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Abstract: Eriocheir sinensis is an aquatic species found distributed worldwide. It is found in the
Yangtze River of China, where the commercial fishing of this valuable catadromous aquatic species
has been banned. As an important member of the phylum Arthropoda, E. sinensis grows by molting
over its whole lifespan. The central nervous system of Eriocheir sinensis plays an important regulatory
role in molting growth. Nevertheless, there are no reports on the regulatory mechanisms of the
nervous system in E. sinensis during the molting cycle. In this study, a comparative transcriptome
analysis of E. sinensis thoracic ganglia at post-molt and inter-molt stages was carried out for the
first time to reveal the key regulatory pathways and functional genes operating at the post-molt
stage. The results indicate that pathways and regulatory genes related to carapace development,
tissue regeneration, glycolysis and lipolysis and immune and anti-stress responses were significantly
differentially expressed at the post-molt stage. The results of this study lay a theoretical foundation
for research on the regulatory network of the E. sinensis nervous system during the post-molt
developmental period. Detailed knowledge of the regulatory network involved in E. sinensis molting
can be used as a basis for breeding improved E. sinensis species, recovery of the wild E. sinensis
population and prosperous development of the E. sinensis artificial breeding industry.

Keywords: Eriocheir sinensis; post-molt; inter-molt; thoracic ganglia; signal transduction

1. Introduction

Eriocheir sinensis (Phylum, Arthropod) is a valuable catadromous species found in the
Yangtze River of China, the third-largest river in the world. It is distributed worldwide,
including in America and Europe, as a result of its strong osmotic adjustment and move-
ment capabilities [1]. The wild E. sinensis population has suffered from serious devastation
caused by environmental pollution, overconstruction of water conservancy projects and
overfishing, among other examples. The Ministry of Agriculture and Rural Affairs of the
People’s Republic of China has prohibited commercial fishing of wild E. sinensis. The
restoration of wild E. sinensis resources is being vigorously carried out [2]. In addition,
E. sinensis is a delicacy and full of nutrients. As an important economic aquatic species,
the E. sinensis industry has become the pillar of the aquaculture industry [3,4]. Revealing
the regulatory mechanisms underlying E. sinensis development will lay a theoretical foun-
dation for breeding and releasing juvenile improved E. sinensis, thereby promoting the
restoration of wild E. sinensis resources and the sustainable development of the E. sinensis
breeding industry.
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As an important member of the phylum Arthropoda, E. sinensis grows by molting
over its whole lifespan. The molting cycle can be divided into four stages according to
the morphological characteristics of the setae: post-molt (AB), inter-molt (C), pre-molt (D)
and molt (E). During the post-molt stage, water is quickly absorbed, and the exoskeleton
gradually hardens. At the inter-molt stage, the exoskeleton continues to harden and
mineralize, and the muscle gradually enlarges. At the pre-molt stage, the old skeleton
decomposes and is absorbed, and a new skeleton gradually forms [5].

The basic regulatory mechanism of the E. sinensis molting process has been revealed;
that is, in general, the initiation and termination of molting are coordinated by ecdysone
secreted by the Y organ and the molting inhibition hormone (MIH) secreted by the X-
organ/sinus gland complex in the eyestalk [6]. In recent years, research on the regulation
of E. sinensis molting has been extended, mainly regarding the influence and regulatory
mechanisms of feed nutrients (gamma-aminobutyric acid, L-tryptophan), culture patterns
(stocking density, salinity) and key functional genes (MMP-14 and V-ATPase subunit B) in
molting, growth and development [7–12]. The results indicated that gamma-aminobutyric
acid supplementation can increase food intake. L-tryptophan supplementation plays a
positive regulatory role in molting. The optimal stocking density for juvenile and adult
E. sinensis was 42–85 crabs per m2. Low salinity can influence the survival of E. sinensis, and
high salinity can restrain its embryo development. MMP-14 functions during E. sinensis
immune response. V-ATPase subunit B plays a regulatory role in osmoregulation and is
essential for E. sinensis molting [7–12]. The central nervous system is an important organ in
the regulation of molting, and the neuropeptides synthesized and secreted by the central
nervous system of crabs play an important regulatory role in many physiological processes,
including ovary maturation and molting growth [13,14]. Nevertheless, there are no reports
on the regulatory mechanisms of the nervous system in the E. sinensis molting cycle.

As mentioned, research on the mechanisms regulating E. sinensis molting is still at the
initial stage. High-throughput sequencing is an efficient and essential technique for prelim-
inarily revealing key regulatory pathways and genes involved in this process. Therefore, in
this study, a comparative transcriptome analysis of E. sinensis thoracic ganglia at post-molt
and inter-molt stages was carried out for the first time to reveal key regulatory pathways
and functional genes at the post-molt stage. The results form a theoretical foundation for
research on the regulatory network of the E. sinensis nervous system during the post-molt
developmental period, and such details can be used toward breeding improved E. sinensis
species, the recovery of the wild E. sinensis population and the prosperity of the E. sinensis
artificial breeding industry.

2. Materials and Methods
2.1. Experimental Crabs and Sample Collection

One-year-old juvenile E. sinensis (average body weight was 12.5 ± 0.79 g) crabs were
supplied by Jiangs’ Noah’s Ark Agricultural Science and Technology Co., Ltd. (Changzhou,
China). Individuals of a similar size and at the same developmental stage were selected
and cultured in three aquariums. Ten female E. sinensis crabs and the same number of male
juveniles were cultured in the same aquarium. The aquariums were continuously aerated,
and the water quality was monitored every day, including water temperature, pH, the
concentration of dissolved oxygen, NH3-N and NO2. E. sinensis were fed with compound
feed twice each day (at 14:00 and 17:00). The molting stage was determined according
to the report from Kang et al. [5]. Cameras were installed in each aquarium to monitor
molting, and the molting process was observed 24 h each day after ingestion of E. sinensis
was reduced. The thoracic ganglia were collected within half an hour after molting; one
male sample and one female sample at the post-molt stage were collected from each tank.
Likewise, we also collected the same number of thoracic ganglia of E. sinensis at the inter-
molt phase. Body size parameters of sampled E. sinensis were measured before sampling.
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2.2. Total RNA Extraction and ILLUMINA Sequencing

According to the manufacturer’s instructions, total RNA was extracted with RNAiso
reagent (TaKaRa, Kusatsu, Japan). Then, equal amounts of total RNA from the thoracic
ganglia of one female and one male crab at the same developmental stage in each tank
were pooled as one sample. Three samples for the post-molt stage (MP) and three samples
for the inter-molt stage (MI) were finally obtained. The RNA samples were checked for
quality, and the detailed operation for quantification of extracted total RNA, construction
of the cDNA library and high-throughput sequencing was performed according to the
methods reported in our previous study [15]. The generated raw data were submitted to
NCBI (NCBI, Bethesda, MD, USA) with accession number PRJNA822878.

2.3. Data Filtering and Assembly

The raw data were filtered using NGS QC TOOLKIT V2.3.3 software (Roche, NY, USA)
and analyzed, and sequences representing low-quality reads, contaminated reads, primers
and adapters were removed [16]. The filtered clean data were assembled using Trinity
software (v2.2.0, Singapore) [17].

2.4. Transcriptome Annotation

The unigenes were aligned in accordance with the following databases: non-redundant
protein (Nr), non-redundant nucleotide (Nt), Swiss-Prot (http://www.uniprot.org/downloads)
(accessed on 1 May 2002), clusters of orthologous groups for eukaryotic complete genomes
(KOG, ftp://ftp.ncbi.nih.gov/pub/COG/KOG/kyva (accessed on 6 June 2002)) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genotup/kegg/pathway.
html (accessed on 9 March 1995)) [18,19]. Gene ontology (GO) homology annotation was
carried out using Blast2GO software (Valencia, Spain) [20].

2.5. Differential Expression Analysis

Differential expression analysis was carried out using the DESeq R package (1.18.0) [21].
Fold change was calculated as the ratio of the expression level of genes in the MI sample
and MP sample. In addition, |log2 fold change| > 1 and padj < 0.05 (adjusted p value) were
set as the cutoff thresholds for differentially expressed genes (DEGs). The detailed method
for the differential expression analysis was performed according to our previous study [15].
GO and KEGG enrichment analyses were carried out on DEGs (padj < 0.05). Finally, we
obtained the top 30 GO terms and top 30 KEGG pathways. The methods are detailed in
our previous study [15].

2.6. Quantitative Real-Time PCR (qPCR) Validation

The accuracy of high-throughput data was validated using qPCR. Ten DEGs were
randomly selected from transcriptome data, and a qPCR experiment was performed on
an ABI 7500 real-time PCR system (ABI, Waltham, MA, USA). The primers were designed
with Primer Premier 6 software. Beta-actin was used as the internal reference, and the
amplifications were performed according to the following program: 95 ◦C for 30 s and
40 cycles of 95 ◦C for 5 s, 60 ◦C for 35 s and 72 ◦C for 52 s. Sample detection was triplicated,
and the gene expression levels were calculated using the 2−∆∆CT method [22]. Statistical
significance (p < 0.05) was calculated using one-way ANOVA and Duncan’s multiple range
tests (SPSS 21.0). The minimum significance level was set to 0.05.

3. Results
3.1. Sequencing and Assembly of Thoracic Ganglia Transcriptome of E. sinensis

The body size parameters for E. sinensis collected at post-molt and inter-molt stages
are shown in Table 1. As shown in Table 2, a total of 290,941,648 clean data were generated.
Phred quality score was used as an index for the base-calling accuracy and calculated
using FastQC software (Babraham, UK) v0.10.1. In this study, a Q30 value larger than 93%
indicated that the base-calling accuracy for each replicate had reached 99.9% and met the

http://www.uniprot.org/downloads
ftp://ftp.ncbi.nih.gov/pub/COG/KOG/kyva
http://www.genotup/kegg/pathway.html
http://www.genotup/kegg/pathway.html
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requirement for further analysis. After assembly, we obtained 40,121 unigenes. Among
these, 22,198 unigenes were longer than 500 bp, the max length was longer than 13,628 bp,
the average length was 921.66 b, and N50 was 1209 bp.

Table 1. Parameter for body size of sampled E. sinensis.

ID Weight (g) Carapace Length (mm) Carapace Width (mm)

MP1-F 11.7 26.9 27.8
MP1-M 12.1 27.6 28.1
MP2-F 11.2 26.8 27.5
MP2-M 12.4 27.9 28.7
MP3-F 11.1 26.5 27.6
MP3-M 12.2 26.6 28.5
MI1-F 11.6 26.8 27.3
MI1-M 13.2 27.9 28.5
MI2-F 11.5 26.7 27.3
MI2-M 12.5 27.7 28.8
MI3-F 11.4 26.5 27.4
MI3-M 12.9 27.5 28.1

Note: MP1-F~MP3-F: three female E. sinensis at post-molt stage in three aquariums; MP1-M~MP3-M: three male
E. sinensis at post-molt stage in three aquariums; MI1-F~MI3-F: three female E. sinensis at inter-molt stage in three
aquariums; MI1-M~MI3-M: three male E. sinensis at inter-molt stage in three aquariums.

Table 2. Summary of sequencing of thoracic ganglia transcriptome of E. sinensis.

Sample Raw Reads Raw Bases Clean Reads Clean Bases Q20 (%) GC (%)

MP1 45,960,600 6,894,090,000 45,473,604 6,728,590,578 95.9 50.1
MP2 45,521,480 6,828,222,000 45,188,428 6,707,176,823 96.1 49.8
MP3 45,570,666 6,885,599,900 44,245,592 6,711,431,282 95.2 50.6
MI1 45,859,836 6,893,975,400 44,236,908 6,749,106,113 96.6 49.9
MI2 46,045,208 6,951,781,200 45,992,414 6,861,547,596 96.3 49.8
MI3 45,360,592 6,859,088,800 45,161,228 6,743,440,718 96.1 50.9

Note: MP1–3: three replicates of thoracic ganglia of post-molt E. sinensis; MI1–3: three replicates of thoracic
ganglia of inter-molt E. sinensis; valid bases: valid base ratio; Q20: ratio of bases with Phred quality score larger
than 20 in raw bases.

3.2. Top 30 GO Enrichment Analysis on DEGs at Post-Molt and Inter-Molt Stages

GO defines three levels of ontologies, including molecular function (MC), biologi-
cal process (BP) and cellular component (CC). As shown in Figure 1, DEGs were mostly
enriched in numerous terms in the subcategory of biological process, including develop-
ment regulation (‘regulation of neuron death’, ‘fat pad development’, ‘seminiferous tubule
development’, ‘positive regulation of intrinsic apoptotic signaling pathway by p53 class
mediator’, ‘hypothalamus gonadotrophin-releasing hormone neuron development’), en-
ergy homeostasis and anti-stress response (‘energy homeostasis’, ‘mitochondrion transport
along microtubule’, ‘regulation of mitochondrial membrane potential’) and the regulation
of proteometabolism (‘regulation of proteasomal protein catabolic process’, ‘modification-
dependent protein catabolic process’, ‘positive regulation of protein monoubiquitination’).

3.3. Top 30 KEGG Enrichment Analysis

As shown in Figure 2, the functions of the identified DEGs were mainly associated
with six categories: organismal systems, metabolism, human diseases, genetic information
processing, environmental information processing and cellular processes. The top 30 KEGG
pathways were mainly relevant to three subcategories, namely the regulation of immune
response, energy metabolism (mainly related to glycolysis and lipolysis) and neuronal
signal transduction. The major pathways relevant to immune response were ‘antigen
processing and presentation’, ‘IL-17 signaling pathway’, ‘Th17 cell differentiation’ and
‘lysosome’. Energy metabolism pathways mainly involved the ‘PPAR signaling pathway’,
‘N-glycan biosynthesis’ and ‘mucin-type O-glycan biosynthesis’. The main pathways
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related to signal transduction mainly involved the ‘tight junction’, ‘gap junction’, ‘MAPK
signaling pathway’, ‘Wnt signaling pathway’ and ‘endocytosis’.
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3.4. Analysis of Functional DEGs

The top 30 GO terms and top 30 KEGG pathways were comprehensively analyzed,
and the key DEGs can be classified into four categories: carapace development and tissue
regeneration, neuronal signal transduction, energy metabolism and homeostasis mainte-
nance and immune and anti-stress response. The key functional DEGs are shown in Table 3,
and all DEGs in this study are shown in [23]. The regulatory network of E. sinensis thoracic
ganglia is shown in Figure 3.

Table 3. Key DEGs in thoracic ganglia transcriptome of E. sinensis.

Category Gene Name Gene Definition log2 Fold Change padj

Carapace development and
tissue regeneration Bursicon-α Bursicon alpha −3.35 0.02

DDC Dopa decarboxylase −5.46 0.05

CHS Chitin synthase −2.02 0.01

BMP Bone morphogenetic protein type II −1.73 0.02

BMPR2 Bone morphogenetic protein receptor type-2 −5.66 0.04

ACTA1 Alpha actin 1 −1.70 0.03

ACTR2 Actin-related protein 2 −1.89 0.05

RERE Arginine-glutamic acid dipeptide
repeats protein −3.23 0.02

EPHA2 Ephrin type-A receptor 2 −3.86 0.01

ISWI Chromatin-remodeling complex ATPase
chain Iswi −2.41 0.04

NEFH Neurofilament heavy polypeptide −3.18 0

YAP1 Transcriptional coactivator YAP1 −2.44 0.01

ADAMTS3 A disintegrin and metalloproteinase with
thrombospondin motifs 3 −2.04 0.01

Neuronal signal transduction OEH Neuroparsin 2 −1.60 0.04

TKR86C Tachykinin-like peptides receptor 86C −1.90 0.04

TKR99D Tachykinin-like peptides receptor 99D −2.42 0.04

PPP1R9B Neurabin-2 −5.79 0.03

PLEXB Plexin-B −1.95 0.02

PICK1 PRKCA-binding protein −5.48 0.05

FLNB Filamin-B −2.12 0.02

RICH Guanine nucleotide exchange factor
subunit Rich −4.77 0.02

Energy metabolism and
homeostasis maintenance UXS1 UDP-glucuronic acid decarboxylase 1 2.64 0.04

ENGASE Cytosolic
endo-beta-N-acetylglucosaminidase −5.63 0.04

NOCT Nocturnin −2.46 0.04

MTTP Microsomal triglyceride transfer protein
large subunit −4.81 0

PNLIPRP2 Pancreatic lipase-related protein 2 −2.26 0.04

HNF4A Hepatocyte nuclear factor 4-alpha −2.19 0.04

RGN Regucalcin −2.62 0

Immune and anti-stress response FZD1 Frizzled-1 −3.76 0.04

FZD7 Frizzled-7 −1.91 0.02

SMPDL3B Acid sphingomyelinase-like
phosphodiesterase 3b −3.32 0.04

FCN1 Ficolin-1 −2.01 0.02

ITGA4 Integrin alpha-4 −2.38 0.05

GCLC Glutamate–cysteine ligase catalytic subunit −2.80 0

KEAP1 Kelch-like ECH-associated protein 1 −3.57 0

Note: padj: adjusted p-value.
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Figure 3. Regulatory network in the thoracic ganglia of E. sinensis identified between the post-molt
and inter-molt stages. The key regulatory pathways and genes were classified into four categories.

3.5. Validation of Transcriptome Data by qPCR

Primers for the 10 detected DEGs are shown in [23]. As shown in Figure 4, relative
expression levels of the detected DEGs as measured by qPCR were nearly consistent
with those determined by high-throughput sequencing. These results indicated that the
transcriptome data in this study are reliable.
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4. Discussion

As shown in Table 3, with the comprehensive analysis of the top 30 GO and top 30 KEGG,
differentially expressed KEGG and DEGs can be divided into four categories: carapace
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development and tissue regeneration, neuronal signal transduction, energy metabolism
and homeostasis regulation and immune and anti-stress response.

4.1. Carapace Development and Tissue Regeneration at Post-Molt Stage

In this study, some genes relevant to carapace development (bursicon-alpha subunit,
DDC, CHS, CS, BMP and BMPR2), skeletal muscle development (ACTA1 and ACTR2)
and neuronal system development (RERE, EPHA2, ISWI and YAP1) were significantly
differentially expressed. The newly formed soft carapace was gradually hardened under
the regulation of various neuropeptides and factors after molting. In this study, some DEGs
related to carapace formation were significantly upregulated compared with the pre-molt
stage, such as bursicon-alpha subunit, DDC and CHS. Bursicon is a neuropeptide that has
been shown to play a core regulatory role in carapace sclerotization during the post-molt
period in the blue crab (Callinectes sapidus) and shore crab (Carcinus maenas) [24,25]. DDC
catalyzes the conversion of dopa into dopamine and then initiates the subsequent process
of exoskeleton sclerotization and mineralization [26]. CS catalyzes chitin biosynthesis and
plays a regulatory role in the development of the cuticular layer [27]. In this study, CS was
significantly upregulated to promote the formation of the new carapace. In addition, some
regulatory genes relevant to bone development were also upregulated, such as BMP and
BMPR2 after molting. The research on the regulatory pattern of the Y organs of the black-
back land crab (Gecarcinus lateralis) during the molt cycle also indicated that some genes
related to bone formation, such as BMP7 and BMP receptor 1B, were upregulated during
the post-molt stage [6]. BMPs, comprising a superfamily of growth factors, are closely
associated with animal growth and development, and most members of the BMP family
have been shown to play an important regulatory role in biocalcification, tissue reconstruc-
tion and regeneration [28]. BMP, an important member of the TGF-beta superfamily, can
activate BMPR2 and participate in BMP signaling [29].

In addition, some genes relevant to skeletal muscle development were also upregu-
lated at the post-molt stage, such as ACTA1 and ACTR2. Alpha-actin, a major contractile
constituent of skeleton muscle, plays a key regulatory role in the mediation of actin net-
works [30]. Research on the molting regulation of Litopenaeus vannamei indicates that
some actin-related regulatory genes are upregulated after molting, such as skeletal mus-
cle actin 6 [31]. The post-molt period is an important stage for muscle regeneration and
morphological remodeling.

In this study, some novel genes functioning in the regulation of the neuronal system
and connective tissue development were significantly upregulated, such as RERE, EPHA2,
ISWI and YAP1. RERE acts as a transcriptional repressor for cell survival and develop-
ment [32]. Its downregulation as observed in this study is expected to promote post-molt
development of E. sinensis. EPHA2 functions in the regulation of brain development and
angiogenesis [33]. ISWI plays a pivotal regulatory part in larval blood cell development and
metamorphosis [34]. YAP1, a transcriptional regulator, plays a critical role in the regulation
of tissue tension and shape [35].

4.2. Neuronal Signal Transduction after Molting

In this study, some key regulatory genes relevant to signal transduction were up-
regulated, such as neuroparsin and tachykinin. Neuroparsin can induce the elevation of
trehalose and hemolymph lipids. It was first identified as a regulatory factor functioning in
ovary maturation [36,37]. In this study, neuroparsin-2 was significantly elevated after molt-
ing. A study on the regulatory function of neuropeptides in green shore crabs during the
molt cycle showed that neuroparsin-1 is involved in regulation during the molt cycle [38].
The specific biological function of neuroparsin at the post-molt developmental stage of
E. sinensis remains to be elucidated through further study. Tachykinins are excitatory neu-
ropeptides that can initiate the contraction of multiple smooth muscles, and they mediate
the downstream neuronal signaling pathway together with tachykinin receptors [39,40].
In this study, tachykinin receptors, such as TKR99D and TKR86C, were upregulated after
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molting; similarly, tachykinin upregulation was observed in a transcriptomic analysis study
of neuropeptidome in lobster Homarus americanus eyestalk ganglia [41]. In addition, other
regulatory genes related to neuronal signal transduction were also upregulated, including
PPP1R9B, PlEXB and RICH. PPP1R9B plays a pivotal regulatory role in dopaminergic
neurotransmission [42]. PlEXB participates in axon guidance of the neuronal system [43].
RICH is an indispensable regulator for the formation of synaptic connections [44].

4.3. Regulation of Energy Metabolism and Homeostasis

In this study, regulatory genes relevant to glycan synthesis, such as UXS1, were down-
regulated after molting. Some genes related to lipid catabolism genes (ENGASE, MTTP
and PNLIPRP2) and homeostasis regulation (HNF4A, RGN and TIM) were upregulated.
A study on the energy metabolism of E. sinensis hepatopancreas and its association with
molting indicated that genes relevant to glycolysis and lipolysis are upregulated during
the post-molt stage [45]. UXS1, a catalyst for decarboxylation of UDP-glucuronic acid, is
indispensable in tetrasaccharide biosynthesis [46]. In our study, UXS1 was found to be
downregulated, which is beneficial for glycolysis and energy supply. ENGASE plays a
regulatory role in the release of N-glycans from glycoprotein [47] and was upregulated for
energy supply in our study. MTTP can regulate the biosynthesis of cholesteryl ester [48].
PNLIPRP2, as a lipase, participates in the hydrolyzation of triglycerides [49]. HNF4A, as a
transcription factor, functions in the maintenance of the circadian rhythm of liver genes [50].
RGN can modulate Ca2+-dependent enzyme activities and is essential for the maintenance
of calcium homeostasis [51]. TIM can determine the formation of circadian rhythm together
with period circadian protein [52].

The post-molt stage is a period for carapace development and tissue regeneration,
during which a sufficient energy supply is required, and glycolysis and lipolysis are
vigorous. Genes related to homeostasis regulation were upregulated for the maintenance
of homeostasis of signal transduction and energy metabolism during the post-molt phase.

4.4. Regulation of Immune and Anti-Stress Response

In this study, some immune-relevant regulatory genes involved in immune cell re-
sponse and antigen recognition were upregulated after molting, such as Frizzle1/7, SM-
PDL3B, FCN1 and ITGA4. Furthermore, some modulatory genes related to anti-stress
response were also significantly expressed, including GCLC and KEAP1. The Wnt signaling
pathway plays a critical regulatory role in intercellular development and differentiation
of macrophages, T cells, B cells, etc. Frizzled is the receptor of Wnt protein, and it plays
a positive regulatory role in immune response [53]. In this study, Frizzled 1 and Frizzled
7 were upregulated. Similarly, the transcriptome analysis of the Y organs of blackback
land crabs showed that Frizzled plays an important role in the immune response during
the molting cycle [54]. SMPDL3B, which is located on the surface of macrophages and
dendritic cells, plays a vital role in the lipid composition of macrophages and a negative role
in immunity [55]. Its downregulation, as observed in this study, is beneficial to immunity
enhancement. FCN1 plays a pivotal regulatory role in the activation of the lectin pathway
of the complement system [56]. ITGA4 can initiate leukocyte aggregation for an immune
response [57]. Glutathione, as an important intracellular regulator, plays an important role
in the maintenance of the immune system and functions in antioxidant and detoxification
processes [58]. GCLC, as a key component of glutamate–cysteine ligase, participates in the
rate-limiting step of glutathione biosynthesis [59]. KEAP1, as a pivotal transcription factor,
plays an important regulatory role in antioxidation responses [60].

Many genes relevant to the regulation of the immune response were found to be
upregulated. The reason for this is that E. sinensis is vulnerable to the invasion of pathogens
during the post-molt period. At this time, the hard exoskeleton is not well-formed, and
thus, immunity is enhanced to protect E. sinensis from harm. Discerning the details of the
specific regulatory mechanisms awaits further study.
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4.5. Application of This Study

In this study, four types of key functional genes were differentially expressed during
the E. sinensis post-molt stage: These genes can be screened for breeding improved varieties
of E. sinensis. In the near future, transgenic technology can be applied in the E. sinensis
industry, and the characteristic improvement of E. sinensis can be performed from four as-
pects, namely carapace development, tissue regeneration, energy homeostasis maintenance
and immune response. The obtained improved E. sinensis with a faster growth rate and
stronger resistance can provide high-quality juvenile crabs for the breeding industry of
E. sinensis and the proliferation and release of wild E. sinensis, thus promoting the recovery
of wild E. sinensis resources.

5. Conclusions

In this study, a comparative transcriptome study of E. sinensis thoracic ganglia at the
post-molt and inter-molt stages was carried out for the first time. The results indicate that
pathways and regulatory genes related to carapace development, tissue regeneration, gly-
colysis and lipolysis and immune and anti-stress responses were significantly differentially
expressed. At present, research on the regulatory mechanisms of the nervous system in
E. sinensis during the molting cycle period is scarce. The results of this study lay a theoreti-
cal foundation for research on the regulatory networks operating in the nervous system of
E. sinensis during the post-molt developmental period. Detailed knowledge of the regula-
tory network involved in E. sinensis molting can be used for breeding improved E. sinensis
species, the recovery of the wild E. sinensis population and the lucrative development of
the E. sinensis artificial breeding industry.
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