Multiple Facets of Nitrogen: From Atmospheric Gas to Indispensable Agricultural Input
Abstract
:1. Introduction
2. Basic Properties of Nitrogen and N-Containing Compounds
3. Historical Use of Nitrogen and N-Rich Fertilizers in Agriculture
4. Essentiality of Nitrogen, Sources, and Availability
5. Nitrogen-Based Fertilizers
6. Multiple Roles of Nitrogen and N-Containing Compounds
6.1. Nitrogen Is a Major Constituent of Living Organisms
6.2. Nitrogen Is a Key Element in Plant Physiology and Biology
6.3. Nitrogen Is Required for Hormonal-Mediated Signaling in Plants
6.4. Genes Involved in the Regulation of Nitrogen Uptake, Transport, and Assimilation in Plants
7. Multiple-Nutrient Deficiency and Toxicity
8. Tracking Nitrogen Uptake and Assimilation in Plants
9. Paradigm Shift to a Sustainable Agricultural Production System
10. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mellor, J.W. Agricultural Development and Economic Transformation: Promoting Growth with Poverty Reduction; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Johnston, B.F.; Mellor, J.W. The role of agriculture in economic development. Am. Econ. Rev. 1961, 51, 566–593. [Google Scholar]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A.J.A.i.E.B. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Lawlor, D.W.; Lemaire, G.; Gastal, F. Nitrogen, plant growth and crop yield. In Plant Nitrogen; Springer: Berlin/Heidelberg, Germany, 2001; pp. 343–367. [Google Scholar]
- Lebrun, M.; Nandillon, R.; Miard, F.; Bourgerie, S.; Morabito, D. Biochar assisted phytoremediation for metal (loid) contaminated soils. In Assisted Phytoremediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 101–130. [Google Scholar] [CrossRef]
- Cicerone, R.J.; Oremland, R.S. Biogeochemical aspects of atmospheric methane. Glob. Biogeochem. Cycles 1988, 2, 299–327. [Google Scholar] [CrossRef]
- Crutzen, P.J. Methane’s sinks and sources. Nature 1991, 350, 380–381. [Google Scholar] [CrossRef]
- Reay, D. Greenhouse Gas Sinks; CABI: Wallingford, UK, 2007. [Google Scholar]
- Weeks, M.E. Daniel rutherford and the discovery of nitrogen. J. Chem. Educ. 1934, 11, 101. [Google Scholar] [CrossRef]
- Clark, J.J. The Haber Process for the Manufacture of Ammonia. 2017. Available online: https://www.chemguide.co.uk (accessed on 10 July 2022).
- Wang, Y.; Yu, Y.; Jia, R.; Zhang, C.; Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Nat. Sci. Rev. 2019, 6, 730–738. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Who Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization, Regional Office for Europe: Geneva, Switzerland, 2010. [Google Scholar]
- Timilsina, A.; Zhang, C.; Pandey, B.; Bizimana, F.; Dong, W.; Hu, C. Potential pathway of nitrous oxide formation in plants. Front. Plant Sci. 2020, 11, 1177. [Google Scholar] [CrossRef]
- Davidson, E.A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2009, 2, 659–662. [Google Scholar] [CrossRef]
- Syakila, A.; Kroeze, C. The global nitrous oxide budget revisited. Greenh. Gas Meas. Manag. 2011, 1, 17–26. [Google Scholar] [CrossRef]
- Corpas, F.J.; Barroso, J.B. Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytol. 2013, 199, 633–635. [Google Scholar] [CrossRef]
- Oz, M.T.; Eyidogan, F.; Yucel, M.; Öktem, H.A. Functional role of nitric oxide under abiotic stress conditions. In Nitric Oxide Action in Abiotic Stress Responses in Plants; Springer: Basel, Switzerland, 2015; pp. 21–41. [Google Scholar] [CrossRef]
- Purugganan, M.D. Evolutionary insights into the nature of plant domestication. Curr. Biol. 2019, 29, R705–R714. [Google Scholar] [CrossRef] [PubMed]
- Sang, T.; Ge, S. Genetics and phylogenetics of rice domestication. Curr. Opin. Genet. Dev. 2007, 17, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Heslop-Harrison, J.S.; Schwarzacher, T. Domestication, genomics and the future for banana. Ann. Bot. 2007, 100, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Schaal, B. Plants and people: Our shared history and future. New Phytol. 2019, 1, 14–19. [Google Scholar] [CrossRef]
- Larson, G.; Piperno, D.R.; Allaby, R.G.; Purugganan, M.D.; Andersson, L.; Arroyo-Kalin, M.; Barton, L.; Vigueira, C.C.; Denham, T.; Dobney, K. Current perspectives and the future of domestication studies. Proc. Nat. Acad. Sci. USA 2014, 111, 6139–6146. [Google Scholar] [CrossRef]
- Zeder, M.A.; Bradley, D.G.; Smith, B.D.; Emshwiller, E. Documenting Domestication: New Genetic and Archaeological Paradigms; University of California Press: Berkeley, CA, USA, 2006. [Google Scholar]
- Zohary, D.; Hopf, M.; Weiss, E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin; Oxford University Press: London, UK, 2012. [Google Scholar]
- Hancock, J.F. Plant Evolution and the Origin of Crop Species; CABI: Wallingford, UK, 2012. [Google Scholar]
- Stetter, M.G.; Gates, D.J.; Mei, W.; Ross-Ibarra, J. How to make a domesticate. Curr. Biol. 2017, 27, R896–R900. [Google Scholar] [CrossRef]
- Doebley, J.; Stec, A.; Wendel, J.; Edwards, M. Genetic and morphological analysis of a maize-teosinte F2 population: Implications for the origin of maize. Proc. Nat. Acad. Sci. USA 1990, 87, 9888–9892. [Google Scholar] [CrossRef]
- Harlan, J.R.; Zohary, D. Distribution of wild wheats and barley: The present distribution of wild forms may provide clues to the regions of early cereal domestication. Science 1966, 153, 1074–1080. [Google Scholar] [CrossRef]
- Baker, H.G. Plants and Civilization; Macmillan International Higher Education: London, UK, 1970. [Google Scholar]
- Zohary, M. Flora Palaestina: Platanaceae to Umbelliferae, 2nd ed.; Israel Academy of Sciences and Humanities: Jerusalem, Israel, 1972. [Google Scholar]
- Langer, R.H.M.; Langer, R.; Hill, G. Agricultural Plants; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Martin, G.B.; Adams, M.W. Landraces of Phaseolus vulgaris (fabaceae) in northern malawi. I. Regional variation. Econ. Bot. 1987, 41, 190–203. [Google Scholar] [CrossRef]
- Pennazio, S. Mineral nutrition of plants: A short history of plant physiology. Biol. Forum/Riv. Biol. 2005, 98, 215–236. [Google Scholar]
- Garcia-Oliveira, A.L.; Chander, S.; Ortiz, R.; Menkir, A.; Gedil, M. Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. Front. Plant Sci. 2018, 9, 937. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Hossain, K.L. Effects of urea-n fertilizer dosage supplemented with ipil-ipil tree litter on yield of rice and insect prevalence. J. For. Res. 2006, 17, 335–338. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Yeoh, Y.K.; Kasinadhuni, N.R.P.; Lonhienne, T.G.; Robinson, N.; Hugenholtz, P.; Ragan, M.A.; Schmidt, S. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci. Rep. 2015, 5, 8678. [Google Scholar] [CrossRef] [PubMed]
- Sari, Y.; Alkaff, M. Classification of rice leaf using fuzzy logic and hue saturation value (hsv) to determine fertilizer dosage. In Proceedings of the 2020 Fifth International Conference on Informatics and Computing (ICIC), Gorontalo, Indonesia, 3–4 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Rasaq, S.; Shittu, T.; Fadimu, G.; Abass, A.; Omoniyi, O. Effect of cassava variety, fertilizer type and dosage on the physicochemical, functional and pasting properties of high quality cassava flour (hqcf). Qual. Assur. Saf. Crop. Food. 2020, 12, 18–27. [Google Scholar] [CrossRef]
- Ayoub, A.T. Fertilizers and the environment. Nutr. Cycl. Agroecosyst. 1999, 55, 117–121. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production. Environ. Sci. Technol. 2008, 42, 6028–6033. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, Y.; Liu, G.; Liu, Q.; Zhu, J.; Tu, C.; Amonette, J.E.; Cadisch, G.; Yong, J.W.; Hu, S.; et al. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of china. Plant Soil 2013, 370, 527–540. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, X.; Yang, J.; Zhao, X.; Ye, X. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields. Sci. Total Environ. 2016, 565, 420–426. [Google Scholar] [CrossRef]
- Paterson, A.H. What has QTL mapping taught us about plant domestication? New Phytol. 2002, 154, 591–608. [Google Scholar] [CrossRef]
- Purugganan, M.D.; Fuller, D.Q.J.N. The nature of selection during plant domestication. Nature 2009, 457, 843–848. [Google Scholar] [CrossRef]
- Chaudhary, B. Plant domestication and resistance to herbivory. Int. J. Plant Genom. 2013, 2013, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, D.A.; Lu, B.-R.; Tomooka, N. The evolving story of rice evolution. Plant Sci. 2008, 174, 394–408. [Google Scholar] [CrossRef]
- Tan, L.; Li, X.; Liu, F.; Sun, X.; Li, C.; Zhu, Z.; Fu, Y.; Cai, H.; Wang, X.; Xie, D. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 2008, 40, 1360–1364. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Sadik, N. Population growth and the food crisis. Food Nutr. Agric. 1991, 1, 3–6. [Google Scholar]
- Six, J. Plant nutrition for sustainable development and global health. Plant Soil 2011, 339, 1–2. [Google Scholar] [CrossRef]
- White, P.J.; Brown, P. Plant nutrition for sustainable development and global health. Ann. Biol. 2010, 105, 1073–1080. [Google Scholar] [CrossRef]
- Arnon, D.I.; Stout, P. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 1939, 14, 371. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E. Principles of Plant Nutrition; International Potash Institute: Worblaufen-Bern, Switzerland, 1987; pp. 687–695. [Google Scholar]
- Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers; Collier Macmillan Publishers: Springfield, OH, USA, 1985. [Google Scholar]
- Nicholas, D. Minor mineral nutrients. Ann. Rev. 1961, 12, 63–90. [Google Scholar] [CrossRef]
- Epstein, E. Mineral Nutrition of Plants: Principles and Perspectives; John Wiley Sons, Inc.: New York, NY, USA, 1972. [Google Scholar] [CrossRef]
- Grundon, N.J.; Edwards, D.; Takkar, P.; Asher, C.J.; Clark, R. Nutritional Disorders of Grain Sorghum; Australian Center for International Agricultural Research (ACIAR): Canberra, Australia, 1987. [Google Scholar]
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef]
- Verma, S.; Nizam, S.; Verma, P.K. Biotic and abiotic stress signaling in plants. In Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 1; Springer: New York, NY, USA, 2013; pp. 25–49. [Google Scholar] [CrossRef]
- Fageria, N.; Filho, M.B.; Moreira, A.; Guimarães, C.J. Foliar fertilization of crop plants. J. Plant Nutr. 2009, 32, 1044–1064. [Google Scholar] [CrossRef]
- Lambers, H.; Raven, J.A.; Shaver, G.R.; Smith, S.E. Plant nutrient-acquisition strategies change with soil age. Trend. Ecol. Evol. 2008, 23, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Miransari, M. Soil microbes and the availability of soil nutrients. Acta Physiol. Plant. 2013, 35, 3075–3084. [Google Scholar] [CrossRef]
- Binkley, D.; Vitousek, P. Soil nutrient availability. In Plant Physiological Ecology; Springer: Dordrecht, The Netherlands, 1989; pp. 75–96. [Google Scholar] [CrossRef]
- Nemeth, K. The availability of nutrients in the soil as determined by electro-ultrafiltration (EUF). Adv. Agron. 1980, 31, 155–188. [Google Scholar] [CrossRef]
- Nair, K.P. The buffering power of plant nutrients and effects on availability. Adv. Agron. 1996, 57, 237–287. [Google Scholar] [CrossRef]
- Greger, M.; Landberg, T.; Vaculík, M. Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants 2018, 7, 41. [Google Scholar] [CrossRef]
- López-Arredondo, D.L.; Sánchez-Calderón, L.; Yong-Villalobos, L. Molecular and genetic basis of plant macronutrient use efficiency: Concepts, opportunities, and challenges. In Plant Macronutrient Use Efficiency; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–29. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Ann. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef]
- Krapp, A. Plant nitrogen assimilation and its regulation: A complex puzzle with missing pieces. Curr. Opin. Plant Biol. 2015, 25, 115–122. [Google Scholar] [CrossRef]
- Maier, R.J. Nitrogen fixation and respiration: Two processes linked by the energetic demands of nitrogenase. In Respiration in Archaea and Bacteria; Springer: Dordrecht, The Netherlands, 2004; pp. 101–120. [Google Scholar] [CrossRef]
- Ellis, B.; Foth, H. Soil Fertility; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Burns, R.C.; Hardy, R.W. Nitrogen Fixation in Bacteria and Higher Plants; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Postgate, J. Nitrogen Fixation; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Boddey, R.; Urquiaga, S.; Reis, V.; Döbereiner, J. Biological nitrogen fixation associated with sugar cane. In Nitrogen Fixation; Springer: Dordrecht, The Netherlands, 1991; pp. 105–111. [Google Scholar] [CrossRef]
- Schubert, K.R. Products of biological nitrogen fixation in higher plants: Synthesis, transport, and metabolism. Ann. Rev. Plant Physiol. 1986, 37, 539–574. [Google Scholar] [CrossRef]
- Bothe, H.; Ferguson, S.; Newton, W.E. Biology of the Nitrogen Cycle; Elsevier: London, UK, 2006. [Google Scholar]
- Mustapha, S.; Voncir, N.; Umar, S. Content and distribution of nitrogen forms in some black cotton soils in akko lga, gombe state, nigeria. Int. J. Soil Sci. 2011, 6, 275. [Google Scholar] [CrossRef]
- Harmsen, G.; Van Schreven, D. Mineralization of organic nitrogen in soil. Adv. Agron. 1955, 7, 299–398. [Google Scholar] [CrossRef]
- Lewu, F.; Volova, T.; Thomas, S.; Rakhimol, K. Controlled Release Fertilizers for Sustainable Agriculture; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Hossain, M.A.; Kamiya, T.; Burritt, D.J.; Tran, L.-S.P.; Fujiwara, T. Plant Macronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- López-Arredondo, D.L.; Leyva-González, M.A.; Alatorre-Cobos, F.; Herrera-Estrella, L. Biotechnology of nutrient uptake and assimilation in plants. Int. J. Dev. Biol. 2013, 57, 595–610. [Google Scholar] [CrossRef] [PubMed]
- FAO. Fertilizer and Plant Nutrition Guide; Food and Agriculture Organization: Rome, Italy, 1984. [Google Scholar]
- Roberts, K.; Alberts, B.; Johnson, A.; Walter, P.; Hunt, T. Molecular Biology of the Cell; Garland Science: New York, NY, USA, 2002; Volume 32. [Google Scholar]
- Stasolla, C.; Katahira, R.; Thorpe, T.A.; Ashihara, H. Purine and pyrimidine nucleotide metabolism in higher plants. J. Plant Physiol. 2003, 160, 1271–1295. [Google Scholar] [CrossRef]
- Wasternack, C. Metabolism of pyrimidines and purines. In Nucleic Acids and Proteins in Plants II; Springer: Berlin/Heidelberg, Germany, 1982; pp. 263–301. [Google Scholar] [CrossRef]
- Witte, C.-P.; Herde, M. Nucleotide metabolism in plants. Plant Physiol. 2020, 182, 63–78. [Google Scholar] [CrossRef]
- Rolly, N.K.; Lee, S.-U.; Imran, Q.M.; Hussain, A.; Mun, B.-G.; Kim, K.-M.; Yun, B.-W. Nitrosative stress-mediated inhibition of OsDHODH1 gene expression suggests roots growth reduction in rice (Oryza sativa L.). 3 Biotech 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Dong, Q.; Zhang, Y.-X.; Zhou, Q.; Liu, Q.-E.; Chen, D.-B.; Wang, H.; Cheng, S.-H.; Cao, L.-Y.; Shen, X.-H. Ump kinase regulates chloroplast development and cold response in rice. Int. J. Mol. Sci. 2019, 20, 2107. [Google Scholar] [CrossRef]
- Pedroza-García, J.A.; Nájera-Martínez, M.; Mazubert, C.; Aguilera-Alvarado, P.; Drouin-Wahbi, J.; Sánchez-Nieto, S.; Gualberto, J.M.; Raynaud, C.; Plasencia, J. Role of pyrimidine salvage pathway in the maintenance of organellar and nuclear genome integrity. Plant J. 2019, 97, 430–446. [Google Scholar] [CrossRef]
- Rolly, N.K.; Yun, B.-W. Regulation of nitrate (NO3) transporters and glutamate synthase-encoding genes under drought stress in arabidopsis: The regulatory role of AtbZIP62 transcription factor. Plants 2021, 10, 2149. [Google Scholar] [CrossRef]
- Zheng, Z.-L. Carbon and nitrogen nutrient balance signaling in plants. Plant Sign. Behav. 2009, 4, 584–591. [Google Scholar] [CrossRef]
- Nunes-Nesi, A.; Fernie, A.R.; Stitt, M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol. Plant 2010, 3, 973–996. [Google Scholar] [CrossRef] [PubMed]
- Coruzzi, G.M.; Zhou, L. Carbon and nitrogen sensing and signaling in plants: Emerging ‘matrix effects’. Curr. Opin. Plant Biol. 2001, 4, 247–253. [Google Scholar] [CrossRef]
- Tsay, Y.-F.; Ho, C.-H.; Chen, H.-Y.; Lin, S.-H. Integration of nitrogen and potassium signaling. Ann. Rev. Plant Biol. 2011, 62, 207–226. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhang, Y.; Xu, G. How does nitrogen shape plant architecture? J. Exp. Bot. 2020, 71, 4415–4427. [Google Scholar] [CrossRef] [PubMed]
- Stein, L.Y.; Klotz, M.G. The nitrogen cycle. Curr. Biol. 2016, 26, R94–R98. [Google Scholar] [CrossRef] [PubMed]
- Bassi, D.; Menossi, M.; Mattiello, L. Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Y. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 2021, 158, 76–82. [Google Scholar] [CrossRef]
- Dejun, L.; Jiangming, M.; Yunting, F.; Shaolin, P.; Gundersen, P. Impact of nitrogen deposition on forest plants. Acta Ecol. Sin. 2003, 23, 1891–1900. [Google Scholar]
- Gao, J.; Wang, F.; Hu, H.; Jiang, S.; Muhammad, A.; Shao, Y.; Sun, C.; Tian, Z.; Jiang, D.; Dai, T. Improved leaf nitrogen reutilisation and rubisco activation under short-term nitrogen-deficient conditions promotes photosynthesis in winter wheat (Triticum aestivum L.) at the seedling stage. Funct. Plant Biol. 2018, 45, 840–853. [Google Scholar] [CrossRef]
- Qu, F.; Peng, T.; Jia, Y.; Yang, M.; Meng, X.; Mao, S.; Zhou, D.; Hu, X.J.E.; Botany, E. Adjusting leaf nitrogen allocation could promote photosynthetic capacity, and nitrogen accumulation in Cucumis sativus L. Environ. Exp. Bot. 2022, 198, 104855. [Google Scholar] [CrossRef]
- Nazar, R.; Iqbal, N.; Syeed, S.; Khan, N.A. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J. Plant Physiol. 2011, 168, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Zhang, F. Cell cycle regulation in the plant response to stress. Front. Plant Sci. 2020, 10, 1765. [Google Scholar] [CrossRef] [PubMed]
- MacAdam, J.W.; Volenec, J.J.; Nelson, C.J. Effects of nitrogen on mesophyll cell division and epidermal cell elongation in tall fescue leaf blades. Plant Physiol. 1989, 89, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Pan, S.; Liu, X.; Wang, H.; Xu, G. Nitrogen deficiency inhibits cell division-determined elongation, but not initiation, of rice tiller buds. Isr. J. Plant Sci. 2017, 64, 32–40. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Tsay, Y.-F. Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. J. Exp. Bot. 2017, 68, 2603–2609. [Google Scholar] [CrossRef]
- Moreno, S.; Canales, J.; Hong, L.; Robinson, D.; Roeder, A.H.; Gutiérrez, R.A. Nitrate defines shoot size through compensatory roles for endoreplication and cell division in arabidopsis thaliana. Curr. Biol. 2020, 30, 1988–2000.e3. [Google Scholar] [CrossRef]
- Palenchar, P.M.; Kouranov, A.; Lejay, L.V.; Coruzzi, G.M. Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants. Genome Biol. 2004, 5, 1–15. [Google Scholar] [CrossRef]
- Osanai, T.; Imamura, S.; Asayama, M.; Shirai, M.; Suzuki, I.; Murata, N.; Tanaka, K. Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803. DNA Res. 2006, 13, 185–195. [Google Scholar] [CrossRef]
- Snoeijers, S.S.; Pérez-García, A.; Joosten, M.H.; De Wit, P. The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. Eur. J. Plant Pathol. 2000, 106, 493–506. [Google Scholar] [CrossRef]
- Bolton, M.D.; Thomma, B.P.J.P.; Pathology, M.P. The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi. Physiol. Mol. Plant Pathol. 2008, 72, 104–110. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, K.; Jha, A.K.; Yadava, P.; Pal, M.; Rakshit, S.; Singh, I. Global gene expression profiling under nitrogen stress identifies key genes involved in nitrogen stress adaptation in maize (Zea mays L.). Sci. Rep. 2022, 12, 4211. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Taware, R.; Gaur, V.S.; Guru, S.; Kumar, A. Influence of nitrogen on the expression of tadof1 transcription factor in wheat and its relationship with photo synthetic and ammonium assimilating efficiency. Mol. Biol. Rep. 2009, 36, 2209–2220. [Google Scholar] [CrossRef]
- Fritz, C.; Palacios-Rojas, N.; Feil, R.; Stitt, M. Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: Nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J. 2006, 46, 533–548. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.H.; Jaafar, H.Z.; Rahmat, A.; Rahman, Z.A. Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of kacip fatimah (labisia pumila blume). Int. J. Mol. Sci. 2011, 12, 5238–5254. [Google Scholar] [CrossRef]
- Oksman-Caldentey, K.-M.; Sevón, N.; Vanhala, L.; Hiltunen, R. Effect of nitrogen and sucrose on the primary and secondary metabolism of transformed root cultures of hyoscyamus muticus. Plant Cell Tiss. Org. Cult. 1994, 38, 263–272. [Google Scholar] [CrossRef]
- Zha, M.; Zhao, Y.; Wang, Y.; Chen, B.; Tan, Z. Strigolactones and cytokinin interaction in buds in the control of rice tillering. Front. Plant Sci. 2022, 13, 837136. [Google Scholar] [CrossRef]
- Khuvung, K.; Silva Gutierrez, F.A.; Reinhardt, D. How strigolactone shapes shoot architecture. Front. Plant Sci. 2022, 13, 2275. [Google Scholar] [CrossRef]
- Wu, F.; Gao, Y.; Yang, W.; Sui, N.; Zhu, J. Biological functions of strigolactones and their crosstalk with other phytohormones. Front. Plant Sci. 2022, 13, 821563. [Google Scholar] [CrossRef]
- Confraria, A.; Muñoz-Gasca, A.; Ferreira, L.; Baena-González, E.; Cubas, P. Shoot branching phenotyping in Arabidopsis and tomato. In Environmental Responses in Plants; Humana: Uniondale, NY, USA, 2022; pp. 47–59. [Google Scholar] [CrossRef]
- Ryu, H.; Cho, H.; Choi, D.; Hwang, I. Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol. Cell. 2012, 34, 117–126. [Google Scholar] [CrossRef]
- Chen, G.; Liang, B.; Bawa, G.; Chen, H.; Shi, K.; Hu, Y.; Chen, P.; Fan, Y.; Pu, T.; Sun, X. Gravity reduced nitrogen uptake via the regulation of brace unilateral root growth in maize intercropping. Front. Plant Sci. 2021, 12, 724909. [Google Scholar] [CrossRef] [PubMed]
- Kiba, T.; Kudo, T.; Kojima, M.; Sakakibara, H. Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin. J. Exp. Bot. 2011, 62, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zha, M.; Li, Y.; Ding, Y.; Chen, L.; Ding, C.; Wang, S. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep. 2015, 34, 1647–1662. [Google Scholar] [CrossRef]
- Vega, A.; O’Brien, J.A.; Gutiérrez, R.A. Nitrate and hormonal signaling crosstalk for plant growth and development. Curr. Opin. Plant Biol. 2019, 52, 155–163. [Google Scholar] [CrossRef]
- Wen, B.; Xiao, W.; Mu, Q.; Li, D.; Chen, X.; Wu, H.; Li, L.; Peng, F. How does nitrate regulate plant senescence? Plant Physiol. Biochem. 2020, 157, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yao, Q.; Zhang, Y.; Zhang, Y.; Xing, J.; Yang, B.; Mi, G.; Li, Z.; Zhang, M. The role of gibberellins in regulation of nitrogen uptake and physiological traits in maize responding to nitrogen availability. Int. J. Mol. Sci. 2020, 21, 1824. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Wang, Y.; Yao, Q.; Zhang, Y.; Zhang, M.; Li, Z. Brassinosteroids modulate nitrogen physiological response and promote nitrogen uptake in maize (Zea mays L.). Crop J. 2022, 10, 166–176. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Cheng, Y.-H.; Chen, K.-E.; Tsay, Y.-F. Nitrate transport, signaling, and use efficiency. Ann. Rev. Plant Biol. 2018, 69, 85–122. [Google Scholar] [CrossRef]
- Lea, P.; Azevedo, R. Nitrogen use efficiency. 2. Amino acid metabolism. Ann. Appl. Biol. 2007, 151, 269–275. [Google Scholar] [CrossRef]
- Fan, X.; Jia, L.; Li, Y.; Smith, S.J.; Miller, A.J.; Shen, Q. Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J. Exp. Bot. 2007, 58, 1729–1740. [Google Scholar] [CrossRef]
- Lea, P. Primary nitrogen metabolism. Plant Biochem. 1997, 273, 313. [Google Scholar]
- Forde, B.G. Nitrate transporters in plants: Structure, function and regulation. Biochim. Biophys. Acta Biomembr. 2000, 1465, 219–235. [Google Scholar] [CrossRef]
- Fan, X.; Naz, M.; Fan, X.; Xuan, W.; Miller, A.J.; Xu, G. Plant nitrate transporters: From gene function to application. J. Exp. Bot. 2017, 68, 2463–2475. [Google Scholar] [CrossRef] [PubMed]
- Krapp, A.; David, L.C.; Chardin, C.; Girin, T.; Marmagne, A.; Leprince, A.-S.; Chaillou, S.; Ferrario-Méry, S.; Meyer, C.; Daniel-Vedele, F. Nitrate transport and signalling in arabidopsis. J. Exp. Bot. 2014, 65, 789–798. [Google Scholar] [CrossRef]
- Han, M.-L.; Lv, Q.-Y.; Zhang, J.; Wang, T.; Zhang, C.-X.; Tan, R.-J.; Wang, Y.-L.; Zhong, L.-Y.; Gao, Y.-Q.; Chao, Z.-F. Decreasing nitrogen assimilation under drought stress by suppressing dst-mediated activation of nitrate reductase 1.2 in rice. Mol. Plant 2022, 15, 167–178. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Y.; Chen, G.; Zhang, A.; Yang, S.; Shang, L.; Wang, D.; Ruan, B.; Liu, C.; Jiang, H. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat. Commun. 2019, 10, 5207. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Okamoto, M.; Crawford, N.M.; Siddiqi, M.Y.; Glass, A.D. Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol. 2007, 143, 425–433. [Google Scholar] [CrossRef]
- Sun, J.; Bankston, J.R.; Payandeh, J.; Hinds, T.R.; Zagotta, W.N.; Zheng, N. Crystal structure of the plant dual-affinity nitrate transporter NRT1. 1. Nature 2014, 507, 73–77. [Google Scholar] [CrossRef]
- Parker, J.L.; Newstead, S. Molecular basis of nitrate uptake by the plant nitrate transporter NRT1. 1. Nature 2014, 507, 68–72. [Google Scholar] [CrossRef]
- Crawford, N.M. Nitrate: Nutrient and signal for plant growth. Plant Cell 1995, 7, 859. [Google Scholar] [CrossRef]
- Zheng, H.; Wisedchaisri, G.; Gonen, T. Crystal structure of a nitrate/nitrite exchanger. Nature 2013, 497, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Ali, A. Nitrate assimilation pathway in higher plants: Critical role in nitrogen signalling and utilization. Plant Sci. Today 2020, 7, 182–192. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.; Azcón, R. Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agric. Ecosyst. Environ. 1996, 60, 175–181. [Google Scholar] [CrossRef]
- Ferrario-Méry, S.; Valadier, M.-H.; Foyer, C.H. Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA. Plant Physiol. 1998, 117, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhou, Y.; Zhang, F.; Guan, W.; Su, Y.; Yuan, X.; Xie, Y. Persulfidation of nitrate reductase 2 is involved in l-cysteine desulfhydrase-regulated rice drought tolerance. Int. J. Mol. Sci. 2021, 22, 12119. [Google Scholar] [CrossRef]
- Guo, F.-Q.; Young, J.; Crawford, N.M. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell 2003, 15, 107–117. [Google Scholar] [CrossRef]
- Kuromori, T.; Seo, M.; Shinozaki, K. ABA transport and plant water stress responses. Trend. Plant Sci. 2018, 23, 513–522. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Schwarz, D.; Franken, P.; Colla, G. Effects of drought on nutrient uptake and assimilation in vegetable crops. In Plant Responses to Drought Stress; Springer: Berlin/Heidelberg, Germany, 2012; pp. 171–195. [Google Scholar] [CrossRef]
- Sreenivasulu, N.; Harshavardhan, V.T.; Govind, G.; Seiler, C.; Kohli, A. Contrapuntal role of aba: Does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 2012, 506, 265–273. [Google Scholar] [CrossRef]
- Ding, L.; Lu, Z.; Gao, L.; Guo, S.; Shen, Q. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Front. Plant Sci. 2018, 9, 1143. [Google Scholar] [CrossRef]
- Filiz, E.; Akbudak, M.A. Ammonium transporter 1 (AMT1) gene family in tomato (Solanum lycopersicum L.): Bioinformatics, physiological and expression analyses under drought and salt stresses. Genomics 2020, 112, 3773–3782. [Google Scholar] [CrossRef]
- Popova, O.V.; Dietz, K.-J.; Golldack, D. Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. Plant Mol. Biol. 2003, 52, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Cui, B.; Lu, X.; Song, J. The positive effect of salinity on nitrate uptake in Suaeda salsa. Plant Physiol. Biochem. 2021, 166, 958–963. [Google Scholar] [CrossRef]
- Liu, R.; Jia, T.; Cui, B.; Song, J. The expression patterns and putative function of nitrate transporter 2.5 in plants. Plant Signal. Behav. 2020, 15, 1815980. [Google Scholar] [CrossRef] [PubMed]
- Akbudak, M.A.; Filiz, E.; Çetin, D. Genome-wide identification and characterization of high-affinity nitrate transporter 2 (NRT2) gene family in tomato (Solanum lycopersicum) and their transcriptional responses to drought and salinity stresses. J. Plant Physiol. 2022, 272, 153684. [Google Scholar] [CrossRef] [PubMed]
- Taochy, C.; Gaillard, I.; Ipotesi, E.; Oomen, R.; Leonhardt, N.; Zimmermann, S.; Peltier, J.B.; Szponarski, W.; Simonneau, T.; Sentenac, H. The arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress. Plant J. 2015, 83, 466–479. [Google Scholar] [CrossRef]
- Tiwari, M.; Kumar, R.; Min, D.; Jagadish, S.K. Genetic and molecular mechanisms underlying root architecture and function under heat stress—A hidden story. Plant Cell Environ. 2022, 45, 771–788. [Google Scholar] [CrossRef]
- Kanstrup, C.; Nour-Eldin, H.H. The emerging role of the nitrate and peptide transporter family: Npf in plant specialized metabolism. Curr. Opin. Plant 2022, 68, 102243. [Google Scholar] [CrossRef]
- Hussain, S.; Khaliq, A.; Noor, M.A.; Tanveer, M.; Hussain, H.A.; Hussain, S.; Shah, T.; Mehmood, T. Metal Toxicity and Nitrogen Metabolism in Plants: An Overview. In Carbon and Nitrogen Cycling in Soil; Springer: Berlin/Heidelberg, Germany, 2020; pp. 221–248. [Google Scholar] [CrossRef]
- Xiong, Z.T.; Zhao, F.; Li, M. Lead toxicity in Brassica pekinensis rupr.: Effect on nitrate assimilation and growth. Envri. Toxicol. Int. J. 2006, 21, 147–153. [Google Scholar] [CrossRef]
- Antonacci, S.; Maggiore, T.; Ferrante, A. Nitrate metabolism in plants under hypoxic and anoxic conditions. Plant Stress 2007, 1, 136–141. [Google Scholar]
- Gupta, K.J.; Mur, L.A.; Wany, A.; Kumari, A.; Fernie, A.R.; Ratcliffe, R.G. The role of nitrite and nitric oxide under low oxygen conditions in plants. New Phytol. 2020, 225, 1143–1151. [Google Scholar] [CrossRef]
- Da-Silva, C.J.; do Amarante, L. Nitric oxide signaling in plants during flooding stress. In Nitric Oxide in Plant Biology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 241–260. [Google Scholar]
- Nishida, H.; Suzaki, T. Nitrate-mediated control of root nodule symbiosis. Curr. Opin. Plant Biol. 2018, 44, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E.; Cole, J.A.; Benjamin, N. Nitrate, bacteria and human health. Nat. Rev. Microbiol. 2004, 2, 593–602. [Google Scholar] [CrossRef]
- Yu, C.; Chen, Y.; Cao, Y.; Chen, H.; Wang, J.; Bi, Y.-M.; Tian, F.; Yang, F.; Rothstein, S.J.; Zhou, X.; et al. Overexpression of mir169o, an overlapping microrna in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efficiency and susceptibility to bacterial blight in rice. Plant Cell Physiol. 2018, 59, 1234–1247. [Google Scholar] [CrossRef]
- Jian, W.; Zhang, D.-W.; Zhu, F.; Wang, S.-X.; Zhu, T.; Pu, X.-J.; Zheng, T.; Feng, H.; Lin, H.-H. Nitrate reductase-dependent nitric oxide production is required for regulation alternative oxidase pathway involved in the resistance to cucumber mosaic virus infection in Arabidopsis. Plant Growth Regul. 2015, 77, 99–107. [Google Scholar] [CrossRef]
- Oliveira, H.C.; Justino, G.C.; Sodek, L.; Salgado, I. Amino acid recovery does not prevent susceptibility to Pseudomonas syringae in nitrate reductase double-deficient arabidopsis thaliana plants. Plant Sci. 2009, 176, 105–111. [Google Scholar] [CrossRef]
- Sanchez, P.A. Soil fertility and hunger in Africa. Science 2002, 295, 2019–2020. [Google Scholar] [CrossRef]
- Kirkby, E.A.; Johnston, A.E. Soil and fertilizer phosphorus in relation to crop nutrition. In The Ecophysiology of Plant-Phosphorus Interactions; Springer: Berlin/Heidelberg, Germany, 2008; pp. 177–223. [Google Scholar] [CrossRef]
- Alam, S.M.; Naqvi, S.S.M.; Ansari, R. Impact of soil ph on nutrient uptake by crop plants. Handb. Plant Crop Stress 1999, 2, 51–60. [Google Scholar]
- Neina, D. The role of soil ph in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Rorison, I. The effects of soil acidity on nutrient availability and plant response. In Effects of Acid Precipitation on Terrestrial Ecosystems; Springer: Boston, MA, USA, 1980; pp. 283–304. [Google Scholar] [CrossRef]
- Vessey, J.K.; Henry, L.T.; Chaillou, S.; Raper, C.D., Jr. Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources. J. Plant Nutr. 1990, 13, 95–116. [Google Scholar] [CrossRef]
- Oshunsanya, S.O. Introductory chapter: Relevance of soil pH to agriculture. In Soil pH for Nutrient Availability and Crop Performance; IntechOpen: London, UK, 2018. [Google Scholar]
- Slattery, J.; Coventry, D.; Slattery, W. Rhizobial ecology as affected by the soil environment. Aust. J. Exp. Agric. 2001, 41, 289–298. [Google Scholar] [CrossRef]
- Brockwell, J.; Pilka, A.; Holliday, R.A. Soil ph is a major determinant of the numbers of naturally occurring rhizobium meliloti in non-cultivated soils in central new south wales. Aust. J. Exp. Agric. 1991, 31, 211–219. [Google Scholar] [CrossRef]
- Hinsinger, P. Bioavailability of soil inorganic p in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Osman, K.T. Saline and sodic soils. In Management of Soil Problems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 255–298. [Google Scholar]
- Kumar, A.; Schreiter, I.; Wefer-Roehl, A.; Tsechansky, L.; Schüth, C.; Graber, E. Production and utilization of biochar from organic wastes for pollutant control on contaminated sites. In Environmental Materials and Waste; Elsevier: Amsterdam, The Netherlands, 2016; pp. 91–116. [Google Scholar] [CrossRef]
- Osman, K.T. Sandy soils. In Management of Soil Problems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 37–65. [Google Scholar]
- Xiong, Q.; Tang, G.; Zhong, L.; He, H.; Chen, X. Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice. Front. Plant Sci. 2018, 9, 1075. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, F.; Yuan, L.; Mi, G. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta 2020, 251, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cartelat, A.; Cerovic, Z.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.-L.; Barbottin, A.; Jeuffroy, M.-H.; Gate, P.; Agati, G. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crop. Res. 2005, 91, 35–49. [Google Scholar] [CrossRef]
- Uhart, S.A.; Andrade, F.H. Nitrogen deficiency in maize: Ii. Carbon-nitrogen interaction effects on kernel number and grain yield. Crop Sci. 1995, 35, 1384–1389. [Google Scholar] [CrossRef]
- Rodriguez, D.; Fitzgerald, G.; Belford, R.; Christensen, L. Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. Austrlian J. Agric. Res. 2006, 57, 781–789. [Google Scholar] [CrossRef]
- Tucker, T. Diagnosis of nitrogen deficiency in plants. Nitrogen Crop Prod. 1984, 247–262. [Google Scholar] [CrossRef]
- Qin, L.; Walk, T.C.; Han, P.; Chen, L.; Zhang, S.; Li, Y.; Hu, X.; Xie, L.; Yang, Y.; Liu, J. Adaption of roots to nitrogen deficiency revealed by 3d quantification and proteomic analysis. Plant Physiol. 2019, 179, 329–347. [Google Scholar] [CrossRef]
- Goyal, S.S.; Huffaker, R.C. Nitrogen Toxicity in Plants. In Nitrogen in Crop Production; American Society of Agronomy: Madison, WI, USA, 1984; pp. 97–118. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.; Kaur, A. Applications of radioisotopes in agriculture. Int. J. Biotchnol. Bioeng. 2013, 4, 167–174. [Google Scholar]
- Gaspar, M. Stable nitrogen isotope helps scientists optimize water, fertilizer use. IAEA Bull. 2017, 58, 18–19. [Google Scholar]
- Liu, R.; Hu, H.; Suter, H.; Hayden, H.L.; He, J.; Mele, P.; Chen, D. Nitrification is a primary driver of nitrous oxide production in laboratory microcosms from different land-use soils. Front. Microbiol. 2016, 7, 1373. [Google Scholar] [CrossRef] [PubMed]
- Baggs, E. A review of stable isotope techniques for N2O source partitioning in soils: Recent progress, remaining challenges and future considerations. Rap. Comm. Mass Spectrom. 2008, 22, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cai, Z.; Cheng, Y.; Zhu, T. Denitrification and total nitrogen gas production from forest soils of eastern China. Soil Biol. Biochem. 2009, 41, 2551–2557. [Google Scholar] [CrossRef]
- Stevens, R.; Laughlin, R. Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutr. Cycl. Agroecosyst. 1998, 52, 131–139. [Google Scholar] [CrossRef]
- Baggs, E.; Blum, H. CH4 oxidation and emissions of CH4 and N2O from lolium perenne swards under elevated atmospheric CO2. Soil Biol. Biochem. 2004, 36, 713–723. [Google Scholar] [CrossRef]
- He, X.; Xu, M.; Qiu, G.Y.; Zhou, J. Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants. J. Plant Ecol. 2009, 2, 107–118. [Google Scholar] [CrossRef]
- Kotajima, S.; Koba, K.; Ikeda, D.; Terada, A.; Isaka, K.; Nishina, K.; Kimura, Y.; Makabe, A.; Yano, M.; Fujitani, H.; et al. Nitrogen and oxygen isotope signatures of nitrogen compounds during anammox in the laboratory and a wastewater treatment plant. Microb. Environ. 2020, 35, ME20031. [Google Scholar] [CrossRef]
- Sánchez-Carrillo, S.; Álvarez-Cobelas, M. Stable isotopes as tracers in aquatic ecosystems. Environ. Rev. 2018, 26, 69–81. [Google Scholar] [CrossRef]
- Trimmer, M.; Grey, J.; Heppell, C.M.; Hildrew, A.G.; Lansdown, K.; Stahl, H.; Yvon-Durocher, G. River bed carbon and nitrogen cycling: State of play and some new directions. Sci. Total Environ. 2012, 434, 143–158. [Google Scholar] [CrossRef]
- Dabundo, R. Nitrogen Isotopes in the Measurement of N2-Fixation and the Estimation of Denitrification in the Global Ocean; UCONN Library: Storrs, CT, USA, 2014; Available online: https://opencommons.uconn.edu/ (accessed on 10 July 2022).
- Hopkins, J.B., III; Ferguson, J.M. Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model. PLoS ONE 2012, 7, e28478. [Google Scholar] [CrossRef]
- Montoya, J.P. Nitrogen isotope fractionation in the modern ocean: Implications for the sedimentary record. In Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change; Springer: Berlin/Heidelberg, Germany, 1994; pp. 259–279. [Google Scholar] [CrossRef]
- Hedges, R.E.; Reynard, L.M. Nitrogen isotopes and the trophic level of humans in archaeology. J. Archeol. Sci. 2007, 34, 1240–1251. [Google Scholar] [CrossRef]
- Burford, M.; Preston, N.; Glibert, P.; Dennison, W. Tracing the fate of 15n-enriched feed in an intensive shrimp system. Aquaculture 2002, 206, 199–216. [Google Scholar] [CrossRef]
- Michener, R.; Lajtha, K. Stable Isotopes in Ecology and Environmental Science; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Granger, J.; Sigman, D.M.; Lehmann, M.F.; Tortell, P.D. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol. Ocean. 2008, 53, 2533–2545. [Google Scholar] [CrossRef]
- Rodale, R. Agricultural Systems: The Importance of Sustainability, National Forum; Honor Society of Phi Kappa Phi: Baton Rouge, LA, USA, 1988; p. 2. [Google Scholar]
- BIFAD. Environment and Natural Resources: Strategies for Sustainable Agriculture Task Force Report; US Agency for International Development: Washington, DC, USA, 1988.
- Okigbo, B. Development of Sustainable Agricultural Production Systems in Africa: Roles of International Agricultural Research Centers and National Agricultural Research Systems; Institute of Tropical Agriculture: Ibadan, Nigeria, 1991; Available online: https://agris.fao.org/agris-search/index.do (accessed on 24 June 2022).
- Dover, M.J.; Talbot, L.M. To Feed the Earth: Agro-Ecology for Sustainable Development; World Resources Institute: Washington, DC, USA, 1987. [Google Scholar]
- Knezek, B.D.; Hesterman, O.B.; Wink, L. Exploring a New Vision of Agriculture, National Forum; Honor Society of Phi Kappa Phi: Baton Rouge, LA, USA, 1988; p. 10. [Google Scholar]
- Lynam, J.K.; Herdt, R.W. Sense and sustainability: Sustainability as an objective in international agricultural research. Agric. Econom. 1989, 3, 381–398. [Google Scholar] [CrossRef]
- Ramamoorthy, P.; Bheemanahalli, R.; Meyers, S.L.; Shankle, M.W.; Reddy, K.R. Drought, low nitrogen stress, and ultraviolet-b radiation effects on growth, development, and physiology of sweetpotato cultivars during early season. Genes 2022, 13, 156. [Google Scholar] [CrossRef]
- Araus, V.; Swift, J.; Alvarez, J.M.; Henry, A.; Coruzzi, G.M. A balancing act: How plants integrate nitrogen and water signals. J. Exp. Bot. 2020, 71, 4442–4451. [Google Scholar] [CrossRef]
- Tian, J.; Pang, Y.; Zhao, Z. Drought, salinity, and low nitrogen differentially affect the growth and nitrogen metabolism of sophora japonica (L.) in a semi-hydroponic phenotyping platform. Front. Plant Sci. 2021, 12, 715456. [Google Scholar] [CrossRef]
- Zhen, F.; Liu, Y.; Ali, I.; Liu, B.; Liu, L.; Cao, W.; Tang, L.; Zhu, Y. Short-term heat stress at booting stage inhibited nitrogen remobilization to grain in rice. J. Agric. Food Res. 2020, 2, 100066. [Google Scholar] [CrossRef]
- Ye, J.Y.; Tian, W.H.; Jin, C.W. Nitrogen in plants: From nutrition to the modulation of abiotic stress adaptation. Stress Biol. 2022, 2, 1–14. [Google Scholar] [CrossRef]
- Fan, T.; Yang, W.; Zeng, X.; Xu, X.; Xu, Y.; Fan, X.; Luo, M.; Tian, C.; Xia, K.; Zhang, M. A rice autophagy gene OsATG8B is involved in nitrogen remobilization and control of grain quality. Front. Plant Sci. 2020, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Zhen, X.; Zheng, N.; Yu, J.; Bi, C.; Xu, F. Autophagy mediates grain yield and nitrogen stress resistance by modulating nitrogen remobilization in rice. PLoS ONE 2021, 16, e0244996. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhen, X.; Li, X.; Li, N.; Xu, F. Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE). Front. Plant Sci. 2019, 10, 584. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.; Boscari, A.; Horta Araujo, N.; Maucourt, M.; Hanchi, M.; Bernillon, S.; Rolin, D.; Puppo, A.; Brouquisse, R. Plant nitrate reductases regulate nitric oxide production and nitrogen-fixing metabolism during the medicago truncatula–sinorhizobium meliloti symbiosis. Front. Plant Sci. 2020, 11, 1313. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.-N.; Geng, C.-C.; Li, D.-D.; Xu, S.-W.; Mao, D.-D.; Umbreen, S.; Loake, G.J.; Cui, B.-M. Nitrate reductase-mediated nitric oxide regulates the leaf shape in Arabidopsis by mediating the homeostasis of reactive oxygen species. Int. J. Mol. Sci. 2019, 20, 2235. [Google Scholar] [CrossRef]
Plant Nutrients | Function | Deficiency Symptoms | Excess/Toxicity |
---|---|---|---|
Primary nutrients (NH4+/NO3–, H2PO4–/HPO4–, and K+) | |||
Nitrogen (N) |
|
|
|
Phosphorus (P) |
|
|
|
Potassium (K) |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabange, N.R.; Lee, S.-M.; Shin, D.; Lee, J.-Y.; Kwon, Y.; Kang, J.-W.; Cha, J.-K.; Park, H.; Alibu, S.; Lee, J.-H. Multiple Facets of Nitrogen: From Atmospheric Gas to Indispensable Agricultural Input. Life 2022, 12, 1272. https://doi.org/10.3390/life12081272
Kabange NR, Lee S-M, Shin D, Lee J-Y, Kwon Y, Kang J-W, Cha J-K, Park H, Alibu S, Lee J-H. Multiple Facets of Nitrogen: From Atmospheric Gas to Indispensable Agricultural Input. Life. 2022; 12(8):1272. https://doi.org/10.3390/life12081272
Chicago/Turabian StyleKabange, Nkulu Rolly, So-Myeong Lee, Dongjin Shin, Ji-Yoon Lee, Youngho Kwon, Ju-Won Kang, Jin-Kyung Cha, Hyeonjin Park, Simon Alibu, and Jong-Hee Lee. 2022. "Multiple Facets of Nitrogen: From Atmospheric Gas to Indispensable Agricultural Input" Life 12, no. 8: 1272. https://doi.org/10.3390/life12081272
APA StyleKabange, N. R., Lee, S. -M., Shin, D., Lee, J. -Y., Kwon, Y., Kang, J. -W., Cha, J. -K., Park, H., Alibu, S., & Lee, J. -H. (2022). Multiple Facets of Nitrogen: From Atmospheric Gas to Indispensable Agricultural Input. Life, 12(8), 1272. https://doi.org/10.3390/life12081272