Sources of Nitrogen-, Sulfur-, and Phosphorus-Containing Feedstocks for Prebiotic Chemistry in the Planetary Environment
Abstract
:1. Introduction
2. Nitrogen
2.1. Exogenous Sources of Nitrogen
2.1.1. Interstellar and Circumstellar Environments
2.1.2. Solar System
2.2. Endogenous Sources of Nitrogen
2.2.1. Lightning
2.2.2. Photochemistry
2.2.3. Impact Production
2.2.4. Volcanism
2.2.5. Cosmic Rays and Solar Particles
2.2.6. Mineral Reduction
2.3. Nitrogen in the Planetary Environment
3. Sulfur
3.1. Exogenous Sources of Sulfur
3.1.1. Interstellar and Circumstellar Environments
3.1.2. Solar System
3.2. Endogenous Sources of Sulfur
3.2.1. Volcanism
3.2.2. Hydrothermal Vents
4. Phosphorus
4.1. Exogenous Sources of Phosphorus
4.1.1. Interstellar and Circumstellar Environments
4.1.2. Solar System
4.2. Endogenous Sources of Phosphorus
4.2.1. Impact Production
4.2.2. Hydrothermal-and Lightning-Driven Reduction
4.3. Phosphorus in the Planetary Environment
5. Brief Discussion of Organics
5.1. Exogenous Sources of Organics
5.2. Endogenous Sources of Organics
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, S.L. A production of amino acids under possible primitive Earth conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [PubMed]
- Oro, J. Synthesis of adenine from ammonium cyanide. Biochem. Bioph. Res. Commun. 1960, 2, 407–412. [Google Scholar] [CrossRef]
- Oro, J. Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 1961, 191, 1193–1194. [Google Scholar] [CrossRef] [PubMed]
- Powner, M.W.; Gerland, B.; Sutherland, J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 2009, 459, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Thoma, I.; Deutsch, A.; Gehrke, T.; Mayer, P.; Zipse, H.; Carell, T. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 2016, 352, 833–836. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Benner, S.A. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. Proc. Natl. Acad. Sci. USA 2017, 114, 11315–11320. [Google Scholar] [CrossRef] [PubMed]
- Teichert, J.S.; Kruse, F.M.; Trapp, O. Direct prebiotic pathway to DNA nucleosides. Angew. Chem. 2019, 58, 9944–9947. [Google Scholar] [CrossRef]
- Butlerov, A. Bildung einer zuckerartigen Substanz durch Synthese. Liebigs. Ann. Chem. 1861, 120, 295–298. [Google Scholar] [CrossRef]
- Ritson, D.; Sutherland, J.D. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat. Chem. 2012, 4, 895–899. [Google Scholar] [CrossRef]
- Catling, D.C.; Kasting, J.F. The prebiotic and early postbiotic atmosphere. In Atmospheric Evolution on Inhabited and Lifeless Worlds; Cambridge University Press: Cambridge, UK, 2017; Chapter 9; pp. 231–256. [Google Scholar]
- Airapetian, V.S.; Glocer, A.; Gronoff, G.; Hebrard, E.; Danchi, W. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat. Geosci. 2016, 9, 452–455. [Google Scholar] [CrossRef]
- Nishizawa, M.; Miyazaki, J.; Makabe, A.; Koba, K.; Takai, K. Physiological and isotopic characteristics of nitrogen fixation by hyperthermophilic methanogens: Key insights into nitrogen anabolism of the microbial communities in Archean hydrothermal systems. Geochim. Cosmochim. Acta 2014, 138, 117–135. [Google Scholar] [CrossRef]
- Cheung, A.C.; Rank, D.M.; Townes, C.H.; Thornton, D.D.; Welch, W.J. Detection of NH3 molecules in the interstellar medium by their microwave emission. Phys. Rev. Lett. 1968, 21, 1701. [Google Scholar] [CrossRef]
- Le Gal, R.; Hily-Blant, P.; Faure, A.; Pineau des Forets, G.; Rist, C.; Maret, S. Interstellar chemistry of nitrogen hydrides in dark clouds. Astron. Astrophys. 2014, 562, A83. [Google Scholar] [CrossRef]
- Nieva, M.-F.; Przybilla, N. Present-day cosmic abundances. A comprehensive study of nearby early B-type stars and implications for stellar and Galactic evolution and interstellar dust models. Astron. Astrophys. 2012, 539, A143. [Google Scholar] [CrossRef]
- Knauth, D.C.; Andersson, B.-G.; McCandliss, S.R.; Warren Moos, H. The interstellar N2 abundance towards HD124314 from far-ultraviolet observations. Nature 2004, 429, 636. [Google Scholar] [CrossRef]
- Pillai, T.; Wyrowski, F.; Carey, S.J.; Menten, K.M. Ammonia in infrared dark clouds. Astron. Astrophys. 2005, 450, 569–583. [Google Scholar] [CrossRef]
- Ragan, S.E.; Bergin, E.A.; Wilner, D. Very Large Array Observations of ammonia in infrared-dark clouds. I. Column density and temperature structure. Astrophys. J. 2011, 736, 163. [Google Scholar] [CrossRef]
- Ho, R.T.P.; Barrett, A.H.; Myers, P.C.; Matsakis, D.N.; Cheung, A.L.; Chui, M.F.; Townes, C.H.; Yngvesson, K.S. Ammonia observations of the Orion molecular cloud. Astrophys J. 1979, 234, 912–921. [Google Scholar] [CrossRef]
- Ho, P.T.P.; Townes, C.H. Interstellar ammonia. Annu. Rev. Astron. Astrophys. 1983, 21, 239. [Google Scholar] [CrossRef]
- Gusten, R.; Walmsley, C.M.; Pauls, T. Ammonia in the neighborhood of the Galactic Center. Astron. Astrophys. 1981, 103, 197–206. [Google Scholar]
- Krieger, N.; Ott, J.; Beuther, H.; Walter, F.; Diederik Kruijssen, J.M.; Meier, D.S.; Mills, E.A.C.; Contreras, Y.; Edwards, P.; Ginsburg, A. The Survey of Water and Ammonia in the Galactic Center (SWAG): Molecular cloud evolution in the central molecular zone. Astrophys. J. 2017, 850, 77. [Google Scholar] [CrossRef]
- Daniel, F.; Cernicharo, J.; Roueff, E.; Gerin, M.; Dubernet, M.L. The excitation of N2H+ in interstellar molecular clouds. II. Observations. Astrophys. J. 2007, 667, 980–1001. [Google Scholar] [CrossRef]
- Pagani, L.; Bacmann, A.; Cabrit, S.; Vastel, C. Depletion and low gas temperature in the L183(=L134N) prestellar core: The N2H+-N2D+ tool. Astron. Astrophys. 2007, 467, 179–186. [Google Scholar] [CrossRef]
- Crapsi, A.; Caselli, P.; Walmsley, M.C.; Tafalla, M. Observing the gas temperature drop in the high-density nucleus of L1544. Astron. Astrophys. 2007, 470, 221–230. [Google Scholar] [CrossRef]
- Thaddeus, P. The short-wavelength spectrum of the microwave background. Annu. Rev. Astron. Astrophys. 1972, 10, 305–334. [Google Scholar] [CrossRef]
- Crutcher, R.M. Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 2012, 50, 29. [Google Scholar] [CrossRef]
- Cernicharo, J.; Marcelino, N.; Pardo, J.R.; Agundez, M.; Tercero, B.; de Vicente, P.; Cabezas, C.; Bermudez, C. Interstellar nitrile anions: Detection of C3N- and C5N- in TMC-1. Astron. Astrophys. 2020, 641, L9. [Google Scholar] [CrossRef]
- Epstein, S.; Krishnamurthy, R.V.; Cronin, J.R.; Pizzarello, S.; Yuen, G.U. Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite. Nature 1987, 326, 477–479. [Google Scholar] [CrossRef]
- Wyckoff, S.; Tegler, S.C.; Engel, L. Nitrogen abundance in Comet Halley. Astrophys. J. 1991, 367, 641. [Google Scholar] [CrossRef]
- Owen, T.; Mahaffy, P.R.; Niemann, H.B.; Atreya, S.; Wong, M. Protosolar nitrogen. Astrophys. J. 2001, 553, L77–L79. [Google Scholar] [CrossRef]
- Kawakita, H.; Jehin, E.; Manfroid, J.; Hutsemekers, D. Nuclear spin temperature of ammonia in Comet 9P/Tempel 1 before and after the Deep Impact event. Icarus 2007, 191, 513–516. [Google Scholar] [CrossRef]
- Marty, B.; Avice, G.; Sano, Y.; Altwegg, K.; Balsiger, H.; Hassig, M.; Morbidelli, A.; Mousis, O.; Rubin, M. Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet Sc. Lett. 2016, 441, 91–102. [Google Scholar] [CrossRef]
- Marty, B.; Altwegg, K.; Balsiger, H.; Bar-Nun, A.; Bekaert, D.V.; Berthelier, J.-J.; Bieler, A.; Briois, C.; Calmonte, U.; Combi, M.; et al. Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science 2017, 356, 1069–1072. [Google Scholar] [CrossRef] [PubMed]
- Morbidelli, A.; Lunine, J.I.; O’Brien, D.P.; Raymond, S.N.; Walsh, K.J. Building Terrestrial Planets. Annu. Rev. Earth Planet. Sci. 2012, 40, 251–275. [Google Scholar] [CrossRef]
- Jones, A.P. Dust evolution, a global view I. Nanoparticles, nascence, nitrogen and natural selection… joining the dots. Roy. Soc. Open Sci. 2016, 3, 160221. [Google Scholar] [CrossRef]
- Rice, T.S.; Bergin, E.A.; Jorgenson, J.K.; Wampfler, S.F. Exploring the origins of Earth’s nitrogen: Astronomical observations of nitrogen-bearing organics in protostellar environments. Astrophys. J. 2018, 866, 156. [Google Scholar] [CrossRef]
- Oberg, K.I.; Adwin Boogert, A.C.; Pontoppidan, K.M.; van den Broek, S.; van Dishoeck, E.; Bottinelli, S.; Blake, G.A.; Evans, N.J., II. The Spitzer ice legacy: Ice evolution from cores to protostars. Astrophys. J. 2011, 740, 109. [Google Scholar] [CrossRef]
- Benson, P.J.; Myers, P.C. A survey for dense cores in dark clouds. Astrophys. J. Suppl. Ser. 1989, 71, 89. [Google Scholar] [CrossRef]
- Tafalla, M.; Myers, P.C.; Caselli, P.; Walmsley, C.M.; Comito, C. Systematic molecular differentiation in starless cores. Astrophys. J. 2002, 569, 815–835. [Google Scholar] [CrossRef]
- Bergner, J.B.; Oberg, K.I.; Bergin, E.A.; Loomis, R.A.; Pegues, J.; Qi, C. A survey of C2H, HCN, C18O in protoplanetary disks. Astrophys. J. 2019, 876, 25. [Google Scholar] [CrossRef]
- Chapillon, E.; Guilloteau, S.; Dutrey, A.; Pletua, V.; Guelin, M. Chemistry in Disks. VI. CN and HCN in protoplanetary disks. Astron. Astrophys. 2012, 537, A60. [Google Scholar] [CrossRef]
- Takashi, K.; Takeo, K.; Takeshi, S.; Kensei, K. Formation of organic compounds in simulated interstellar media with high energy particles. Bull. Chem. Soc. Jpn. 1997, 70, 1021–1026. [Google Scholar]
- Bernstein, M.P.; Dworkin, J.P.; Sandford, S.A.; Cooper, G.W.; Allamandola, L.J. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 2002, 416, 401–403. [Google Scholar] [CrossRef]
- Munoz Caro, G.M.; Meierhenrich, U.J.; Schutte, W.A.; Barbier, B.; Arcones Segovia, A.; Rosenbauer, H.; Thiemann, W.H.-P.; Brack, A.; Greenberg, J.M. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 2002, 416, 403–406. [Google Scholar] [CrossRef]
- Lecuyer, C.; Simon, L.; Guyot, F. Comparison of carbon, nitrogen, and water budgets on Venus and the Earth. Earth Planet. Sci. Lett. 2000, 181, 33–40. [Google Scholar] [CrossRef]
- Mahaffy, P.R.; Webster, C.R.; Atreya, S.K.; Franz, H.; Wong, M.; Conrad, P.G.; Harpold, D.; Jones, J.J.; Leshin, L.A.; Manning, H.; et al. Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity Rover. Science 2013, 341, 263–266. [Google Scholar] [CrossRef]
- Owen, T.; Biemann, K.; Rushneck, D.R.; Biller, J.E.; Haworth, D.W.; Lafleur, A.L. The composition of the atmosphere at the surface of Mars. J. Geophys. Res. 1977, 82, 4635–4639. [Google Scholar] [CrossRef]
- Stern, J.C.; Sutter, B.; Freissinet, C.; Navarro-González, R.; McKay, C.P.; Archer, P.D.; Buch, A.; Brunner, A.E.; Coll, P.; Eigenbrode, J.L.; et al. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale Crater, Mars. Proc. Natl. Acad. Sci. USA 2015, 112, 4245–4250. [Google Scholar] [CrossRef]
- Scherf, M.; Lammer, H.; Erkaev, N.V.; Mandt, K.E.; Thaller, S.E.; Marty, B. Nitrogen atmospheres of the icy bodies in the solar system. Space Sci. Rev. 2020, 216, 123. [Google Scholar] [CrossRef]
- Lewis, B.L.; Stansberry, J.A.; Holler, B.J.; Grundy, W.M.; Schmitt, B.; Protopapa, S.; Lisse, C.; Alan Stern, S.; Young, L.; Weaver, H.A. Distribution and energy balance of Pluto’s nitrogen ice, as seen by New Horizons in 2015. Icarus 2021, 356, 113633. [Google Scholar] [CrossRef]
- Kuiper, G.P. Titan: A satellite with an atmosphere. Astrophys. J. 1944, 100, 378. [Google Scholar] [CrossRef]
- Atreya, S.K.; Donahue, T.M.; Kuhn, W.R. Evolution of a nitrogen atmosphere on Titan. Science 1978, 201, 611–613. [Google Scholar] [CrossRef]
- Willacy, K.; Allen, M.; Yung, Y. A new astrobiological model of the atmosphere of Titan. Astrophys. J. 2016, 829, 79. [Google Scholar] [CrossRef]
- Hörst, S.M. Titan’s atmosphere and climate. J. Geophys. Res.-Planet 2017, 122, 432–482. [Google Scholar] [CrossRef]
- Mumma, M.J.; Charnley, S.B. The chemical composition of comets—Emerging taxonomies and natal heritage. Ann. Rev. Astron. Astrophys. 2011, 49, 471–524. [Google Scholar] [CrossRef]
- McKay, A.J.; Roth, N.X. Organic Matter in Cometary Environments. Life 2021, 11, 37. [Google Scholar] [CrossRef]
- Rubin, M.; Altwegg, K.; Balsiger, H.; Bar-Nun, A.; Berthelier, J.-J.; Bieler, A.; Bochsler, P.; Briois, C.; Calmonte, U.; Combi, M.; et al. Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science 2015, 348, 232–235. [Google Scholar] [CrossRef]
- Poch, O.; Istiqomah, I.; Quirico, E.; Beck, P.; Schmitt, B.; Theulé, P.; Faure, A.; Hily-Blant, P.; Bonal, L.; Raponi, A.; et al. Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science 2020, 367, eaaw7462. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 2009, 47, 481. [Google Scholar] [CrossRef]
- Roskosz, M.; Bouhifd, M.A.; Jephcoat, A.P.; Marty, B.; Mysen, B.O. Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochim. Cosmochim. Acta 2013, 121, 15. [Google Scholar] [CrossRef]
- Johnson, B.; Goldblatt, C. The nitrogen budget of earth. Earth-Sci. Rev. 2015, 148, 150–173. [Google Scholar] [CrossRef]
- Grady, M.M.; Wright, I.P. Elemental and isotopic abundances of carbon and nitrogen meteorites. Space Sci. Rev. 2002, 106, 231–248. [Google Scholar] [CrossRef]
- Martins, Z. The Nitrogen Heterocycle Content of Meteorites and their significance for the Origin of Life. Life 2018, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Pizzarello, S.; Huang, Y.; Becker, L.; Poreda, R.J.; Nieman, R.A.; Cooper, G.; Williams, M. The organic content of the Tagish Lake meteorite. Science 2001, 293, 2236–2239. [Google Scholar] [CrossRef]
- Pizzarello, S.; Huang, Y.; Fuller, M. The carbon isotopic distribution of Murchison amino acids. Geochim. Cosmochim. Acta 2004, 68, 4963–4969. [Google Scholar] [CrossRef]
- Pizzarello, S.; Huang, Y. The deuterium enrichment of individual amino acids in carbonaceous meteorites: A case for the presolar distribution of biomolecule precursors. Geochim. Cosmochim. Acta 2005, 69, 599–605. [Google Scholar] [CrossRef]
- Smith, K.E.; Callahan, M.P.; Gerakines, P.A.; Dworkin, J.P.; House, C.H. Investigation of pyridine carboxylic acids in CM2 carbonaceous chondrites: Potential precursor molecules for ancient coenzymes. Geochim. Cosmochim. Acta 2014, 136, 1–12. [Google Scholar] [CrossRef]
- Cronin, J.R.; Pizzarello, S. Amino acids in meteorites. Adv. Space Res. 1983, 3, 5–18. [Google Scholar] [CrossRef]
- Glavin, D.P.; Burton, A.S.; Elsila, J.E.; Aponte, J.C.; Dworkin, J.P. The search for chiral asymmetry as a potential biosignature in our solar system. Chem. Rev. 2020, 120, 4660–4689. [Google Scholar] [CrossRef]
- Mancinelli, R.L.; McKay, C.P. The evolution of nitrogen cycling. Orig. Life Evol. B 1988, 18, 311–325. [Google Scholar] [CrossRef]
- Chameides, W.; Walker, J. Rates of fixation by lightning of carbon and nitrogen in possible primitive atmospheres. Orig. Life 1981, 11, 291–302. [Google Scholar] [CrossRef]
- Navarro-Gonzalez, R.; McKay, C.P.; Mvondo, D.N. A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 2001, 412, 61–64. [Google Scholar] [CrossRef]
- Nna-Mvondo, D.; Navarro-Gonzalez, R.; Raulin, F.; Coll, P. Nitrogen fixation by corona discharge on the early Precambrian Earth. Orig. Life Evol. B 2005, 35, 401–409. [Google Scholar] [CrossRef]
- Zahnle, K.J. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth’s early atmosphere. J. Geophys. Res.-Atmos. 1986, 91, 2819–2834. [Google Scholar] [CrossRef]
- Rimmer, P.B.; Rugheimer, S. Hydrogen cyanide in nitrogen-rich atmospheres of rocky exoplanets. Icarus 2019, 329, 124–131. [Google Scholar] [CrossRef]
- Bickley, R.I.; Vishwanathan, V. Photocatalytically induced fixation of molecular nitrogen by near UV radiation. Nature 1979, 280, 306–308. [Google Scholar] [CrossRef]
- Schrauzer, G.N.; Guth, T.D. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 1977, 99, 7189–7193. [Google Scholar] [CrossRef]
- Henderson-Sellers, A.; Schwartz, A.W. Chemical evolution and ammonia in the early Earth’s atmosphere. Nature 1980, 287, 526–528. [Google Scholar] [CrossRef]
- Ferris, J.P.; Nicodem, D.E. Ammonia photolysis and the role of ammonia in chemical revolution. Nature 1972, 238, 268–269. [Google Scholar] [CrossRef]
- Kuhn, W.R.; Atreya, S.K. Ammonia photolysis and the greenhouse effect in the primordial atmosphere of Earth. Icarus 1979, 37, 207–213. [Google Scholar] [CrossRef]
- Fegley, B., Jr.; Prinn, R.G.; Hartman, H.; Watkins, G.H. Chemical effects of large impacts on the Earth’s primitive atmosphere. Nature 1986, 319, 305–308. [Google Scholar] [CrossRef]
- Parkos, D.; Pikus, A.; Alexeenko, A.; Melosh, H.J. HCN Production via Impact Ejecta Reentry during the Late Heavy Bombardment. J. Geophys. Res. 2018, 123, 892–909. [Google Scholar] [CrossRef]
- Kasting, J.F. Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere. Orig. Life Evol. B 1992, 20, 199–231. [Google Scholar] [CrossRef]
- Miyakawa, S.; Tamura, H.; Sawaoka, A.B. Amino acid synthesis from an amorphous substance composed on carbon, nitrogen, and oxygen. Appl. Phys. Lett. 1998, 72, 990. [Google Scholar] [CrossRef]
- Miyakawa, S.; Murasawa, K.-i.; Kobayashi, K.; Sawaoka, A.B. Cytosine and Uracil synthesis by quenching with high-temperature plasma. J. Am. Chem. Soc. 1999, 121, 8144–8145. [Google Scholar] [CrossRef]
- Mather, T.; Pyle, D.; Allen, A. Volcanic source for fixed nitrogen in the early Earth atmosphere. Geology 2004, 32, 905–908. [Google Scholar] [CrossRef]
- Martin, R.S.; Mather, T.A.; Pyle, D.M. Volcanic emissions and the early Earth. Geochim. Cosmochim. Acta 2007, 71, 3673–3685. [Google Scholar] [CrossRef]
- Basiuk, V.A.; Navarro-Gonzalez, R. Possible role of volcanic ash-gas clouds in the Earth’s prebiotic chemistry. Orig. Life Evol. B 1996, 26, 173–194. [Google Scholar]
- Navarro-Gonzalez, R.; Basiuk, V.A.; Rosenbaum, M. Lightning associated to Archean volcanic ash-gas clouds. In Chemical Evolution: Physics of the Origin and Evolution of Life; Chela-Flores, J., Raulin, F., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 123–142. [Google Scholar]
- Navarro-Gonzalez, R.; Molina, M.J.; Molina, L.T. Nitrogen fixation by volcanic lightning in the early Earth. Geophys. Res. Lett. 1998, 25, 3123–3126. [Google Scholar] [CrossRef]
- Segura, A.; Navarro-Gonzalez, R. Nitrogen fixation on early Mars by volcanic lightning and other sources. Geophys. Res. Lett. 2005, 32, L05203. [Google Scholar] [CrossRef]
- Nicolet, M. On the production of nitric oxide by cosmic rays in the mesosphere and stratosphere. Planet Space Sci. 1975, 23, 637–649. [Google Scholar] [CrossRef]
- Calisto, M.; Usoskin, I.; Rozanov, E.; Peter, T. Influence of Galactic Cosmic Rays on atmospheric composition and dynamics. Atmos Chem. Phys. 2011, 11, 4547–4556. [Google Scholar] [CrossRef]
- Airapetian, V.S.; Barnes, R.; Cohen, O.; Collinson, G.A.; Danchi, W.C.; Dong, C.F.; Del Genio, A.D.; France, K.; Garcia-Sage, K.; Glocer, A. Impact of space weather on climate and habitability of terrestrial-type exoplanets. Int. J. Astrobiol. 2019, 19, 139. [Google Scholar] [CrossRef]
- Miyakawa, S.; Yamanashi, H.; Kobayashi, K.; Cleaves, H.J.; Miller, S.L. Prebiotic synthesis from CO atmospheres: Implications for the origins of life. Proc. Natl. Acad. Sci. USA 2002, 99, 14628–14631. [Google Scholar] [CrossRef] [PubMed]
- Brandes, J.A.; Boctor, N.Z.; Cody, G.D.; Cooper, B.A.; Hazen, R.M.; Yoder, H.S., Jr. Abiotic nitrogen reduction on the early Earth. Nature 1998, 395, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Brandes, J.A.; Hazen, R.M.; Yoder, H.S., Jr. Inorganic nitrogen reduction and stability under simulated hydrothermal conditions. Astrobiology 2008, 8, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, S.; Todd, Z.R.; Rimmer, P.B.; Sasselov, D.D.; Babbin, A.R. Nitrogen oxide concentrations in natural waters on early Earth. Geochem. Geophy. Geosy. 2019, 20, 2021–2039. [Google Scholar] [CrossRef]
- Summers, D.P.; Chang, S. Prebiotic ammonia from reduction of nitrite by iron(II) on the early Earth. Nature 1993, 365, 630–633. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [CrossRef]
- Jobe, T.O.; Kopriva, S. Sulfur Metabolism in Plants. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Read, A.D.; Bentley, R.E.T.; Archer, S.L.; Dunham-Snary, K.J. Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox. Biol. 2021, 47, 102164. [Google Scholar] [CrossRef]
- Wächtershäuser, G. Origin of life in an iron-sulfur world. In The Molecular Origins of Life; Black, A., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 206–218. [Google Scholar]
- De Duve, C. Blueprint for a Cell: The Nature and Origin of Life; Neil Patterson Publisher: Burlington, NC, USA, 1991. [Google Scholar]
- Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015, 7, 301–307. [Google Scholar] [CrossRef]
- Xu, J.; Ritson, D.J.; Ranjan, S.; Todd, Z.R.; Sasselov, D.D.; Sutherland, J.D. Photochemical reductive homologation of hydrogen cyanide using sulfite and ferrocyanide. Chem. Commun. 2018, 54, 5566–5569. [Google Scholar] [CrossRef]
- Green, N.J.; Xu, J.; Sutherland, J.D. Illuminating Life’s Origins: UV photochemistry in abiotic synthesis of biomolecules. J. Am. Chem. Soc. 2021, 143, 7219–7236. [Google Scholar] [CrossRef]
- Becker, S.; Schneider, C.; Okamura, H.; Crisp, A.; Amatov, T.; Dejmek, M.; Carell, T. Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Commun. 2018, 9, 163. [Google Scholar] [CrossRef]
- Raisanen, J. Sulfur. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 415–423. [Google Scholar]
- Maier, R.M. Biogeochemical Cycling. In Environmental Microbiology, 2nd ed.; Maier, R.M., Pepper, I.L., Gerba, C.P., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 339–373. [Google Scholar]
- Brimblecombe, P. Biogeochemical Cycles | Sulfur Cycle. In Encyclopedia of Atmospheric Sciences; Holton, J.R., Ed.; Academic Press: Cambridge, MA, USA, 2002; pp. 213–220. [Google Scholar]
- Sievert, S.M.; Kiene, R.P.; Schulz-Vogt, H.N. The sulfur cycle. Oceanography 2007, 20, 117–123. [Google Scholar] [CrossRef]
- Lyons, T.W.; Gill, B.C. Ancient sulfur cycling and oxygenation of the early biosphere. Elements 2010, 6, 93–99. [Google Scholar] [CrossRef]
- Canfield, D.E.; Farquhar, J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc. Natl. Acad. Sci. USA 2009, 106, 8123–8127. [Google Scholar] [CrossRef]
- Vastel, C.; Quenard, D.; Le Gal, R.; Wakelam, V.; Andrianasolo, A.; Caselli, P.; Vidal, T.; Ceccarelli, C.; Lefloch, B.; Bachiller, R. Sulphur chemistry in the L1544 pre-stellar core. Mon. Not. R. Astron. Soc. 2018, 478, 5514. [Google Scholar] [CrossRef]
- Drozdovskaya, M.N.; van Dishoeck, E.F.; Jorgenson, J.K.; Ursina, C.; van der Wiel Matthijs, H.D.; Audrey, C.; Hannah, C.; Müller, H.S.P.; Per, B.; Persson, M.V. The ALMA-PILS survey: The sulphur connection between protostars and comets: IRAS 16293-2422 B and 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 2018, 476, 4949–4964. [Google Scholar] [CrossRef]
- Rivere-Marichalar, P.; Fuente, A.; Goicoechea, J.R.; Pety, J.; Le Gal, R.; Gratier, P.; Guzman, V.; Roueff, E.; Loison, J.C.; Wavelam, V.; et al. Abundances of sulphur molecules in the Horsehead nebula. Astron. Astrophys. 2019, 628, A16. [Google Scholar] [CrossRef]
- Penzias, A.A.; Solomon, P.M.; Wilson, R.W.; Jefferts, K.B. Interstellar carbon monosulfide. Astrophys. J. 1971, 168, L53–L58. [Google Scholar] [CrossRef]
- Jefferts, K.B.; Penzias, A.A.; Wilson, R.W.; Solomon, P.M. Detection of interstellar carbonyl sulfide. Astrophys. J. 1971, 168, L111–L113. [Google Scholar] [CrossRef]
- Snyder, L.E.; Hollis, J.M.; Ulich, B.L.; Lovas, F.J.; Johnson, D.R.; Buhl, D. Radio detection of interstellar sulfur dioxide. Astrophys. J. 1975, 198, L81–L84. [Google Scholar] [CrossRef]
- Thaddeus, P.; Kutner, M.L.; Penzias, A.A.; Wilson, R.W.; Jefferts, K.B. Interstellar hydrogen sulfide. Astrophys. J. 1972, 176, L73–L76. [Google Scholar] [CrossRef]
- Benz, A.O.; Bruderer, S.; van Dishoeck, E.F.; Team, W.; Team, H. Hydrides in young stellar objects: Radiation tracers in a protostar-disk-outflow system. Astron. Astrophys. 2010, 521, L35. [Google Scholar] [CrossRef]
- Menten, K.R.; Wyrowski, F.; Belloche, A.; Gusten, R.; Dedes, L.; Muller, H.S.P. Submillimeter absorption from SH+, a new widespread interstellar radical, 13CH+ and HCl. Astron. Astrophys. 2011, 525, A77. [Google Scholar] [CrossRef]
- Rodriguez-Almeida, L.F.; Jiminez-Serra, I.; Rivilla, V.M.; Martin-Pintado, J.; Zeng, S.; Tercero, B.; de Vicente, P.; Colzi, L.; Rivo-Villas, F.; Martin, S.; et al. Thiols in the ISM: First detection of HC(O)SH and confirmation of C2H5SH. Astrophys. J. Lett. 2021, 912, L11. [Google Scholar] [CrossRef]
- Sinclair, M.W.; Fourikis, N.; Ribes, J.C.; Robinson, B.J.; Brown, R.D.; Godfrey, P.D. Detection of interstellar thioformaldehyde. Aust. J. Phys. 1973, 26, 85–91. [Google Scholar] [CrossRef]
- Anderson, D.E.; Bergin, E.A.; Maret, S.; Wakelam, V. New constraints on the sulfur reservoir in the dense interstellar medium provided by Spitzer observations of SI in shocked gas. Astrophys. J. 2013, 779, 141. [Google Scholar] [CrossRef]
- Boogert, A.C.A.; Schutte, W.A.; Helmich, F.P.; Tielens, A.G.C.M.; Wooden, D.H. Infrared observations and laboratory simulations of interstellar CH4 and SO2. Astron. Astrophys. 1997, 317, 929–941. [Google Scholar]
- Palumbo, M.E.; Geballe, T.R.; Tielens, A.G.G.M. Solid carbonyl sulfide (OCS) in dense molecular clouds. Astrophys. J. 1997, 479, 839–844. [Google Scholar] [CrossRef]
- Le Gal, R.; Oberg, K.I.; Loomis, R.A.; Pegues, J.; Bergner, J.B. Sulfur chemistry in protoplanetary disks: CS and H2CS. Astrophys. J. 2019, 876, 72. [Google Scholar] [CrossRef]
- Sprague, A.L.; Hunten, D.M.; Lodders, K. Sulfur at Mercury, elemental at the poles and sulfides in the regolith. Icarus 1995, 118, 211–215. [Google Scholar] [CrossRef]
- Aubrey, A.; Cleaves, H.J.; Chalmers, J.H.; Skelley, A.M.; Mathies, R.A.; Grunthaner, F.J.; Ehrenfreund, P.; Bada, J.L. Sulfate minerals and organic compounds on Mars. Geology 2006, 34, 357–360. [Google Scholar] [CrossRef]
- King, P.L.; McLennan, S.M. Sulfur on Mars. Elements 2010, 6, 107–112. [Google Scholar] [CrossRef]
- Kah, L.C.; Stack, K.M.; Eigenbrode, J.L.; Yingst, R.A.; Edgett, K.S. Syndepositional precipitation of calcium sulfate in Gale Crater, Mars. Terra. Nova. 2018, 30, 431–439. [Google Scholar] [CrossRef]
- Irwin, P.G.J.; Toledo, D.; Garland, R.; Teanby, N.A.; Fletcher, L.N.; Orton, G.A.; Bezard, B. Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere. Nat. Astron. 2018, 2, 420–427. [Google Scholar] [CrossRef]
- Mousis, R.; Aguichine, A.; Helled, R.; Irwin, P.G.J.; Lunine, J.I. The role of ice lines in the formation of Uranus and Neptune. Philos. Trans. Roy. Soc. A 2020, 378, 20200107. [Google Scholar] [CrossRef]
- Feaga, L.M.; McGrath, M.A.; Feldman, P.D. The abundance of atomic sulfur in the atmosphere of Io. Astrophys. J. 2002, 570, 439. [Google Scholar] [CrossRef]
- Lellouch, E.; Strobel, D.F.; Belton, M.J.S.; Summers, M.E.; Paubert, G.; Moreno, R. Detection of sulfur monoxide in Io’s atmosphere. Astrophys. J. 1996, 459, L107. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Korablev, O.; Belyaev, D.; Chamberlain, S.; Evdokimova, D.; Encrenaz, T.; Esposito, L.; Jessup, K.L.; Lefèvre, F.; Limaye, S. Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability. Icarus 2017, 295, 16–33. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Korablev, O.; Belyaev, D.; Chamberlain, S.; Evdokimova, D.; Encrenaz, T.; Esposito, L.; Jessup, K.L.; Lefèvre, F.; Limaye, S. Sulfur dioxide in the Venus atmosphere II. Spatial and temporal variability. Icarus 2017, 295, 1–15. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, X.; Shao, W.D.; Bierson, C.J.; Cui, J. A simple condensation model for the H2SO4-H2O gas-cloud system on Venus. JGR Planets 2022, 127, e2021JE007060. [Google Scholar] [CrossRef]
- Altwegg, K.; Balsiger, H.; Bar-Nun, A.; Berthelier, J.-J.; Bieler, A.; Bochsler, P.; Briois, C.; Calmonte, U.; Combi, M.R.; Cottin, H.; et al. Prebiotic chemicals—Amino acid and phosphorus—In the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 2016, 2, e1600285. [Google Scholar] [CrossRef]
- Driebus, G.; Palme, H.; Spettel, B.; Zipfel, J.; Wanke, H. Sulfur and selenium in chondritic meteorites. Meteorit. Planet Sci. 1995, 30, 439–445. [Google Scholar] [CrossRef]
- Kaplan, I.R.; Hulston, J.R. The isotopic abundance and content of sulfur in meteorites. Geochim. Cosmochim. Acta 1966, 30, 479–496. [Google Scholar] [CrossRef]
- Grewal, D.S.; Dasgupta, R.; Sun, C.; Tsuno, K.; Costin, G. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 2019, 5, aau3669. [Google Scholar] [CrossRef]
- Kring, D.A.; Melosh, H.J.; Hunten, D.M. Impact-induced perturbations of atmospheric sulfur. Earth Planet. Sci. Lett. 1996, 140, 201–212. [Google Scholar] [CrossRef]
- Hartmetz, C.P.; Gibson, E.K., Jr.; Blanford, G.E. Analysis of volatiles present in interplanetary dust and stratospheric particles collected on Large Area Collectors. In Proceedings of the Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 21 March 1990; pp. 557–567. [Google Scholar]
- Rietmeijer, F.J. Dynamic pyrometamorphism during atmospheric entry of large (~10 micron) pyrrhotite fragments from cluster IDPs. Meteorit. Planet Sci. 2010, 39, 1869–1887. [Google Scholar] [CrossRef]
- Gomez Martin, J.C.; Brooke, J.S.A.; Feng, W.; Hopfner, M.; Mills, M.J.; Plane, J.M.C. Impacts of meteoric sulfur in the Earth’s atmosphere. J. Geophys. Res.-Atmos. 2017, 122, 7678–7701. [Google Scholar] [CrossRef]
- Richter, F.M. Models for the Archean thermal regime. Earth Planet. Sci. Lett. 1985, 73, 350–360. [Google Scholar] [CrossRef]
- Henley, R.W.; Fischer, T.P. Sulfur sequestration and redox equilibria in volcanic gases. J. Volcanol. Geoth. Res. 2021, 414, 107181. [Google Scholar] [CrossRef]
- Zahnle, K.; Claire, M.; Catling, D. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 2006, 4, 271–283. [Google Scholar] [CrossRef]
- Claire, M.W.; Kasting, J.F.; Domagal-Goldman, S.D.; Stueken, E.E.; Buick, R.; Meadows, V.S. Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere. Geochim. Cosmochim. Acta 2014, 141, 365–380. [Google Scholar] [CrossRef]
- Kasting, J.F.; Zahnle, K.J.; Pinto, J.P.; Young, A.T. Sulfur, ultraviolet radiation, and the early evolution of life. Orig. Life Evol. B 1989, 19, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Halevy, I.; Head, J.W., III. Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 2014, 7, 865–868. [Google Scholar] [CrossRef]
- Self, S.; Widdowson, M.; Thordarson, T.; Jay, A.E. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth Planet. Sci. Lett. 2006, 248, 518–532. [Google Scholar] [CrossRef]
- Mojzsis, S.J. Sulphur on the Early Earth. In Developments in Precambrian Geology; van Kranendonk, M.J., Smithies, R.H., Bennett, V.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 15, pp. 923–970. [Google Scholar]
- Farquhar, J.; Zerkle, A.L.; Bekker, A. Geologic and geochemical constraints on Earth’s early atmosphere. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2014; pp. 91–139. [Google Scholar]
- Philippot, P.; van Zuilen, M.; Rollion-Bard, C. Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity. Nat. Geosci. 2012, 5, 668–674. [Google Scholar] [CrossRef]
- Ono, S. Photochemistry of sulfur dioxide and the origin of mass-independent isotope fractionation in Earth’s atmosphere. Annu. Rev. Earth Planet. Sci. 2017, 45, 301–329. [Google Scholar] [CrossRef]
- Ranjan, S.; Todd, Z.R.; Sutherland, J.D.; Sasselov, D.D. Sulfidic anion concentrations on early Earth for surficial origins-of-life chemistry. Astrobiology 2018, 18, 1023–1040. [Google Scholar] [CrossRef]
- Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 2008, 6, 805–814. [Google Scholar] [CrossRef]
- Fouquet, Y. Black Smoker. In Encyclopedia of Astrobiology; Gargaud, M., Amils, R., Cernicharo, J., Cleaves, H.J., II, Irvine, W.M., Pinti, D.L., Viso, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; p. 213. [Google Scholar]
- Colin-Garcia, M.; Heredia, A.; Cordero, G.; Camprubi, A.; Negron-Mendoza, A.; Ortega-Gutierrez, F.; Beraldi, H.; Ramos-Bernal, S. Hydrothermal vents and prebiotic chemistry: A review. Boletín Soc. Geológica Mex. 2016, 68, 599–620. [Google Scholar] [CrossRef]
- Kelley, D.S.; Karson, J.A.; Blackman, D.K.; Fruh-Green, G.L.; Butterfield, D.A.; Lilley, M.D.; Olson, E.J.; Schrenk, M.O.; Roe, K.K.; Lebon, G.T.; et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 deg N. Nature 2001, 412, 145–149. [Google Scholar] [CrossRef]
- Reeves, E.P.; McDermott, J.M.; Seewalk, J.S. The origin of methanethiol in mid-ocean ridge hydrothermal fluids. Proc. Natl. Acad. Sci. USA 2014, 111, 5474–5479. [Google Scholar] [CrossRef]
- Gartman, A.; Yucel, M.; Luther, G.W. Hydrothermal vents as a source of pyrite and trace metal-containing mineral nanoparticles to the ocean. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 3–7 December 2012. [Google Scholar]
- Findlay, A.J.; Estes, E.R.; Gartman, A.; Yucel, M.; Kamyshny, A., Jr.; Luther, G.W., III. Iron and sulfide nanoparticle formation and transport in nascent hydrothermal vent plumes. Nat. Commun. 2019, 10, 1597. [Google Scholar] [CrossRef]
- Feely, R.A.; Massoth, G.J.; Trefry, J.H.; Baker, E.T.; Paulson, A.J.; Lebon, G.T. Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca Ridge. J. Geophys. Res. Solid Earth 1994, 99, 4985–5006. [Google Scholar] [CrossRef]
- Ludford, E.M.; Palmer, M.R.; German, C.R.; Klinkhammer, G.P. The geochemistry of Atlantic hydrothermal particles. Geophys. Res. Lett. 1996, 23, 3503–3506. [Google Scholar] [CrossRef]
- Cody, G.D. Geochemical Connections to Primitive Metabolism. Elements 2005, 1, 139–143. [Google Scholar] [CrossRef]
- Nitschke, W.; McGlynn, S.E.; Milner-White, E.J.; Russell, M.J. On the antiquity of metalloenzymes and their substrates in bioenergetics. BBA-Bioenerg. 2013, 1827, 871–881. [Google Scholar] [CrossRef]
- Wächtershäuser, G. Evolution of the first metabolic cycles. Proc. Natl. Acad. Sci. USA 1990, 87, 200–204. [Google Scholar] [CrossRef]
- Wächtershäuser, G. Groundworks for an evolutionary biochemistry: The iron-sulphur world. Prog. Biophys. Mol. Biol. 1992, 58, 85–201. [Google Scholar] [CrossRef]
- Huber, C.; Wächtershäuser, G. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 1997, 276, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Sojo, V.; Herschy, B.; Whicher, A.; Camprubi, E.; Lane, N. The origin of life in alkaline hydrothermal vents. Astrobiology 2016, 16, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Tiessen, H. Phosphorus in the global environment. In The Ecophysiology of Plant-Phosphorus Interactions. Plant Ecophysiology; White, P.J., Hammond, J.P., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 7, pp. 1–7. [Google Scholar]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Pasek, M.A. Thermodynamics of prebiotic phosphorylation. Chem. Rev. 2020, 120, 4690–4706. [Google Scholar] [CrossRef]
- Fletcher, L.N.; Orton, G.S.; Teanby, N.A.; Irwin, P.G.J. Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus 2009, 202, 543–564. [Google Scholar] [CrossRef]
- Pasek, M.A. Rethinking early Earth phosphorus geochemistry. Proc. Natl. Acad. Sci. USA 2008, 105, 853–858. [Google Scholar] [CrossRef]
- Schwartz, A.W. Phosphorus in prebiotic chemistry. Philos. Trans. Roy. Soc. B 2006, 361, 1743–1749. [Google Scholar] [CrossRef]
- Tollari, N.; Toplis, M.J.; Barnes, S.-J. Predicting phosphate saturation in silicate magmas: An experimental study of the effects of melt composition and temperature. Geochim. Cosmochim. Acta 2006, 70, 1518–1536. [Google Scholar] [CrossRef]
- Toplis, M.J.; Dingwell, D.B.; Libourel, G. The effect of phosphorous on the iron redox ratio, viscosity, and density of an evolved ferro-basalt. Contrib. Mineral. Petrol. 1994, 117, 293–304. [Google Scholar] [CrossRef]
- Watson, E.B. Apatite and phosphorus in mantle source regions: An experimental study of apatite/melt equilibria at pressures to 25 kbar. Earth Planet Sc. Lett. 1980, 51, 322–335. [Google Scholar] [CrossRef]
- Kasting, J.F. Earth’s early atmosphere. Science 1993, 259, 920–926. [Google Scholar] [CrossRef]
- Lindsay, W.L. Chemical Equilibria in Soils; John Wiley & Sons: New York, NY, USA, 1979. [Google Scholar]
- Chen, P.-J.; Faust, S.D. The solubility product of ferrous phosphate. Environ. Lett. 1974, 6, 287–296. [Google Scholar] [CrossRef]
- Gulick, A. Phosphorus as a factor in the origin of life. Am. Sci. 1955, 43, 479–489. [Google Scholar]
- Lebouteiller, V.; Kuassivi; Ferlet, R. Phosphorus in the Diffuse Interstellar Medium. Astron. Astrophys. 2005, 443, 509–517. [Google Scholar] [CrossRef]
- Jura, M.; York, D.G. Observations of interstellar chlorine and phosphorus. Astrophys. J. 1978, 219, 861–869. [Google Scholar] [CrossRef]
- Maas, Z.G.; Cescutti, G.; Pilachowski, C.A. Phosphorus abundances in the Hyades and Galactic Disk. Astron. J. 2019, 158, 219. [Google Scholar] [CrossRef]
- Caffau, E.; Andrievsky, S.; Korotin, S.; Origlia, L.; Oliva, E.; Sanna, N.; Ludwig, H.-G.; Bonifacio, P. GIANO Y-band spectroscopy of dwarf stars: Phosphorus, sulfur, and strontium abundances. Astron. Astrophys. 2016, 585, A16. [Google Scholar] [CrossRef]
- Agundez, M.; Cernicharo, J.; Guelin, M. Discovery of phosphaethyne (HCP) in space: Phosphorus chemistry in circumstellar envelopes. Astrophys. J. 2007, 662, L91. [Google Scholar] [CrossRef]
- Agundez, M.; Cernicharo, J.; Decin, L.; Encrenaz, P.; Teyssier, D. Confirmation of Cirucmstellar Phosphine. Astrophys. J. Lett. 2014, 790, L27. [Google Scholar] [CrossRef]
- Agundez, M.; Cernicharo, J.; Guelin, M. New molecules in IRC +10216: Confirmation of C5S and tentative identification of MgCCH, NCCP, and SiH3CN. Astron. Astrophys. 2014, 570, A45. [Google Scholar] [CrossRef]
- Tenenbaum, E.D.; Woolf, N.J.; Ziurys, L.M. Identification of phosphorus monoxide (X2\Pi_r) in VY Canis Majoris: Detection of the first PO bond in space. Astrophys. J. 2007, 666, L29–L32. [Google Scholar] [CrossRef]
- Ziurys, L.M.; Schmidt, D.R.; Bernal, J.J. New circumstellar sources of PO and PN: The increasing role of phosphorus chemistry in oxygen-rich stars. Astrophys. J. 2018, 856, 169. [Google Scholar] [CrossRef]
- De Beck, E.; Kaminski, T.; Patel, N.A.; Young, K.H.; Gottlieb, C.A.; Menten, K.M.; Decin, L. PO and PN in the wind of the oxygen-rich AGB star IK Tauri. Astron. Astrophys. 2013, 558, A132. [Google Scholar] [CrossRef]
- Turner, B.E.; Bally, J. Detection of interstellar PN: The first identified phosphorus compound in the interstellar medium. Astrophys. J. 1987, 321, L75. [Google Scholar] [CrossRef]
- Fontani, F.; Rivilla, V.M.; Caselli, P.; Vasyunin, A.; Palau, A. Phosphorus-bearing molecules in massive dense cores. Astrophys. J. 2016, 822, L30. [Google Scholar] [CrossRef]
- Fontani, F.; Rivilla, V.M.; van der Tak, F.F.S.; Mininni, C.; Beltran, M.T.; Caselli, P. Origin of the PN molecule in star-forming regions: The enlarged sample. Mon. Not. R. Astron. Soc. 2019, 489, 4530–4542. [Google Scholar] [CrossRef]
- Rivilla, V.M.; Fontani, F.; Beltran, M.T.; Vasyunin, A.; Caselli, P.; Martin-Pintado, J.; Cesaroni, R. The first detections of the key prebiotic molecule PO in star-forming regions. Astrophys. J. 2016, 826, 161. [Google Scholar] [CrossRef]
- Rivilla, V.M.; Jimenez-Serra, I.; Zeng, S.; Martin, S.; Martin-Pintado, J.; Armijos-Abendano, J.; Viti, S.; Aladro, R.; Riquelme, D.; Requena-Torres, M.; et al. Phosphorus-bearing molecules in the galactic center. Mon. Not. R. Astron. Soc. 2018, 475, L30. [Google Scholar] [CrossRef]
- Lefloch, B.; Bastel, C.; Viti, S.; Jiminez-Serra, I.; Codella, C.; Podio, L.; Ceccarelli, C.; Mendoza, E.; Lepine, J.R.D.; Bachiller, R. Phosphorus-bearing molecules in solar-type star-forming regions: First PO detection. Mon. Not. R. Astron. Soc. 2016, 462, 3937. [Google Scholar] [CrossRef]
- Minnini, C.; Fontani, F.; Rivilla, V.M.; Beltran, M.T.; Caselli, P.; Vasyunin, A. On the origin of phosphorus nitride in star-forming regions. Mon. Not. R. Astron. Soc. 2018, 476, L39–L44. [Google Scholar] [CrossRef]
- Chantzos, J.; Rivilla, V.M.; Vasyunin, A.; Redaelli, E.; Bizzocchi, L.; Fontani, F.; Caselli, P. The first steps of interstellar phosphorus chemistry. Astron. Astrophys. 2020, 633, A54. [Google Scholar] [CrossRef]
- Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 2003, 591, 1220–1247. [Google Scholar] [CrossRef]
- Jusino-Maldonado, M.; Rianco-Silva, R.; Akhter Mondal, J.; Pasek, M.; Laneuville, M.; Cleaves, H.J. A global network model of abiotic phosphorus cycling on Earth through time. Sci. Rep. 2022, 12, 1–13. [Google Scholar] [CrossRef]
- Walton, C.R.; Shorttle, O.; Jenner, F.E.; Williams, H.M.; Golden, J.; Morrison, S.M.; Downs, R.T.; Zerkle, A.; Hazen, R.M.; Pasek, M. Phosphorus mineral evolution and prebiotic chemistry: From minerals to microbes. Earth-Sci. Rev. 2021, 221, 103806. [Google Scholar] [CrossRef]
- Righter, K.; Pando, K.M.; Danielson, L.; Lee, C.-T. Partitioning of Mo, P and other siderophile elements (Cu, Ga, Sn, Ni, Co, Cr, Mn, V, and W) between metal and silicate melt as a function of temperature and silicate melt composition. Earth Planet Sc. Lett. 2010, 291, 1–9. [Google Scholar] [CrossRef]
- Righter, K.; Pando, K.; Humayun, M.; Waeselmann, N.; Yang, S.; Boujibar, A.; Danielson, L.R. Effect of silicon on activity coefficients of siderophile elements (Au, Pd, Pt, P, Ga, Cu, Zn, and Pb) in Liquid Fe: Roles of core formation, late sulfide matte, and late veneer in shaping terrestrial mantle geochemistry. Geochim. Cosmochim. Acta 2018, 232, 101–123. [Google Scholar] [CrossRef]
- Macia, E. The role of phosphorus in chemical evolution. Chem. Soc. Rev. 2005, 34, 691–701. [Google Scholar] [CrossRef]
- Adcock, C.T.; Hausrath, E.M.; Forster, P.M. Readily available phosphate from minerals in early aqueous environments on Mars. Nat. Geosci. 2013, 6, 824–827. [Google Scholar] [CrossRef]
- Rieder, R.; Economou, T.; Wanke, H.; Turkevich, A.; Crisp, J.; Bruckner, J.; Dreibus, G.; McSween, H.Y., Jr. The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: Preliminary results from the X-ray mode. Science 1997, 278, 1771–1774. [Google Scholar] [CrossRef]
- Adcock, C.T.; Tschauner, O.; Hausrath, E.M.; Udry, A.; Luo, S.N.; Cai, Y.; Ren, M.; Lanzirotti, A.; Newville, M.; Kunz, M.; et al. Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate. Nat. Commun. 2017, 8, 14667. [Google Scholar] [CrossRef]
- Jarosewich, E. Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics 1990, 25, 323–337. [Google Scholar] [CrossRef]
- Pasek, M.A.; Lauretta, D.S. Aqueous corrosion of phosphide minerals from iron meteorites: A highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 2005, 5, 515–535. [Google Scholar] [CrossRef]
- Bryant, D.E.; Kee, T.P. Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-phosphinic acid from the Nantan meteorite. Chem. Commun. 2006, 2006, 2344–2346. [Google Scholar] [CrossRef]
- Rivilla, V.M.; Drozdovskaya, M.N.; Altwegg, K.; Caselli, P.; Beltrán, M.T.; Fontani, F.; Van Der Tak, F.F.S.; Cesaroni, R.; Vasyunin, A.; Rubin, M.; et al. ALMA and ROSINA detection of phosphorus-bearing molecules: The interstellar thread between star-forming regions and comets. Mon. Not. R. Astron. Soc. 2020, 492, 1180–1198. [Google Scholar] [CrossRef]
- Gardner, E.; Lehto, H.J.; Lehto, K.; Fray, N.; Bardyn, A.; Lönnberg, T.; Merouane, S.; Isnard, R.; Cottin, H.; Hilchenbach, M.; et al. The detection of solid phosphorus and fluorine in the dust from the coma of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 2020, 499, 1870–1873. [Google Scholar] [CrossRef]
- Pasek, M.; Lauretta, D. Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth. Orig. Life Evol. B 2008, 38, 5–21. [Google Scholar] [CrossRef]
- Flynn, G.J.; Wirick, S.; Northrup, P. Phosphorus speciation in primitive interplanetary dust: Clues to grain formation in the solar protoplanetary disk. In Proceedings of the 82nd Annual Meeting of the Meteoritical Society, Sapporo, Japan, 7–12 July 2019. [Google Scholar]
- Douglas, K.M.; Blitz, M.A.; Mangan, T.P.; Plane, J.M.C. Experimental study of the removal of ground- and excited-state phosphorus atoms by atmospherically relevant species. J. Phys. Chem. A 2019, 123, 9469–9478. [Google Scholar] [CrossRef]
- Plane, J.M.C.; Feng, W.; Douglas, K.M. Phosphorus chemistry in the Earth’s upper atmosphere. J. Geophys. Res.-Space. 2021, 126, 1–13. [Google Scholar] [CrossRef]
- Carillo-Sanchez, J.D.; Bones, D.L.; Douglas, K.M.; Flynn, G.J.; Wirick, S.; Fegley, B., Jr.; Araki, T.; Kaulich, B.; Plane, J.M.C. Injection of meteoritic phosphorus into planetary atmospheres. Planet Space Sci. 2020, 187, 104926. [Google Scholar] [CrossRef]
- Hunter, R.H.; Taylor, L.A. Rust and schreibersite in Apollo 16 highland rocks: Manifestations of volatile-element mobility. In Proceedings of the Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 16–20 March 1981. [Google Scholar]
- Yakovlev, O.I.; Dikov, Y.P.; Gerasimov, M.V. Experimental data on the thermal reduction of phosphorus and iron and their significance for the interpretation of the impact reworking of lunar materials. Geochem. Int. 2006, 44, 847–854. [Google Scholar] [CrossRef]
- Pasek, M.A.; Gull, M.; Herschy, B. Phosphorylation on the early earth. Chem. Geol. 2017, 475, 149–170. [Google Scholar] [CrossRef]
- Mulkidjanian, A.Y.; Bychkov, A.Y.; Dibrova, D.V.; Galperin, M.Y.; Koonin, E.V. Origin of first cells at terrestrial anoxic geothermal fields. Proc. Natl. Acad. Sci. USA 2012, 109, E821–E830. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, B.; Muhling, J.R.; Suvorova, A.; Fischer, W.W. Apatite nanoparticles in 3.46–3.46 Ga iron formations: Evidence for phosphorus-rich hydrothermal plumes on early Earth. Geology 2021, 49, 647–651. [Google Scholar] [CrossRef]
- Britvin, S.N.; Murashko, M.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V. Earth’s phosphides in Levant and insights into the source of Archean prebiotic phosphorus. Sci. Rep. 2015, 5, 8355. [Google Scholar] [CrossRef]
- Essene, E.J.; Fisher, D.C. Lightning strike fusion: Extreme reduction and metal-silicate liquid immiscibility. Science 1986, 234, 189–193. [Google Scholar] [CrossRef]
- Pasek, M.A.; Block, K.; Pasek, V. Fulgurite morphology: A classification scheme and clues to formation. Contrib. Mineral. Petrol. 2012, 164, 477–492. [Google Scholar] [CrossRef]
- Pasek, M.A.; Block, K. Lightning-induced reduction of phosphorus oxidation state. Nat. Geosci. 2009, 2, 553–556. [Google Scholar] [CrossRef]
- Hess, B.L.; Piazolo, S.; Harvey, J. Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth. Nat. Commun. 2021, 12, 1535. [Google Scholar] [CrossRef]
- Toner, J.D.; Catling, D.C. A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc. Natl. Acad. Sci. USA 2020, 117, 883–888. [Google Scholar] [CrossRef]
- Ritson, D.J.; Mojzsis, S.J.; Sutherland, J.D. Supply of phosphate to early Earth by photogeochemistry after meteoritic weathering. Nat. Geosci. 2020, 13, 344–348. [Google Scholar] [CrossRef]
- Pasek, M.A.; Dworkin, J.P.; Lauretta, D.S. A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Acta 2007, 71, 1721–1736. [Google Scholar] [CrossRef]
- Greaves, J.S.; Richards, A.M.S.; Bains, W.; Rimmer, P.B.; Hoge, J. Phosphone gas in the cloud decks of Venus. Nat. Astron. 2021, 5, 655–664. [Google Scholar] [CrossRef]
- Omran, A.; Oze, C.; Jackson, B.; Mehta, C.; Barge, L.; Bada, J.; Pasek, M. Phosphine generation pathways on rocky planets. Astrobiology 2021, 21, 1264–1276. [Google Scholar] [CrossRef]
- Yamagata, Y.; Watanabe, H.; Saitoh, M.; Namba, T. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 1991, 352, 516–519. [Google Scholar] [CrossRef]
- Guelin, M.; Cernicharo, J. Organic molecules in interstellar space: Latest advances. Front. Astron. Space Sci. 2022, 9, 787567. [Google Scholar] [CrossRef]
- Henning, T.; Semenov, D. Chemistry in Protoplanetary Disks. Chem. Rev. 2013, 113, 9016–9042. [Google Scholar] [CrossRef]
- Walsh, C. Complex organic molecules in protoplanetary disks. Astron. Astrophys. 2014, 563, A33. [Google Scholar] [CrossRef]
- Martins, Z.; Chan, Q.H.S.; Bonal, L.; King, A.; Yabuta, H. Organic matter in the solar system—Implications for future on-site and sample return missions. Space Sci. Rev. 2020, 216, 54. [Google Scholar] [CrossRef]
- Chyba, C.; Sagan, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature 1992, 355, 125–132. [Google Scholar] [CrossRef]
- Chyba, C.F.; Thomas, P.J.; Brookshaw, L.; Sagan, C. Cometary delivery of organic molecules to the early Earth. Science 1990, 249, 366–373. [Google Scholar] [CrossRef]
- Brack, A. Life in the Solar System. Adv. Space Res. 1999, 24, 417–433. [Google Scholar] [CrossRef]
- Pierazzo, E.; Chyba, C.F. Amino acid survival in large cometary impacts. Meteorit. Planet. Sci. 1999, 34, 909–918. [Google Scholar] [CrossRef]
- Todd, Z.R.; Oberg, K.I. Cometary delivery of HCN to the early Earth. Astrobiology 2020, 20, 1109–1120. [Google Scholar] [CrossRef]
- Ferus, M.; Pietrucci, F.; Saitta, A.M.; Knizek, A.; Kubelik, P.; Ivanek, O.; Shestivska, V.; Civis, S. Formation of nucleobases in a Miller-Urey reducing atmosphere. Proc. Natl. Acad. Sci. USA 2017, 114, 4306–4311. [Google Scholar] [CrossRef]
- Miller, S. The prebiotic synthesis of organic compounds on the early Earth. In Organic Geochemistry; Engel, M.H., Mack, S.A., Eds.; Springer: Boston, MA, USA, 1993; Volume 11, pp. 625–637. [Google Scholar]
- Tian, F.; Kasting, J.F.; Zahnle, K. Revisiting HCN formation in Earth’s early atmosphere. Earth Planet Sc. Lett. 2011, 308, 417–423. [Google Scholar] [CrossRef]
- Mukhin, L.M. Volcanic processes and synthesis of simple organic compounds on primitive Earth. Orig. Life Evol. B 1976, 7, 355–368. [Google Scholar] [CrossRef]
- Kolesnikov, M.P.; Egorov, A. Metalloporphyrins and molecular complexes of amino acids with porphyrins in juvenile volcanic ash. Orig. Life 1979, 9, 267–277. [Google Scholar] [CrossRef]
- Liggins, P.; Jordan, S.; Rimmer, P.B.; Shorttle, O. Growth and evolution of secondary volcanic atmospheres: I. Identifying the geological character of hot rocky planets. J. Geophys. Res.-Planet 2022, 127, e2021JE007123. [Google Scholar] [CrossRef]
- Holm, N.G.; Oze, C.; Mousis, O.; Waite, J.H.; Guilbert-Lepoutre, A. Serpentinization and the formation of H2 and CH4 on celestial bodies (Planets, Moons, Comets). Astrobiology 2015, 15, 587–600. [Google Scholar] [CrossRef]
- Nooner, D.W.; Gibert, J.M.; Gelp, E.; Oro, J. Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore, and iron-nickel alloy. Geochim. Cosmochim. Acta 1976, 40, 915–924. [Google Scholar] [CrossRef]
- Sleep, N.H.; Meibom, A.; Fridriksson, T.; Coleman, R.G.; Bird, D.K. H2-rich fluids from serpentinization: Geochemical and biotic implications. Proc. Natl. Acad. Sci. USA 2004, 101, 12818–12823. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.P.; Cleaves, H.J.; Dworkin, J.P.; Glavin, D.P.; Lazcano, A.; Bada, J.L. The Miller Volcanic Spark Discharge Experiment. Science 2008, 322, 404. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.J.; Surman, A.J.; McIver, J.; Colon-Santos, S.M.; Gromski, P.S.; Buchwald, S.; Suarez Marina, I.; Cronin, L. Miller-Urey Spark-Discharge experiments in the deuterium world. Angew. Chem. 2017, 56, 8079–8082. [Google Scholar] [CrossRef]
- Bada, J.L. New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem. Soc. Rev. 2013, 42, 2186–2196. [Google Scholar] [CrossRef]
Sources | Nitrogen | Phosphorus | Sulfur |
---|---|---|---|
Exogenous | |||
Interstellar/Circumstellar | ✓ | ✓ | ✓ |
Solar System (planets, comets, meteorites, etc.) | ✓ | ✓ | ✓ |
Endogenous | |||
Volcanism | ✓ | ✓ | ✓ |
Hydrothermal | ✓ | ✓ | ✓ |
Lightning | ✓ | ✓ | |
Impact Production | ✓ | ✓ | |
Photochemistry | ✓ | ✓ | |
Cosmic Rays | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todd, Z.R. Sources of Nitrogen-, Sulfur-, and Phosphorus-Containing Feedstocks for Prebiotic Chemistry in the Planetary Environment. Life 2022, 12, 1268. https://doi.org/10.3390/life12081268
Todd ZR. Sources of Nitrogen-, Sulfur-, and Phosphorus-Containing Feedstocks for Prebiotic Chemistry in the Planetary Environment. Life. 2022; 12(8):1268. https://doi.org/10.3390/life12081268
Chicago/Turabian StyleTodd, Zoe R. 2022. "Sources of Nitrogen-, Sulfur-, and Phosphorus-Containing Feedstocks for Prebiotic Chemistry in the Planetary Environment" Life 12, no. 8: 1268. https://doi.org/10.3390/life12081268
APA StyleTodd, Z. R. (2022). Sources of Nitrogen-, Sulfur-, and Phosphorus-Containing Feedstocks for Prebiotic Chemistry in the Planetary Environment. Life, 12(8), 1268. https://doi.org/10.3390/life12081268