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Abstract: In recent years, much research has found that dysregulation of glutarylation is associated
with many human diseases, such as diabetes, cancer, and glutaric aciduria type I. Therefore, glutary-
lation identification and characterization are essential tasks for determining modification-specific
proteomics. This study aims to propose a novel deep neural network framework based on word
embedding techniques for glutarylation sites prediction. Multiple deep neural network models are
implemented to evaluate the performance of glutarylation sites prediction. Furthermore, an extensive
experimental comparison of word embedding techniques is conducted to utilize the most efficient
method for improving protein sequence data representation. The results suggest that the proposed
deep neural networks not only improve protein sequence representation but also work effectively
in glutarylation sites prediction by obtaining a higher accuracy and confidence rate compared to
the previous work. Moreover, embedding techniques were proven to be more productive than the
pre-trained word embedding techniques for glutarylation sequence representation. Our proposed
method has significantly outperformed all traditional performance metrics compared to the advanced
integrated vector support, with accuracy, specificity, sensitivity, and correlation coefficient of 0.79,
0.89, 0.59, and 0.51, respectively. It shows the potential to detect new glutarylation sites and uncover
the relationships between glutarylation and well-known lysine modification.

Keywords: glutarylation site prediction; deep neural networks; word embedding; LSTM; ELMo; GloVe

1. Introduction

Post-translational modifications (PTMs), such as methylation, acetylation, glycosy-
lation, ubiquitination, and phosphorylation, are chemical modifications that play a criti-
cal role in the functional diversity and complexity levels of promotes following the pro-
tein biosynthesis by regulating localization activity and interactions with other cellular
molecules in most of the biological processes [1]. These modifications may occur at any
time during the life cycle of a newly synthesized protein. Therefore, the identification and
characterization of PTMs become a challenging task for a comprehensive understanding of
cellular proteins and human diseases and provide extensive applications. As a prevalent
and significant post-translational modification, lysine glutarylation has recently drawn a
great deal of attention due to its involvement in diverse physiological and biological pro-
cesses, including amino acid metabolism, fatty acid metabolism, and cellular respiration [2].
It is a type of lysine acyl modifications that contain malonylation, succinylation, and glutary-
lation. Lysine glutarylation itself is a protein PTM that can be regulated by SIRT5, a major
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enzyme in the cells. The SIRT5 catalyzes lysine deglutarylation both in vitro and in vivo
and also reserves the glutarylation of carbamoyl phosphate synthetase 1 (CPS1) inhibits its
activity [3]. In addition, enzymes such as thiolase, 3-hydroxy-3-methylglutaryl-coenzyme A
(HMG-CoA) synthase, HMG-CoA lyase, d(−)-β-hydroxybutyrate dehydrogenase (bOHB),
3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), CPS1, and manganese superoxide
dismutase (MnSOD) can participate in a variety of important enzymatic reactions [4]. It
also plays an essential role in human sperm maintaining sperm motility [5]. The previous
works suggested that glutarylation sites have been correlated to a lot of human diseases
such as diabetes [6], glutaric academic type I disease [7], neuronal anaplerosis [8], and heart
disease [9].

Prediction of PTM sites as well as lysine sites have been common in bioinformatics
fields and there have been many studies conducted with promising performance [10].
Glutarylation found on lysine residues has revealed as an important regulator of several
metabolic and mitochondrial processes [11]. However, little attention has been paid to
enhancing glutarylation sites prediction and become a challenging task accordingly. Glut-
Pred [12] is the first computational prediction of glutarylation sites in which they encoded
mRNA codon-triplet as features. Next, iGlu-Lys [13] adopted a conventional machine
learning support vector machine on amino acid pair order and special-position information
to improve the predictive performance from GlutPred. In an effort to incorporate different
features, AL-barakati et al. [14] implemented RF-GlutarySite based on a random forest
classifier to predict glutarylation sites with independent test accuracy reaching 72%. Finally,
a recent predictor for this purpose has been released by Huang et al. [15] in which they
included intrinsic interdependence between positions in the substrate sites to improve the
performance. At the end, their predictor could reach an accuracy of 71% on a benchmark
independent dataset. Despite some positive achievements that have been made for the iden-
tification purpose in recent years, improvements are still needed to enhance glutarylation
prediction. For example, multiple tools purposed for this prediction obtained undesir-
able performances, the low correlation coefficient between true and predicted values in
comparison with prediction tools for other PTM sites.

According to recent studies, bio-sequence has been proven to be used for a broad
range of bioinformatics research, such as family classification, visualization of proteins,
prediction of structure, disordered recognition of proteins, and protein interactions [16,17].
One of the main challenges for protein sequence analysis is contextualizing the structural
properties of the desired proteins from the amino acid sequence database. An automated
processing framework working effectively and optimizing time-consuming is essential
for sequence data analysis. The advances in deep learning approaches applied in protein
analysis have shown promising results and advantages in processing sequential data [18].
There has been growing evidence that deep learning approach can be successfully applied
in protein prediction and genomic analysis [19]. There has existed a contextual relationship
among amino acid sequences that biological sequences, particularly protein sequences, are
comparable with natural language in terms of composition. Therefore, natural language
processing (NLP) techniques have been used to address biological sequence processing [20].
Moreover, word embedding techniques widely used in NLP can be adopted to transform
the contextual relationship among amino acid sequences. The integration of embedding
techniques into deep learning enables us to solve biological sequence feature represen-
tation and extraction. In bioinformatics, word embedding techniques have been used
to analyze the protein structural properties from its amino acid sequence representation
learning [21,22]. In a similar way, the CNN-BiLSTM model has been used to identify and
achieve more functionality than traditional models of the potential contextual relationships
of amino acid sequences [23]. A new way of representing protein sequences as continuous
vectors were proposed as a new biological language model, which effectively traces the bio-
physical properties of protein sequences from unlabeled big data (UniRef50) [24]. Based on
the aforementioned studies, it would be reasonable to suggest that a deep neural network
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approach based on embedding techniques has great potential applications for glutarylation
sites prediction.

In this study, we first conducted a thorough survey considering the state-of-the-
art computational prediction tool, in which the algorithms, feature selection techniques,
performance evaluation methods, and so on were meticulously discussed. In addition, we
designed a novel Deep Neural Network framework based on word Embedding techniques
(DNN-E) for protein glutarylation site prediction. The results show that our proposed
framework could generate better optimal features for this problem, thus improving the
performance by reducing the feature dimension as well as accuracy and confidence. This
paper summarizes major contributions as follows:

(1) Develop a novel deep neural network framework for glutarylation prediction based
on word embedding techniques;

(2) Evaluate the effectiveness of conventional machine learning, deep neural network mod-
els, including long short-term memory (LSTM), stacked LSTM (S-LSTM), bidirectional
LSTM (B-LSTM), convolutional neural network LSTM (CNN-LSTM), and convolu-
tional neural network bidirectional LSTM (CNN-BLSTM) in glutarylation prediction;

(3) Evaluate the prediction performance on different word embedding models, including
embedding layer model, pre-trained word embedding techniques such as global vec-
tors for word representation (GloVe), and embedding from language models (ELMo).

We organized the rest of this paper as follows: Section 2 shows the process material
and methods, how to extract the glutarylation sites, and describes the overview architec-
ture of the DNN-E framework, which shows a theoretical method of how to extract the
glutalyration features and how to utilize the machine learning, deep learning techniques
to classify the glutarylation sites. Section 3 provides the detailed experiment design and
experimental results as well as the evaluation and comparison to the previous studies.
Section 4 expands the discussion and the limitation. Finally, Section 5 draws conclusions
and further study.

2. Materials and Methods
2.1. Data Preparation

In this study, glutarylation and non-glutarylation sites were extracted from
MDDGlutar [15], which is the latest dataset for this prediction purpose. In this dataset, they
firstly retrieved experimentally verified glutarylation sites from Protein Lysine Modifica-
tions Database (PLMD) [25]. After that, window sizes ranging from 11 to 25 were evaluated
to select the best one. The cross-validation results showed that the 21-mer window size
performed better than the other levels, thus they selected the 21-window size as an optimal
one. For removing homologous sequence fragments, they then used CD-HIT software
with a cut-off level of 40%. Finally, the rest of the data contains 522 glutarylation sites and
906 non-glutarylation sites as shown in Table 1. For validation purposes, the dataset was
split into training and testing disjoint datasets with a ratio of 90% and 10%, respectively.
The training set has been used to develop the model and the independent set will be used
to evaluate the model performance. The detailed distribution of amino acids in the training
and the independent test datasets are given in Figure 1.

Table 1. Dataset Description.

Instances Training Independent Testing Dataset

Glutarylation 430 92 522
Non-glutarylation 860 46 906
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Figure 1. Amino acids distribution in the training set and independent test set. (The number of colors
represents the number of amino acids).

2.2. Methodology

Assuming S represents a sequential amino acid xi of a glutarylation site dataset:
S = {x1, x2, . . . , xN}, where N is the fixed length of each sequence. Each amino acid
sequence has been classified into either positive or negative glutarylation. The objective of
the proposed methodology is to conduct a DNN-E framework to perform prediction for
the independent test set. In this section, we explain the detailed architecture of the DNN-E
framework, and how to represent glutarylation site features. In general, the proposed DNN-
E framework is composed of four layers: the encoding layer was used to encode each amino
acid as an identical number; the word embedding layer was responsible for translating the
encoded amino acids into pre-fixed length continuous vectors; then deep neural network
models were built to capture the contextual features of amino acid sequences to support
sequence classification at the output layer. The overview architecture of the proposed
framework is presented in Figure 2.

2.2.1. Word Embedding Layer

Word embedding is a learned representation approach for words and documents,
in which an individual word is represented by a predefined dense vector representation,
instead of a sparse vector representation. The main benefit of the dense representations is
the generalization capability that is able to capture the similarities among the similarity
words [26]. Therefore, word embedding has been used extensively in language model-
ing and natural language processing applications, such as sentiment analysis, and text
classification [27,28]. Word embedding models have shown to be more efficient than the
bag-of-words models or one-hot-encoding schemes. In the traditional bag-of-words model,
each word or amino acid was represented by a large sparse vector based on the occurrence
of words within a document. In word embedding, by contrast, each word was represented
by a dense continuous vector space. Word embedding methods study the relationship
between sequential elements in a predefined fixed-sized real-valued vector represented
for the vocabulary of the corpus. The most commonly used are the embedding layer,
Word2Vec, Global Vectors for Word Representation (GloVe), Embedding from Language
Models (ELMo), and Bidirectional Encoder Representation from Transformers (BERT).
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Embedding Layer

An embedding layer for a certain NLP mission, such as document classification, is a
word embedding technology used as an integral feature of a neural network model. The
embedding layer f : {xi|xi ∈ S} → Rn acted as a parameterized function mapping a word
or character to a fixed-size high-dimensional vector. The embedded vector was initialized
with a random weight vector. The weight vectors were updated during the training of
neural networks. For example, given a sequence of amino acids as a sequential input vector
represented by S = [A, F, K, . . . , V, K, N] where the length of S is the number of the amino
acids. Firstly, each amino acid in S was encoded into a unique integer. The encoded vector
denoted as X = [0, 4, 8, . . . , 17, 8, 11]. The embedding layer f was performed on each
element of X to generate the output embedded vector for each amino acid, as illustrated
in Figure 2.

Word2Vec

Word2Vec is a mathematical tool to learn word integration from a text corpus efficiently.
It was created initially as a solution to make embedding effective in neural network-based
training and has since become the de facto norm for pre-trained word embedding. This
standard has been implemented [29]. The work also consisted of the analysis of learned
vectors and the investigation of vector mathematics on word representation. There are
two algorithms inside Word2Vec for producing word vectors: Skip-gram predicts context
words that are given target word based on the likelihood of each context word being
maximized in the current center term, and CBOW predicts target word from a bag-of-
words context. There are two moderately efficient training methods: hierarchical softmax
and negative sampling [30]. Both Word2Vec and the embedding layer learn to represent
words to meaningful feature representation. However, Word2Vec is an unsupervised-based
technique that tries to group the vectors of similar words in collinear vector space based on
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the cosine similarity measure. The embedding layer, in contrast, is a supervised technique
that aims to optimize the weights throughout the training model.

Global Vector for Word Representation (GloVe)

Before GloVe was developed for word representation, the most common methods for
the learning of word vectors are count-based global matrix factorization (LSA) or latent
semantic analysis (LSA) [31]. However, despite showing remarkable positive on word
representation, these methods still have their problems: LSA underperformed on the
word similarity task, indicating a sub-optimal vector space structure; while skip-gram
performed positively on the analogy, but was unable to utilize the statistics of the corpus
since training is performed on separate local context windows instead of on aggregated
global word-word co-occurrence statistics from a corpus. Therefore, the GloVe model, an
extension to the Word2Vec model, was designed for efficiently learning word distributed
representation based on an unsupervised learning algorithm. GloVe integrates the global
statistics of matrix factorization techniques, such as LSA, with the local context-based
learning in Word2Vec. However, local context learning is defined by an explicit word
context or word co-occurrence matrix using statistics across the whole text corpus instead
of by window-based in the Word2Vec [32].

Bidirectional Embedding from Language Models (ELMo)

Recently, a new method of in-contextualized word incorporation has been suggested
in the Language Model Embedding (ELMo) to explore the meaning and semantics of the
word and how these uses differ from one language to another. Contrary to the previous
approaches in the study of text-based text vectors, word vectors have studied the functions
of a deep bidirectional language model, a pre-trained word embedded in a wide corpus of
texts [33].

Bidirectional Encoder Representation from Transformers (BERT)

Unidirectional is a big problem for word display models, which restricts the flexibility
of architectures to be used during pre-training. BERT was therefore designed to pre-train a
bidirectional representation of the unlabeled text through a combined reverse and forward
context in all layers. As a result, the pre-trained BERT model can only be optimized to con-
struct state-of-the-art models for a wide range of tasks, including answering questions and
language inferences, without significant task-specific modifications to the architecture [34].

While Word2vec and Glove techniques are context-independent, both ELMo and BERT
techniques are context-dependent by taking into account the word order relationship. As a
practical implication, Word2vec and GloVe vectors can be used to train with a large corpus
directly for downstream tasks. However, in the case of ELMo and BERT, word embedding
vectors are obtained by training a model unsupervised on a corpus. The differences are
summarized in Table 2.

Table 2. Word Embedding Techniques Comparison.

Word Embedding Context Sensitive Learned Representation

Word2Vec No Words
GloVe No Words
ELMo Yes Words
BERT Yes Sub-words

2.2.2. Deep Neural Network Framework

Deep learning algorithms have proven to be more efficient than traditional machine
learning algorithms, which automate processes to solve complex tasks. A deep neural
network (DNN) is an extension of a multi-hidden layer artificial neural network (ANN)
which allows DNN to perform multiple sophisticated tasks, where each layer is connected
only to the previous one and connected only to the next layer in the cached portion. The



Life 2022, 12, 1213 7 of 20

most common types of DNN architectures are recurrent neural networks (RNNs) and
convolutional neural networks (CNNs). In some cases, RNNs and CNNs can be combined
to utilize the benefit of DNN architecture known as hybrid deep neural networks. RNN
is specialized for processing a sequence of values x1, x2, . . . , xN where the output of the
current state ht depends on the output of the previous state ht−1. RNN with recurrent
connections between hidden units reads an entire sequence and then produces classification
output, as illustrated in Figure 3. RNN models have been successfully implemented in the
fields of NLP [35]. Unfortunately, RNNs suffer from the problem of vanishing gradients as
processing long sequential data, in which the sensitivity of hidden states and outputs on a
given input becomes weaker as moving along the sequence [36].
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Long Short-Term Memory Network
A special variation of RNN built for sequence modeling is the Long Short-term Mem-

ory (LSTM) [37]. The multiplication gates improve the absence of the gradient problem by
allowing LSTM cached states to store and access over a longer period, which eliminates the
negative impact of the vanishing gradients issue. LSTM architecture is shown in Figure 4.
There are three gates: forget, input, and output gates, in which the forget gate controls how
much information the memory cell conveyed from the memory cell from the previous
step; the input gate specifies whether the memory cell will be updated. In addition, it also
controls how much information the current memory cell will receive from a potentially
new memory cell; the output gate controls the value of the next hidden state. Suppose xt
is the input vector at the time step t, ht−1 denotes the hidden state at time step t − 1, it
denotes the input gate at the time step t, Ĉt denotes the candidate values to be added to
input gate output at the time step t, bi and bC denotes the bias of the input gate and the
candidate value, Wi and WC denote the weights of the input gate and the candidate value
computation. The input gate decides which values will be updated into the cell state.

it = σ(Wi[ht−1, xt] + bi) (1)

Ĉt = tanh(WC[ht−1, xt] + bC) (2)
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The output vectors traversed the network between consecutive time steps t, t + 1 is
denoted by ht. The multiplicative gates are the key to updating and controlling the cell
states. It looks at ht−1 and xt, and outputs a value between 0 and 1 via a sigmoid unit for
each number in the cell state Ct−1. Then, a tanh layer calculates vector of new candidate
values, Ct that could be added to the state. The output gate ot is responsible for the output
based on the input and the memory in the cell being sent to the network as the input of the
following time step ht.

Ct = ft × Ct−1 + it × Ĉt (3)

ft = σ
(

W f [ht−1, xt] + b f

)
(4)

ot = σ(W0[ht−1, xt] + b0) (5)

ht = ot × tanh(Ct) (6)

Bidirectional Long Short-Term Memory Network (B-LSTM)

The B-LSTM is the traditional LSTM variance that can improve sequence classification
performance. The B-LSTM aggregates two reversed unidirectional LSTMs, thus providing
the network with a further context and providing faster learning and even more complete
information on the problem, as illustrated in Figure 5. B-LSTM was used for the manage-
ment of long sequences of pseudo proteins and a better collection of subsequent reliance
information [39].
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Stacked Long Short-Term Memory Network (S-LSTM)

S-LSTM is also another LSTM extension model, using multiple hiddenLSTM layers
where each layer contains multiple memory cells, as shown in Figure 6. In this sense, the
DNN can be interpreted as a pipeline processing architecture where the output is provided
by each layer for a part of the assignment, and parameters are shared in the next layer [40].
The additional overshadowing layers will improve the learned image using previous layer
results and create a new image at a high abstract level. The depth of DNN increases as well
as the need for a sufficiently deep additional hidden layer and fewer neurons.

Hybrid Deep Neural Networks

A convolutional neural network (CNN) is a specialized kind of neural network and
was initially designed for image processing and analysis [41]. However, it has been widely
used in natural language processing [42,43]. Instead of taking an image pixel matrix,
sentences are taken as inputs of NLP tasks [44]. Each word of the sentence corresponds to a
fixed-length embedded vector. For instance, suppose that each amino acid is represented by
a 16-dimensional vector for a sequence amino acid comprised of 21 amino acids, therefore,



Life 2022, 12, 1213 9 of 20

the size of the input matrix will be [16 × 21]. One-dimensional CNN (1D CNN) works
effectively with learning features from shorter segments of the overall dataset, in which
the location of the feature within the segment is not high relevance. Kernel size is the
size of the sliding window that convolves across the data. The filter or feature detector
defines how many sliding windows going to run through the data. Suppose there are
64 filters and 2 rows as the kernel size. Max pooling was used to prevent overfitting of
the learned features by taking the max value of multiple features based on the configure
sliding window. As illustrated in Figure 7, convolutional refers to a filter, each filter sees
2 amino acids at a time step. One-dimensional CNN will perform the filter on entire input
for each word vector. Padding was also considered to use to guarantee all the output has a
fixed length. The output for one filter is a vector size of 20. Therefore, the 1D CNN output
is the size of the [20 × 64] matrix. In the max-pooling layer, we perform the max operation
on the output of each filter over the sentence.
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The extracted spatial features from 1D CNN can be learned as sequences by an RNN
such as LSTM, and BLSTM. Max-pooling layers are used to extract the most important
features from the embedding layer and then feed the consolidated features to the LSTM.
The pooling layer can use the standard length to halve the feature map size. The combi-
nation of 1D CNN and RNN models requires a particular design since each model has
a specific architecture and its properties. While CNN is known as suitable for spatial
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feature extraction, LSTM and BLSTM keep the chronological order between amino acids in
a sequence, thus it can ignore unnecessary elements using the forget gate.

The last dense layer refers to a fully connected network layer, which provides learning
features from all the combinations of the previous layers. Sigmoid activation function was
used to produce a probability distribution over the 2 output classes. The final output layer
consists of 2 neurons including its probability. All probabilities add up to 1.

3. Experiment and Results

This section describes the experimental settings and the selected parameters of the
proposed DNN-E framework for glurarylation prediction. In addition, it presents a perfor-
mance evaluation metric that was used in the validation and performance comparison.

3.1. Experimental Setup

All experiments were conducted using Python 3.7, Keras library with TensorFlow
backend [45], and Adam optimization. An Intel Core i7-7700 (3.60 GHz) CPU with 64 GB of
memory was used with the CenOS Linux machine supported GeForce GTX 1080 Ti 11176
of memory GPU. In the beginning, a k-fold cross-validation approach [46] was used in this
study. The training set was first randomly partitioned into five equally size portions or
folds. Subsequently, four out of five portions of the training set were used to train while
the remaining one-fifth of the training set was used to validate the performance of the
training model.

3.1.1. Embedding Layer Parameters

The embedding layer was constructed as the first hidden layer of the DNNs in which
the embedding was learned along with multiple deep learning models. There are three
prerequisite arguments used to construct the embedding layer, which is the first hidden
layer of the DNN. First, the size of vocabulary known as the input dimension interpreted
the total unique amino acids in the dataset. There are 20 amino acids and 1 rare amino acid,
which are combined in different ways to make protein. Therefore, the size of vocabulary
should be selected as 21. However, in order to avoid a collision, the size of vocabulary 30 is
chosen. Secondly, the size of the vector space equal indicates the size of the output feature
dimension in which amino acids will be embedded. The size of output vectors could be 8,
16, or higher. In this case, the size of output dimension 16 was found to be the most efficient
result. Finally, the input length refers to the size of the input glutarylation site. In this work,
all the selected glutarylation sites have a fixed size of 21, therefore, the input length of 21 is
chosen. As shown in Table 3, there were three required input parameters of the DNNs.

Table 3. Embedding layer parameters.

Embedding Layer Parameters

Vocabulary size 30
The size of the vector space 16

The length of input sequences 21

3.1.2. GloVe, ELMo Embedding Parameters

The pre-trained word embedding dataset is given by GloVe [47]. It was trained on one
billion tokens with a 400-thousand-word vocabulary. Some embedding vector sizes are
available, of which 50, 100, 200, and 300 are included. We used the GloVe 100 dimensions
to train the model by integrating the vector scale. The embedded output vectors have been
used in the embedded layer portion as the data for CNN-LSTM ‘s deep training model.

ELMo vector assigned to a token or amino acid is a function of the entire sequence,
unlike traditional word embedding techniques such as Word2vec and GLoVe. Therefore,
the same symbol would have different embedded vectors under different contexts. ELMo
embedding module available in TensorFlow-hub. Each sequence of amino acids was
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tokenized into a list of characters before fitting into the ELMo embedding model. Table 4
summarizes the detailed selected parameters used for pre-trained embedding models.

Table 4. Pre-trained embedding model parameters.

Parameters
Pre-Trained Embedding

GloVe ELMo

No. of neurons 100 100
No. of epochs 25 25

No. of batch size 10 10
Dropout rate 0.5 0.5

Input dimensions 100 1024

3.1.3. Deep Neural Networks Hyperparameters

Most deep learning algorithms offer various hyperparameters that control multiple
aspects, such as time consumption, computational resources, and accuracy of the algorithm.
Hyperparameter tuning refers to the process of fine-tuning the optimal setting values in or-
der to achieve the lowest generalization error and adjust the effective capacity of the model
subject to computational resources. In order to configure the optimal hyperparameters for
each training model, we have thoroughly evaluated the performance of those models on
different measurements. For example, the number of neurons, the number of batch size,
and the number of epochs were between 50 to 200 neurons, 25 to 100 epochs, and 10 to
30 batch sizes, respectively. The dropout rate was also used in each model to eliminate the
overfitting effect. The final optimal hyperparameters are shown in Table 5.

Table 5. DNNs Hyperparameters.

Hyperparameters LSTM S-LSTM B-LSTM CNN-LSTM CNN-BLSTM

Neurons 100 100 100 100 100
Epochs 50 25 50 25 50

Batch size 10 10 10 10 10
Dropout rate 0.3 0.3 0.3 0.3 0.3

Filter: kernel size - - - 64:5 64:5

1. Number of neurons characterizes the dimensions of hidden stages (outputs);
2. Number of epochs specifies the number of times that the learning algorithm will work

through the entire training dataset;
3. Number of batch sizes defines the number of samples to work through before updating

the internal model parameters. The size of a batch must be more than or equal to one
and less than or equal to the number of samples in the training dataset;

4. Dropout is a regularization technique that decides the probability of a network neu-
ron or node being excluded from activation and weight updates while training a
network. The dropout rate shows the effect of reducing overfitting and improving
model performance;

5. Kernel size or convolution filter is a hyperparameter used in a convolutional neural
network. Kernel size determines the size of the sliding window that convolves across
the data. The filter or feature detector defines how many sliding windows going to
run through the data.

3.2. Performance Evaluation

Different statistical scores as defined in [48,49] have been used to assess each classifi-
cation’s performance. Each query point in the test sets has its true class label in a usually
supervised binary classification problem.

The classifier maps the question points in one of the categories during the evaluation
process: True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
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(FN). In this method, the problem is a positive or negative concern for a specific class. On
this basis, each class is determined by TP, TN, FP, and FN. To assess the output of the
classifier, the following statistical results are used for each class:

Accuracy (ACC)

ACC =
TP + TN

TP + FP + TN + FN
(7)

Recall/Sensitivity (SN)

SN =
TP

TP + FN
(8)

Specificity (SP)

SP =
TN

TN + FP
(9)

Matthew’s correlation coefficient (MCC)

MCC =
TP × N− FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(10)

Both sensitivity and specificity are appropriate for evaluating classification models
for most datasets because these measures consider all entries in the confusion matrix.
While sensitivity deals with True Positives and False Negatives, specificity deals with
False positives and True Negatives. In other words, the combination of sensitivity and
specificity is a comprehensive measure when both true positives and true negatives should
be considered. The Matthews correlation coefficient (MCC), instead, is a more reliable
statistical rate that produces a high score only if the prediction obtained good results in all of
the four confusion matrix categories (True Positives, False Negatives, True Negatives, and
False Positives), proportionally both to the size of positive elements and the size of negative
elements in the dataset. The Matthews correlation coefficient is in the range [−1,1] where
values of −1 and 1 indicate the worst-possible and the best-possible classifier, respectively.

The receiver operating characteristics (ROC) curve indicates the probability of classify-
ing between classes, especially commonly used as the main performance metric in binary
classification evaluation. The curve provides a convenient diagnostic tool to investigate
one classifier with different threshold values and the effect on the True Positive Rate and
False Positive Rate. One might choose a threshold in order to bias the predictive behavior
of a classification model. The receiver operating characteristics area under the curve (ROC-
AUC) represents the degree or measure of separability. This single score can be used to
compare binary classifier models directly. As such, this score might be the most commonly
used for comparing classification models for imbalanced problems. The score is a value
between 0 and 1 for a perfect classifier.

3.3. Experimental Results
3.3.1. Model Selection

Our first objective aims to evaluate the performance between the conventional machine
learning models and the LSTM model based on the embedding layer for model selection.
K-folds cross-validation process is illustrated in Figure 8 in which training dataset including
1290 glurarylation sites is split into k equally sized subsets called folds. One of the k-folds
will act as the validation set, known as the holdout set, and the remaining folds are used
to train the model. This process repeats until each of the folds has acted as a holdout fold.
After each evaluation, a score is retained, and the average score represents the overall
performance of the training model as all iterations have been completed. The independent
test set includes 138 glurarylation sites separated from the training set and will only be
used for testing to ensure that testing data have not been used in the training set. The
results of cross-validation performance on the training test set are given in Figure 8. As
can be seen, the LSTM model outperformed the conventional machine learning models
by obtaining the highest ACC and MCC correlation coefficient. There is a noticeable gap
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in performance between LSTM and conventional machine learning models, which is a
significant effect of the LSTM model. The accuracy rate obtained by the LSTM model was
approximately 0.73 on average, while the accuracy rate was almost the same around 0.67 on
average in conventional machine models. Furthermore, the MCC correlation coefficient rate
obtained by the LSTM model signed a significantly higher 0.39 compared to conventional
machine learning models producing even negative rates in some models such as Linear
Regression (LR), Naive Bayes (NB), and Random Forest (RF) classifiers. The main reason
for the unsatisfactory performance of the conventional machine learning model is that these
models were only able to predict negative instances with higher specificity. In contrast, the
negative prediction rate or specificity obtained by the LSTM model was significantly higher
compared to machine learning models. It indicated that the predicted results obtained
by the LSTM model based on the embedding layer were more accurate and reliable than
the conventional machine learning models. Therefore, the results provide compelling
evidence that the LSTM model enables to capture of the dependency relationship between
amino acids in the sequence while making predictions. LSTM shares parameters (weights)
update at each time step; therefore, the prediction task should be able to utilize the previ-
ously predicted results. The detailed results for 5-folds cross-validation are summarized
in Table 6.
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Table 6. 5-folds cross-validation for LSTM model.

Dataset TP FP TN FN SN SP ACC MCC

Fold 1 59 41 131 27 0.69 0.76 0.74 0.43
Fold 2 43 30 142 43 0.50 0.83 0.72 0.34
Fold 3 43 23 149 43 0.50 0.87 0.74 0.40
Fold 4 52 36 136 34 0.60 0.79 0.73 0.39
Fold 5 57 44 128 29 0.66 0.74 0.72 0.39

Average 50.8 34.8 137.2 35.2 0.59 0.80 0.73 0.39

The receiver operating characteristics (ROC) plot was used to evaluate classification
accuracy. While the area under the ROC (AUC) curve represents the capability of distin-
guishing between classes. Moreover, we also evaluated the training: testing the splitting
ratio to select the most efficient splitting ratio. The 5-fold cross-validation procedure and
splitting ratio evaluation results are shown in Figure 9. In 5-fold validation, the LSTM
model obtained a high value of the AUC score with 0.69 on average. It indicates that our
model achieves a highly reliable performance on unseen data. As shown in Figure 10, the
training:testing splitting ratio 90:10 obtained the highest AUC score. As we compared the
performance of the AUC score between 5-fold with 10-fold cross-validation, we identified
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that the AUC score of the 5-fold validation obtained a higher score on average than the
10-fold validation. The variation in training and validation accuracy and loss is shown
in Figure 11. As the number of epochs increases, there is a probability of an overfitting
problem occurring.
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3.3.2. DNNs Variance Architecture Evaluation

Next, we evaluated the performance of the proposed DNN-E framework by replacing
the LSTM model with the hybrid deep neural networks to reveal how the effectiveness of
different models on amino acid sequence processing. The comparison performance between
multiple DNN models based on the embedding layer for the independent test dataset is
shown in Figure 12. As can be seen, the S-LSTM model obtained the highest performance
both on accuracy score, and correlation coefficient scores (0.79:0.51). LSTM model obtained
the same accuracy score but lower MCC correlation coefficient scores compared to the
S-LSTM model. Although the correlation coefficient score obtained by the B-LSTM model
was roughly equivalent to hybrid CNN-LSTM, and CNN-BLSTM models, the accuracy
score was slightly higher. It can be observed that the LSTM model and S-LSTM performed
better than the hybrid LSTM models. It can be interpreted that the feed-forward network is
trained to learn the sequence of input more effectively compared to the spatial mapping on
CNN. We also reasoned that adding recurrent network layers improves the performance of
LSTM architecture. Hybrid CNN-LSTM and CNN-BLSTM models show less effectiveness
in predictions compared to S-LSTM and LSTM models. Hybrid LSTM models such as
CNN-LSTM, and CNN-BLSTM obtained the lower ACC and MCC (0.74:0.37). ROC-AUC
analysis is given in Figure 13 as a comparison between these classifiers. S-LSTM proved that
it obtained the highest AUC score. The detailed confusion matrix for independent testing
is summarized in Table 7. The t-Distributed Stochastic Neighbor Embedding (TSNE) [50]
was used to visualize the prediction results, as given in Figure 14.
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3.3.3. Word Embedding Techniques Evaluation

In order to evaluate the impact of word embedding techniques on prediction results,
pre-trained word embedding datasets, including GloVe and ELMo were used to replace
the embedding layer in DNN. Figure 15 shows the comparison between embedding layer
performance and the pre-trained word embedding dataset. As can be seen, the S-LSTM
model based on the embedding layer outperformed GloVe and ELMo models in both ACC
and MCC. Although pre-trained word embedding was shown a significant impact on word
representation, their performance was unattractive on the independent test set compared to
the S-LSTM model based on the embedding layer. It can be interpreted that the pre-trained
word embedding models could pick up more semantic signals in text processing. However,
each amino acid has a unique function in the chain of the protein. The sequential positions
of the amino acid are more important attributes needed to be captured. In other words,
there is an existing hidden pattern of amino acid sequence of classification in which deep
neural network and embedding layer work more effectively. Despite GloVe obtaining
accuracy as the same as ELMo, it provided a lower MCC score in prediction in this case.
The detailed results are given in Table 8.



Life 2022, 12, 1213 17 of 20

Life 2022, 12, x FOR PEER REVIEW 18 of 22 
 

 

ACC and MCC. Although pre-trained word embedding was shown a significant impact 
on word representation, their performance was unattractive on the independent test set 
compared to the S-LSTM model based on the embedding layer. It can be interpreted that 
the pre-trained word embedding models could pick up more semantic signals in text 
processing. However, each amino acid has a unique function in the chain of the protein. 
The sequential positions of the amino acid are more important attributes needed to be 
captured. In other words, there is an existing hidden pattern of amino acid sequence of 
classification in which deep neural network and embedding layer work more effectively. 
Despite GloVe obtaining accuracy as the same as ELMo, it provided a lower MCC score 
in prediction in this case. The detailed results are given in Table 8.  

 
Figure 15. Performance comparison between S-LSTM to pre-trained word embedding models. 

Table 8. Pre-trained word embedding techniques performance comparison. 

Models TP  FP TN FN SN SP ACC MCC 
S-LSTM 27 10 82 19 0.59 0.89 0.79 0.51 

GloVe 6 2 90 40 0.13 0.98 0.70 0.22 
ELMo 15 10 82 31 0.33 0.89 0.70 0.27 

3.3.4. Comparison with the Previous Research 
For a comparison between our model and the previously published works on the 

same problem, we retrieved the performance results from the previous four works [12–
15]. In these works, they only used machine learning techniques for lysine glutarylation 
sites by extracting different sets of features e.g., amino acid pair order and substrate sites. 
Although the LSTM model exhibited a lower SN score than integrated SVM (i-SVM) [15] 
in the 5-fold cross-validation phase, it obtained much higher scores for SP, ACC, and 
MCC, as listed in Table 9. The same results were observed using the independent test set. 
As shown in Table 10, our optimal model S-LSTM achieved a lot of improvements as 
compared to the other published works [12,15]. S-LSTM model obtained an SN score that 
was 9% lower compared to the i-SVM model obtained but 9% higher compared to the 
Gluted obtained. While S-SLTM obtained a much higher SP score compared to SP ob-
tained by i-SVM. Interestingly, our proposed model outperformed with respect to ACC 
and MCC on the independent test set. It determines that we can find a novel set of sig-
natures that might be more suitable for this classification purpose. Furthermore, the use 
of deep neural networks helps us generate a hidden feature set of features that makes our 
model more robust than the machine learning algorithms.  

  

Figure 15. Performance comparison between S-LSTM to pre-trained word embedding models.

Table 8. Pre-trained word embedding techniques performance comparison.

Models TP FP TN FN SN SP ACC MCC

S-LSTM 27 10 82 19 0.59 0.89 0.79 0.51
GloVe 6 2 90 40 0.13 0.98 0.70 0.22
ELMo 15 10 82 31 0.33 0.89 0.70 0.27

3.3.4. Comparison with the Previous Research

For a comparison between our model and the previously published works on the same
problem, we retrieved the performance results from the previous four works [12–15]. In
these works, they only used machine learning techniques for lysine glutarylation sites by
extracting different sets of features e.g., amino acid pair order and substrate sites. Although
the LSTM model exhibited a lower SN score than integrated SVM (i-SVM) [15] in the 5-fold
cross-validation phase, it obtained much higher scores for SP, ACC, and MCC, as listed
in Table 9. The same results were observed using the independent test set. As shown
in Table 10, our optimal model S-LSTM achieved a lot of improvements as compared
to the other published works [12,15]. S-LSTM model obtained an SN score that was 9%
lower compared to the i-SVM model obtained but 9% higher compared to the Gluted
obtained. While S-SLTM obtained a much higher SP score compared to SP obtained by
i-SVM. Interestingly, our proposed model outperformed with respect to ACC and MCC
on the independent test set. It determines that we can find a novel set of signatures that
might be more suitable for this classification purpose. Furthermore, the use of deep neural
networks helps us generate a hidden feature set of features that makes our model more
robust than the machine learning algorithms.

Table 9. Comparison between LSTM model to i-SVM model.

Cross-Validation SN SP ACC MCC

LSTM 0.59 0.80 0.73 0.39
i-SVM 0.68 0.62 0.64 0.28

Table 10. Performance comparison on the independent test set.

K_Average TP FP TN FN SN SP ACC MCC

S-LSTM 27 10 82 19 0.59 0.89 0.79 0.51
i-SVM 30 24 68 16 0.65 0.74 0.71 0.38

Gluted Tool 25 8 84 21 0.54 0.91 0.79 0.50
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4. Discussion

The pre-trained word embedding vector has a larger dimensional embedding vector
and it shows a great effect on natural language processing such as sentiment analysis. The
capture semantic of a word is one of the significant functions of the pre-trained embedding
vector model. In other words, the same word in the token will have a different meaning
or embedding value based on the position of the word. However, this strategy shows a
limited effect on the amino acid sequence. Because each amino acid has a unique function
in the chain. The order sequence of amino acids plays an important factor in identifying
and classify the function of the protein. Therefore, capturing semantics in this scenario has
little impact on classification results. Testing on large datasets could be performed in order
to conclude this evaluation. In comparison with the longer natural language processing
model with 1024 proteins ranging from about 30 to 33,000 residues [24]. Further GPU
memory is required for longer proteins, and the underlying models can only keep a limited
record of long-range dependence. Protein uses 20 standard amino acids in most cases
and 5 additional characters in unusual, undefined, or unknown causes, compared to up
to a limit of two million natural language processing terms. Less vocabulary could be
problematic if protein sequences encode sentences of similar complexity.

In this study, several deep learning models for protein function prediction (e.g., glu-
tarylation sites) based on a variety of biological data forms are addressed, which analyzed
the evolution of machine learning approaches used to predict protein function based on
trained data. Although there was an increase in the usage of computational models to
extract significant functions and create good-appearing predictors, techniques using deep
learning strategies had been still capable of outperforming other methods. One of the
challenges that deep learning faces is that it needs a large amount of data, which possibly
limits its effectiveness, at least in certain research on predicting protein function. Several
methods covered in this study achieved excellent findings over a diverse range of func-
tional groups. However, several other methods that did not produce similar outcomes
need to be discussed for a variety of reasons, including the following: (1) When additional
data is available for training their models, their outcomes may improve; (2) Technology
advancements may result in improved outcomes; and (3) By combining these techniques
with a more effective one, we may be able to get better results than using them separately.

All supplementary glutarylation site datasets and optimal training models for this
article can be found online downloaded at https://github.com/CSIE-NTUT/DNN-E
(accessed on 26 June 2022). Our DNN-E framework built for online glutarylation sites
prediction is available at https://share.streamlit.io/slime21023/bio_dnne/main/app.py
(accessed on 26 June 2022).

5. Conclusions

In this study, we proposed a novel DNN-E framework for glutarylation prediction.
We found that the deep neural network approach obtained higher accuracy and confidence
rate than previous research. It is another compelling evidence to prove that, deep neural
networks can work effectively with biological sequence data to handle complex problems
in protein identification. The embedding layer added in deep neural network work more
productively compared to pre-trained word embedding such as GloVe and ELMo. This
study, therefore, indicates that word embedding, in general, provides a mechanism to
transfer the language of biology. In addition, this work provides the potential to detect and
detect new sites of glutarialisation and reveal the links between glutarial and well-known
protein acetylation and methylation for modifications of lysine, including malogylation and
succinylation recently identified. The small dataset for training is considered a limitation of
model performance. The extension of work to optimize the framework should be conducted
in further research.

Nevertheless, scientists are now going to resort large amount of input features, espe-
cially those that have been taken from biological sequences. To close the gap between the
known and unknown sequences, reliable data-driven models are essential. which would

https://github.com/CSIE-NTUT/DNN-E
https://share.streamlit.io/slime21023/bio_dnne/main/app.py
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help to know the effects of protein mutations on illnesses and the development of novel
proteins. Finally, we are convinced that an effective scientific procedure can be developed
in which hypotheses are produced by applying the best method for predicting functions
to the scientific data that is currently available. These theories are then put to the test in
the lab, resulting in confident predictions of a protein’s function. We anticipate that the
results of this study will be helpful to computational and laboratory molecular biology
professionals and complete this mission more efficiently.
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