The Anti-Tumor Effect of Boron Neutron Capture Therapy in Glioblastoma Subcutaneous Xenograft Model Using the Proton Linear Accelerator-Based BNCT System in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Boron Compounds
2.3. In Vitro Uptake of Boron
2.4. BNCT In Vitro Efficacy Experiment: Clonogenic Assay
2.5. Biodistribution In Vivo Experiment
2.6. ICP-MS Analysis
2.7. BNCT In Vivo Efficacy Experiment
3. Results
3.1. In Vitro Uptake of Boron (10B)
3.2. BNCT In Vitro Efficacy Experiment
3.3. Biodistribution In Vivo Experiment
3.4. BNCT In Vivo Efficacy Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirazaei, H.R.; Sahebkar, A.; Salehi, R.; Nahand, J.S.; Karimi, E.; Jaafari, M.R.; Mirzaei, H. Boron neutron capture therapy: Moving toward targeted cancer therapy. J. Cancer Res. Ther. 2016, 12, 520–525. [Google Scholar] [CrossRef]
- Nedunchezhian, K.; Aswath, N.; Thiruppathy, M.; Thirugnanamurthy, S. Boron neutron capture therapy—A literature review. J. Clin. Diagn Res. 2016, 10, ZE01–ZE04. [Google Scholar] [CrossRef] [PubMed]
- Malouff, T.D.; Seneviratne, D.S.; Ebner, D.K.; Stross, W.C.; Waddle, M.R.; Trifiletti, D.M.; Krishnan, S. Boron neutron capture therapy: A review of clinical applications. Front. Oncol. 2021, 11, 601820. [Google Scholar] [CrossRef] [PubMed]
- Miyatake, S.; Kawabata, S.; Hiramatsu, R.; Kuroiwa, T.; Suzuki, M.; Kondo, N.; Ono, K. Boron neutron capture therapy for malignant brain tumors. Neurol. Med. Chir. 2016, 56, 361–371. [Google Scholar] [CrossRef]
- Locher, G.L. Biological effects and therapeutical possibilities of neutrons. Am. J. Roentgenol. Radium. Ther. 1936, 36, 1–13. [Google Scholar]
- Sweet, W.H. The uses of nuclear disintegration in the diagnosis and treatment of brain tumor. N. Engl. J. Med. 1951, 245, 875–878. [Google Scholar] [CrossRef] [PubMed]
- BNCT History. NCBJ. Available online: https://www.ncbj.gov.pl/en/bnct/history (accessed on 27 May 2022).
- González, S.J.; Bonomi, M.R.; Santa Cruz, G.A.; Blaumann, H.R.; Calzetta Larrieu, O.A.; Menéndez, P.; Jiménez Rebagliati, R.; Longhino, J.; Feld, D.B.; Dagrosa, M.A.; et al. First BNCT treatment of a skin melanoma in Argentina: Dosimetric analysis and clinical outcome. Appl. Radiat. Isot. 2004, 61, 1101–1105. [Google Scholar] [CrossRef]
- Kankaanranta, L.; Seppälä, T.; Koivunoro, H.; Saarilahti, K.; Atula, T.; Collan, J.; Salli, E.; Kortesniemi, M.; Uusi-Simola, J.; Välimäki, P.; et al. Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: Final analysis of a phase I/II trial. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, e67–e75. [Google Scholar] [CrossRef] [PubMed]
- Miyatake, S.; Kawabata, S.; Hiramatsu, R.; Furuse, M.; Kuroiwa, T.; Suzuki, M. Boron neutron capture therapy with bevacizumab may prolong the survival of recurrent malignant glioma patients: Four cases. Radiat. Oncol. 2014, 9, 6. [Google Scholar] [CrossRef]
- Hiratsuka, J.; Kamitani, N.; Tanaka, R.; Yoden, E.; Tokiya, R.; Suzuki, M.; Barth, R.F.; Ono, K. Boron neutron capture therapy for vulvar melanoma and genital extramammary Paget’s disease with curative responses. Cancer Commun. 2018, 38, 38. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Y.H.; Chou, F.; Jiang, S. Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua Open Pool Reactor. Cancer Commun. 2018, 38, 37. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lee, Y.; Lin, C.; Pan, P.; Chen, J.; Wang, C.; Hsu, S.; Kuo, Y.; Lan, T.; Hsu, S.P.C.; et al. Salvage Boron Neutron Capture Therapy for Malignant Brain Tumor Patients in Compliance with Emergency and Compassionate Use: Evaluation of 34 Cases in Taiwan. Biology 2021, 10, 334. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M. Boron neutron capture therapy (BNCT): A unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int. J. Clin. Oncol. 2020, 25, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Kreiner, A.J.; Bergueiro, J.; Cartelli, D.; Baldo, M.; Castell, W.; Asoia, J.G.; Padulo, J.; Sandin, J.C.S.; Igarzabal, M.; Erhardt, J.; et al. Present status of accelerator-based BNCT. Rep. Pract. Oncol. Radiother. 2016, 21, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Konno, A.; Hiratsuka, J.; Yoshimoto, S.; Kato, T.; Ono, K.; Otsuki, N.; Hatazawa, J.; Tanaka, H.; Takayama, K.; et al. Boron neutron capture therapy using cyclontron-based epithermal neutron source and borofalan (10B) for recurrent of locally advanced head and neck cancer (JHN002): An open-label phase II trial. Radiother. Oncol. 2021, 155, 182–187. [Google Scholar] [CrossRef]
- Dymova, M.A.; Taskaev, S.Y.; Richter, V.A.; Kuligina, E.V. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun. 2020, 40, 406–421. [Google Scholar] [CrossRef] [PubMed]
- Barth, R.F.; Mi, P.; Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018, 38, 35. [Google Scholar] [CrossRef] [PubMed]
- Hoppenz, P.; Els-Heindl, S.; Beck-Sickinger, A.G. Peptide-Drug Conjugates and their targets in advanced cancer therapies. Front. Chem. 2020, 8, 571. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, K.; Hattori, Y.; Kawabata, S.; Futamura, G.; Hiramatsu, R.; Wanibuchi, M.; Tanaka, H.; Masunaga, S.; Ono, K.; Miyatake, S.; et al. Synthesis and evaluation of dodecaboranethiol containing kojic acid (KA-BSH) as a novel agent for boron neutron capture therapy. Cells 2020, 9, 1551. [Google Scholar] [CrossRef] [PubMed]
- Michiue, H.; Kitamatsu, M.; Fukunaga, A.; Tsuboi, N.; Fujimura, A.; Matsushita, H.; Igawa, K.; Kasai, T.; Kondo, N.; Matsui, H.; et al. Self-assembling A6K peptide nanotubes as a mercaptoundecahydrododecapborate (BSH) delivery system for boron neutron capture therapy (BNCT). J. Control. Release 2021, 330, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Häfliger, P.; Charles, R. The L-type amino acid transporter LAT1-an emerging target in cancer. Int. J. Mol. Sci. 2019, 20, 2428. [Google Scholar] [CrossRef]
- Wongthai, P.; Hagiwara, K.; Miyoshi, Y.; Wiriyasermkul, P.; Wei, L.; Ohgaki, R.; Kato, I.; Hamase, K.; Nagamori, S.; Kanai, Y. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0, +, LAT1 and LAT2. Cancer Sci. 2015, 106, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Moon, M.; Lee, D.W.; Kim, H.S.; Kwon, H.; Lee, P.; Kim, D.S.; Seo, H.J.; Hong, B.H.; Lee, H.; et al. Status of development and planning activities on CANS in Korea. J. Neutron. Res. 2021, 23, 127–141. [Google Scholar] [CrossRef]
- Institute for Basic Science (IBS): Overview of the A-BNCT System in Korea. 2018. Available online: https://indico.ibs.re.kr/event/191/attachments/405/493/WG5-8-AFAD2018-DS_Kim.pdf (accessed on 30 January 2018).
- Rogus, R.D.; Harling, O.K.; Yanch, J.C. Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor. Med. Phys. 1994, 21, 1611–1625. [Google Scholar] [CrossRef] [PubMed]
- Matsubayashi, N.; Tanaka, H.; Takata, T.; Okazaki, K.; Sakurai, Y.; Suzuki, M. Development of real-time neutron detectors with different sensitivities to thermal, epithermal, and fast neutrons in BNCT. Radiat. Meas. 2020, 140, 106489. [Google Scholar] [CrossRef]
- Watanabe, K.; Kawabata, Y.; Yamazaki, A.; Uritani, A.; Iguchi, T.; Fukuda, K.; Yanagida, T. Development of an optical fiber type detector using a Eu:LiCaAlF6 scintillator for neutron monitoring in boron neutron capture therapy. Nucl. Instrum. Methods Phys. Res. A 2015, 802, 1–4. [Google Scholar] [CrossRef]
- Rafehi, H.; Orlowski, C.; Georgiadis, G.T.; Ververis, K.; El-Osta, A.; Karagiannis, T.C. Clonogenic assay: Adherent cells. J. Vis. Exp. 2011, 49, 2573. [Google Scholar] [CrossRef] [PubMed]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; Bree, C.V. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef] [PubMed]
- Kumada, H.; Takada, K. Treatment planning system and patient positioning for boron neutron capture therapy. Radiol. Oncol. 2018, 2, 50. [Google Scholar] [CrossRef]
- Wittig, A.; Sauerwein, A.; Coderre, J.A. Mechanisms of Transport of p-Borono-Phenylalanine through the Cell Membrane In Vitro. Radiat. Res. 2000, 153, 173–180. [Google Scholar] [CrossRef]
- Yamamoto, N.; Masunaga, S.; Kato, I.; Iwai, S.; Nakazawa, M.; Ono, K.; Yura, Y. Enhancing effect of ultrasound on boron concentrations in an oral squamous cell carcinoma cell line SAS for boron neutron capture therapy. J. Oral. Maxillofac. Surg. Med. Pathol. 2014, 27, 487–492. [Google Scholar] [CrossRef]
- Fukuo, Y.; Hattori, Y.; Kawabata, S.; Kashiwagi, H.; Kanemitsu, T.; Takeuchi, K.; Futamura, G.; Hiramatsu, R.; Watanabe, T.; Hu, N.; et al. The Therapeutic Effects of Dodecaborate Containing Boronophenylalanine for Boron Neutron Capture Therapy in a Rat Brain Tumor Model. Biology 2020, 9, 437. [Google Scholar] [CrossRef]
- Imamichi, S.; Chen, L.; Ito, T.; Tong, Y.; Onodera, T.; Sasaki, Y.; Nakamura, S.; Mauri, P.; Sanada, Y.; Igaki, H.; et al. Extracellular Release of HMGB1 as an Early Potential Biomarker for the Therapeutic Response in a Xenograft Model of Boron Neutron Capture Therapy. Biology 2022, 11, 420. [Google Scholar] [CrossRef] [PubMed]
- Kanemitsu, T.; Kawabata, S.; Fukumura, M.; Futamura, G.; Hiramatsu, R.; Nonoguchi, N.; Nakagawa, F.; Takata, T.; Tanaka, H.; Suzuki, M.; et al. Folate receptor-targeted novel boron compound for boron neutron capture therapy on F98 glioma-bearing rats. Radiat. Environ. Biophys. 2019, 58, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Sumitani, S.; Nagasaki, Y. Boron neutron capture therapy assisted by boron-conjugated nanoparticles. Polym. J. 2012, 44, 522–530. [Google Scholar] [CrossRef]
- He, H.; Li, J.; Jiang, P.; Tian, S.; Wang, H.; Fan, R.; Liu, J.; Yang, Y.; Liu, Z.; Wang, J. The basis and advances in clinical application of boron neutron capture therapy. Radiat. Oncol. 2021, 16, 216. [Google Scholar] [CrossRef] [PubMed]
- Puris, E.; Gynther, M.; Auriola, S.; Huttunen, K.M. L-type amino acid transporter 1 as a target for drug delivery. Pharm. Res. 2020, 37, 88. [Google Scholar] [CrossRef] [PubMed]
- Barth, R.F.; Yang, W.; Rotaru, J.H.; Moeschberger, M.L.; Boesel, C.P.; Soloway, A.H.; Joel, D.D.; Nawrocky, M.M.; Ono, K.; Goodman, J.H. Boron neutron capture therapy of brain tumors: Enhanced survival and cure following blood-brain barrier disruption and intracarotid injection of sodium borocaptate and boronophenylalanine. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 209–218. [Google Scholar] [CrossRef]
- Carlsson, J.; Forssel-Aronsson, E.; Glimelius, B. The swedish cancer society investigation group, Radiation therapy through activation of stable nuclides. Acta Oncol. 2002, 41, 629–634. [Google Scholar] [CrossRef]
- Yoshimoto, M.; Honda, N.; Kurihara, H.; Hiroi, K.; Nakanura, S.; Ito, M.; Shikano, N.; Itami, J.; Fujii, H. Non-invasive estimation of 10B-4-borono-L-phenylalanine-derived boron concentration in tumors by PET using 4-borono-2-18F-fluoro-phenylalanine. Cancer Sci. 2018, 109, 1617–1626. [Google Scholar] [CrossRef]
- Blue, T.; Yanch, J.C. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors. J. Neurooncol. 2003, 62, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Naito, F. Introduction to accelerators for boron neutron capture therapy. Radiol. Oncol. 2018, 2, 54. [Google Scholar] [CrossRef]
- Maliszewska-Olejniczak, K.; Kaniowski, D.; Araszkiewicz, M.; Tymińska, K.; Korgul, A. Molecular mechanisms of specific cellular DNA damage response and repair induced by the mixed radiation field during boron neutron capture therapy. Front. Oncol. 2021, 19, 676575. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.; Kakakhel, M.B.; Shahid, S.A.; Younas, L.; Zareen, S. Soft tissue and water substitutes for megavoltage photon beams: An EGSnrc-based evaluation. J. Appl. Clin. Med. Phys. 2016, 17, 408–415. [Google Scholar] [CrossRef]
- Safavi-Naeini, M.; Chacon, A.; Guatelli, S.; Franklin, D.R.; Bambery, K.; Gregoire, M.; Rosenfeld, A. Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons. Sci. Rep. 2018, 8, 16257. [Google Scholar] [CrossRef] [PubMed]
- PMDA. Steboronin CTD 2.6: Summary Text and Summary Table of Non-Clinical Studies. Available online: https://www.pmda.go.jp/drugs/2020/P20200410001/370738000_5130108021353_H100_1.pdf (accessed on 25 March 2020).
- Wang, P.; Zhen, H.; Jiang, X.; Zhang, W.; Cheng, X.; Guo, G.; Mao, X.; Zhang, X. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax. BMC Cancer 2010, 10, 661. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Wang, S.J.; Chung, H.P.; Liu, H.M.; Chou, F.I. Low dose of gamma irradiation enhanced boronophenylalanine uptake in head and neck carcinoma cells for boron neutron capture therapy. Appl. Radiat. Isotopos. 2011, 69, 1728–1731. [Google Scholar] [CrossRef]
- Moro, D.; Colautti, P.; Lollo, M.; Esposito, J.; Conte, V.; De Nardo, L.; Ferretti, A.; Ceballos, C. BNCT dosimetry performed with a mini twin tissue-equivalent proportional counters (TEPC). Appl. Radiat. Isot. 2009, 67, S171–S174. [Google Scholar] [CrossRef] [PubMed]
Group | Absorbed Dose (Gy-Eq) | |
---|---|---|
Skin | Tumor | |
G3 | 4.0 | 9.8 |
G4 | 5.0 | 12.2 |
G5 | 6.0 | 17.9 |
Cell | BPA Treatment Concentration (μg/mL) | Intracellular Boron Concentration (ng/105 Cells) |
---|---|---|
U-87 MG | 500 (≒24 μg [10B]/mL) | 3.9 ± 0.1 |
1000 (≒48 μg [10B]/mL) | 7.0 ± 0.4 | |
2000 (≒96 μg [10B]/mL) | 11.1 ± 0.8 | |
FaDu | 500 (≒24 μg [10B]/mL) | 5.9 ± 0.4 |
1000 (≒48 μg [10B]/mL) | 12.8 ± 1.1 | |
2000 (≒96 μg [10B]/mL) | 23.6 ± 1.7 | |
SAS | 500 (≒24 μg [10B]/mL) | 10.8 ± 1.8 |
1000 (≒48 μg [10B]/mL) | 19.1 ± 0.5 | |
2000 (≒96 μg [10B]/mL) | 36.6 ± 1.2 |
BPA Injection (mg/kg) | Time (h) | Boron Concentration (ppm) | T/B Ratio | ||
---|---|---|---|---|---|
Tumor | Blood | Skin | |||
500 | 0.17 | 21.1 ± 4.3 | 33.3 ± 3.5 | 26.4 ± 5.9 | 0.6 |
0.5 | 25.2 ± 12.4 | 14.4 ± 2.4 | 20.0 ± 3.1 | 1.7 | |
1 | 23.7 ± 5.1 | 8.3 ± 0.3 | 13.9 ± 5.9 | 2.8 | |
2 | 16.4 ± 2.2 | 7.4 ± 1.3 | 10.9 ± 6.0 | 2.2 | |
3 | 12.8 ± 3.0 | 5.5 ± 1.0 | 7.4 ± 1.0 | 2.3 | |
5 | 10.7 ± 1.5 | 3.9 ± 0.4 | 6.6 ± 1.6 | 2.7 | |
1000 | 0.17 | 48.6 ± 11.4 | 82.1 ± 10.2 | 52.6 ± 9.5 | 0.6 |
0.5 | 40.6 ± 9.9 | 25.2 ± 3.2 | 29.0 ± 7.0 | 1.6 | |
1 | 40.8 ± 7.8 | 19.9 ± 4.5 | 27.5 ± 5.4 | 2.1 | |
2 | 28.5 ± 4.6 | 13.5 ± 2.8 | 22.8 ± 3.0 | 2.1 | |
3 | 23.2 ± 3.0 | 10.9 ± 2.7 | 17.9 ± 2.3 | 2.1 | |
5 | 8.3 ± 1.9 | 3.7 ± 1.6 | 6.2 ± 2.5 | 2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, I.H.; Lee, J.; Na, D.; Kyung, H.; Yang, J.; Lee, S.; Jeon, S.J.; Choi, J.W.; Lee, K.Y.; Yi, J.; et al. The Anti-Tumor Effect of Boron Neutron Capture Therapy in Glioblastoma Subcutaneous Xenograft Model Using the Proton Linear Accelerator-Based BNCT System in Korea. Life 2022, 12, 1264. https://doi.org/10.3390/life12081264
Seo IH, Lee J, Na D, Kyung H, Yang J, Lee S, Jeon SJ, Choi JW, Lee KY, Yi J, et al. The Anti-Tumor Effect of Boron Neutron Capture Therapy in Glioblastoma Subcutaneous Xenograft Model Using the Proton Linear Accelerator-Based BNCT System in Korea. Life. 2022; 12(8):1264. https://doi.org/10.3390/life12081264
Chicago/Turabian StyleSeo, Il Hyeok, Jeongwoo Lee, Dasom Na, Hyunhye Kyung, Jieun Yang, Sangbong Lee, Sang June Jeon, Jae Won Choi, Kyu Young Lee, Jungyu Yi, and et al. 2022. "The Anti-Tumor Effect of Boron Neutron Capture Therapy in Glioblastoma Subcutaneous Xenograft Model Using the Proton Linear Accelerator-Based BNCT System in Korea" Life 12, no. 8: 1264. https://doi.org/10.3390/life12081264
APA StyleSeo, I. H., Lee, J., Na, D., Kyung, H., Yang, J., Lee, S., Jeon, S. J., Choi, J. W., Lee, K. Y., Yi, J., Han, J., Yoo, M., & Kim, S. H. (2022). The Anti-Tumor Effect of Boron Neutron Capture Therapy in Glioblastoma Subcutaneous Xenograft Model Using the Proton Linear Accelerator-Based BNCT System in Korea. Life, 12(8), 1264. https://doi.org/10.3390/life12081264