/d | <5000 mg/d | >5000 mg/d | [90,91] | N/A | [92] | |
ω-3 fatty acids | 1600 mg/d | 1100 mg/d | 2000–4000 mg/d | >4000 mg/d | [1] | N/A | [93] | |
N-palmitoylethanolamide | 1200–1600 mg/d | 1200–1600 mg/d | 300–2400 mg/d | N/A | [94,95] | N/A | [76] | |
α-lipoic acid | 200–1800 mg/d | 200–1800 mg/d | 1000–2400 mg/d | N/A | [96] | N/A | [76] | |
Probiotics | N/A | N/A | 1 to 10 billion CFU | >50 billion CFU | [97] | N/A | [98,99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Egidio, F.; Lombardozzi, G.; Kacem Ben Haj M’Barek, H.E.; Mastroiacovo, G.; Alfonsetti, M.; Cimini, A. The Influence of Dietary Supplementations on Neuropathic Pain. Life 2022, 12, 1125. https://doi.org/10.3390/life12081125
D’Egidio F, Lombardozzi G, Kacem Ben Haj M’Barek HE, Mastroiacovo G, Alfonsetti M, Cimini A. The Influence of Dietary Supplementations on Neuropathic Pain. Life. 2022; 12(8):1125. https://doi.org/10.3390/life12081125
Chicago/Turabian StyleD’Egidio, Francesco, Giorgia Lombardozzi, Housem E. Kacem Ben Haj M’Barek, Giada Mastroiacovo, Margherita Alfonsetti, and Annamaria Cimini. 2022. "The Influence of Dietary Supplementations on Neuropathic Pain" Life 12, no. 8: 1125. https://doi.org/10.3390/life12081125
APA StyleD’Egidio, F., Lombardozzi, G., Kacem Ben Haj M’Barek, H. E., Mastroiacovo, G., Alfonsetti, M., & Cimini, A. (2022). The Influence of Dietary Supplementations on Neuropathic Pain. Life, 12(8), 1125. https://doi.org/10.3390/life12081125