Cerebral Venous Oxygen Saturation in Hypoperfusion Regions May Become a New Imaging Indicator to Predict the Clinical Outcome of Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Imaging Protocol
2.3. QSM Reconstruction
2.4. Perfusion Data Processing
2.5. Cerebral SvO2 Calculation
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Comparison of SvO2 between Two Groups
3.3. Cerebral SvO2 Correlated with Clinical Outcomes
3.4. Receiver Operating Characteristic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, G.; Wang, Y.; Zeng, Y.; Gao, G.F.; Liang, X.; Zhou, M.; Wan, X.; Yu, S.; Jiang, Y.; Naghavi, M.; et al. Rapid health transition in China, 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 381, 1987–2015. [Google Scholar] [CrossRef]
- Jung, S.; Gilgen, M.; Slotboom, J.; El-Koussy, M.; Zubler, C.; Kiefer, C.; Luedi, R.; Mono, M.L.; Heldner, M.R.; Weck, A.; et al. Factors that determine penumbral tissue loss in acute ischaemic stroke. Brain 2013, 136, 3554–3560. [Google Scholar] [CrossRef] [PubMed]
- Shuaib, A.; Butcher, K.; Mohammad, A.A.; Saqqur, M.; Liebeskind, D.S. Collateral blood vessels in acute ischaemic stroke: A potential therapeutic target. Lancet Neurol. 2011, 10, 909–921. [Google Scholar] [CrossRef]
- Vilela, P.; Rowley, H.A. Brain ischemia: CT and MRI techniques in acute ischemic stroke. Eur. J. Radiol. 2017, 96, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.C. The core/penumbra model: Implications for acute stroke treatment and patient selection in 2021. Eur. J. Neurol. 2021, 28, 2794–2803. [Google Scholar] [CrossRef]
- Jensen-Kondering, U.; Baron, J.C. Oxygen imaging by MRI: Can blood oxygen level-dependent imaging depict the ischemic penumbra? Stroke 2012, 43, 2264–2269. [Google Scholar] [CrossRef]
- Hartog, C.; Bloos, F. Venous oxygen saturation. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 419–428. [Google Scholar] [CrossRef]
- Jain, V.; Langham, M.C.; Wehrli, F.W. MRI estimation of global brain oxygen consumption rate. J. Cereb. Blood Flow Metab. 2010, 30, 1598–1607. [Google Scholar] [CrossRef]
- He, X.; Yablonskiy, D.A. Quantitative BOLD: Mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state. Magn. Reson. Med. 2007, 57, 115–126. [Google Scholar] [CrossRef]
- Lu, H.; Ge, Y. Quantitative evaluation of oxygenation in venous vessels using T2-Relaxation-Under-Spin-Tagging MRI. Magn. Reson. Med. 2008, 60, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Fan, A.P.; Bilgic, B.; Gagnon, L.; Witzel, T.; Bhat, H.; Rosen, B.R.; Adalsteinsson, E. Quantitative oxygenation venography from MRI phase. Magn. Reson. Med. 2014, 72, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Seiler, A.; Deichmann, R.; Nöth, U.; Pfeilschifter, W.; Berkefeld, J.; Singer, O.C.; Klein, J.C.; Wagner, M. Oxygenation-sensitive magnetic resonance imaging in acute ischemic stroke using T2’/R2’ mapping: Influence of relative cerebral blood volume. Stroke 2017, 48, 1671–1674. [Google Scholar] [CrossRef] [PubMed]
- Buch, S.; Ye, Y.; Haacke, E.M. Quantifying the changes in oxygen extraction fraction and cerebral activity caused by caffeine and acetazolamide. J. Cereb. Blood Flow Metab. 2017, 37, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Baik, S.K.; Choi, W.; Oh, S.J.; Park, K.P.; Park, M.G.; Yang, T.I.; Jeong, H.W. Change in cortical vessel signs on susceptibility-weighted images after full recanalization in hyperacute ischemic stroke. Cerebrovasc. Dis. 2012, 34, 206–212. [Google Scholar] [CrossRef]
- Yuan, T.; Ren, G.; Quan, G.; Gao, D. Fewer peripheral asymmetrical cortical veins is a predictor of favorable outcome in MCA infarctions with SWI-DWI mismatch. J. Magn. Reson. Imaging 2018, 48, 964–970. [Google Scholar] [CrossRef]
- Luo, Y.; Gong, Z.; Zhou, Y.; Chang, B.; Chai, C.; Liu, T.; Han, Y.; Wang, M.; Qian, T.; Haacke, E.M.; et al. Increased susceptibility of asymmetrically prominent cortical veins correlates with misery perfusion in patients with occlusion of the middle cerebral artery. Eur. Radiol. 2017, 27, 2381–2390. [Google Scholar] [CrossRef]
- Fujioka, M.; Okuchi, K.; Iwamura, A.; Taoka, T.; Siesjö, B.K. A mismatch between the abnormalities in diffusion and susceptibility-weighted magnetic resonance imaging may represent an acute ischemic penumbra with misery perfusion. J. Stroke Cerebrovasc. Dis. 2013, 22, 1428–1431. [Google Scholar] [CrossRef]
- Lu, X.; Luo, Y.; Fawaz, M.; Zhu, C.; Chai, C.; Wu, G.; Wang, H.; Liu, J.; Zou, Y.; Gong, Y.; et al. Dynamic changes of asymmetric cortical veins relate to neurologic prognosis in acute ischemic stroke. Radiology 2021, 301, 672–681. [Google Scholar] [CrossRef]
- Xia, S.; Utriainen, D.; Tang, J.; Kou, Z.; Zheng, G.; Wang, X.; Shen, W.; Haacke, E.M.; Lu, G. Decreased oxygen saturation in asymmetrically prominent cortical veins in patients with cerebral ischemic stroke. Magn. Reson. Imaging 2014, 32, 1272–1276. [Google Scholar] [CrossRef]
- Lu, X.; Meng, L.; Zhou, Y.; Wang, S.; Fawaz, M.; Wang, M.; Haacke, E.M.; Chai, C.; Zheng, M.; Zhu, J.; et al. Quantitative susceptibility-weighted imaging may be an accurate method for determining stroke hypoperfusion and hypoxia of penumbra. Eur. Radiol. 2021, 31, 6323–6333. [Google Scholar] [CrossRef]
- Fan, A.P.; Khalil, A.A.; Fiebach, J.B.; Zaharchuk, G.; Villringer, A.; Villringer, K.; Gauthier, C.J. Elevated brain oxygen extraction fraction measured by MRI susceptibility relates to perfusion status in acute ischemic stroke. J. Cereb. Blood Flow Metab. 2020, 40, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Kao, H.W.; Tsai, F.Y.; Hasso, A.N. Predicting stroke evolution: Comparison of susceptibility-weighted MR imaging with MR perfusion. Eur. Radiol. 2012, 22, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Schweser, F.; Deistung, A.; Sommer, K.; Reichenbach, J.R. Toward online reconstruction of quantitative susceptibility maps: Superfast dipole inversion. Magn. Reson. Med. 2013, 69, 1582–1594. [Google Scholar] [CrossRef] [PubMed]
- Haacke, E.M.; Lai, S.; Reichenbach, J.R.; Kuppusamy, K.; Hoogenraad, F.G.; Takeichi, H.; Lin, W. In vivo measurement of blood oxygen saturation using magnetic resonance imaging: A direct validation of the blood oxygen level-dependent concept in functional brain imaging. Hum. Brain Mapp. 1997, 5, 341–346. [Google Scholar] [CrossRef]
- Cho, J.; Kee, Y.; Spincemaille, P.; Nguyen, T.D.; Zhang, J.; Gupta, A.; Zhang, S.; Wang, Y. Cerebral metabolic rate of oxygen (CMRO2 ) mapping by combining quantitative susceptibility mapping (QSM) and quantitative blood oxygenation level-dependent imaging (qBOLD). Magn. Reson. Med. 2018, 80, 1595–1604. [Google Scholar] [CrossRef]
- Fernández-Seara, M.A.; Techawiboonwong, A.; Detre, J.A.; Wehrli, F.W. MR susceptometry for measuring global brain oxygen extraction. Magn. Reson. Med. 2006, 55, 967–973. [Google Scholar] [CrossRef]
- Macmillan, C.S.; Andrews, P.J. Cerebrovenous oxygen saturation monitoring: Practical considerations and clinical relevance. Intensive Care Med. 2000, 26, 1028–1036. [Google Scholar] [CrossRef]
- Abdul-Khaliq, H.; Troitzsch, D.; Berger, F.; Lange, P.E. Regional transcranial oximetry with near infrared spectroscopy (NIRS) in comparison with measuring oxygen saturation in the jugular bulb in infants and children for monitoring cerebral oxygenation. Biomed. Tech. 2000, 45, 328–332. [Google Scholar] [CrossRef]
- Kesavadas, C.; Santhosh, K.; Thomas, B. Susceptibility weighted imaging in cerebral hypoperfusion-can we predict increased oxygen extraction fraction? Neuroradiology 2010, 52, 1047–1054. [Google Scholar] [CrossRef]
- Haacke, E.M.; Tang, J.; Neelavalli, J.; Cheng, Y.C. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J. Magn. Reson. Imaging 2010, 32, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zeng, M.; Li, C.; Qiu, H.; Feng, H.; Xu, X.; Zhang, H.; Wu, J. Time-dependence of NIHSS in predicting functional outcome of patients with acute ischemic stroke treated with intravenous thrombolysis. Postgrad. Med. J. 2019, 95, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Li, J.; Zhao, M.; Zhang, M.; Wang, T.; Chen, L.; Liu, Q.; Wang, H.; Lu, J.; Zhao, X. Baseline cerebral ischemic core quantified by different automatic software and its predictive value for clinical outcome. Front. Neurosci. 2021, 15, 608799. [Google Scholar] [CrossRef] [PubMed]
- Sobesky, J.; Weber, O.Z.; Lehnhardt, F.G.; Hesselmann, V.; Neveling, M.; Jacobs, A.; Heiss, W.D. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 2005, 36, 980–985. [Google Scholar] [CrossRef]
- Kakuda, W.; Lansberg, M.G.; Thijs, V.N.; Kemp, S.M.; Bammer, R.; Wechsler, L.R.; Moseley, M.E.; Parks, M.P.; Albers, G.W.; DEFUSE Investigators. Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients. J. Cereb. Blood Flow Metab. 2008, 28, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Rudilosso, S.; Rodríguez-Vázquez, A.; Urra, X.; Arboix, A. The potential impact of neuroimaging and translational research on the clinical management of lacunar stroke. Int. J. Mol. Sci. 2022, 23, 1497. [Google Scholar] [CrossRef]
Sequence | Matrix Size | Slices | TR 4 (ms) | TE 5 (ms) | Bandwidth (Hz/pixel) | FOV 6 (mm2) | Pixel Spacing (mm) | Thickness (mm) | Others |
---|---|---|---|---|---|---|---|---|---|
SWI 1 | 260 × 320 | 72 | 79 | 40 | 80 | 230 | 0.718, 0.718 | 1.6 | |
PWI 2 | 128 × 128 | 19 | 1520 | 32 | 1346 | 230 | 0.898, 0.898 | 5 | measurements = 50 |
DWI 3 | 192 × 192 | 18 | 3600 | 102 | 964 | 230 | 1.198, 1.198 | 5 | B = 1000 s/mm2 |
Characteristics | Favorable (n = 30) | Unfavorable (n = 18) | p |
---|---|---|---|
Baseline | |||
Age(years) | 69.6 ± 11.3 | 72.9 ± 7.6 | 0.232 |
Sex, male (%) | 23 (76.7) | 11 (61.1) | 0.251 |
Risk factor | |||
Hypertension | 24 (80.0) | 13 (72.2) | 0.535 |
Diabetes | 6 (20.0) | 8 (44.4) | 0.071 |
Atrial fibrillation | 10 (33.3) | 4 (22.2) | 0.412 |
NIHSS 1 | 7.0 ± 6.1 | 8.9 ± 6.1 | 0.322 |
MRP measurements 2 | |||
Infarct side, right (%) | 21 (70.0) | 16 (88.9) | 0.132 |
ICV (mL) 3 | 15.2 ± 31.1 | 8.3 ± 16.0 | 0.386 |
HPV (mL) 4 | 69.5 ± 103.94 | 87.5 ± 105.3 | 0.565 |
Follow-up | |||
Interval time (days) | 11.3 ± 4.7 | 12.8 ± 4.8 | 0.299 |
NIHSS | 1.6 ± 2.0 | 7.4 ± 5.2 | 0.000 * |
ΔNIHSS 5 | −5.4 ± 6.6 | −1.5 ± 5.9 | 0.047 * |
MRP measurements | |||
ICV (mL) | 16.0 ± 35.4 | 38.3 ± 70.2 | 0.149 |
HPV (mL) | 18.8 ± 42.0 | 69.9 ± 98.0 | 0.048 * |
SvO2 1(%) | Tmax > 4 s 2 | Tmax > 6 s | Tmax > 8 s | Tmax > 10 s | ||||
---|---|---|---|---|---|---|---|---|
(+) n = 30 3 | (−) n = 18 4 | (+) n = 15 | (−) n = 6 | (+) n = 13 | (−) n = 4 | (+) n = 13 | (−) n = 4 | |
Baseline | 50.21 ± 9.28 | 50.77 ± 8.14 | 52.41 ± 9.50 | 50.39 ± 11.98 | 51.00 ± 9.08 | 47.79 ± 8.31 | 53.78 ± 12.89 | 47.56 ± 4.31 |
Follow-up | 56.59 ± 10.24 | 42.39 ± 8.27 | 58.71 ± 9.63 | 42.31 ± 12.00 | 53.86 ± 11.43 | 45.96 ± 15.37 | 56.63 ± 10.89 | 49.59 ± 13.45 |
Changes | 6.37 ± 11.37 | −6.68 ± 13.04 | 6.30 ± 7.17 | −8.07 ± 10.25 | −2.86 ± 7.82 | 1.82 ± 13.06 | −2.85 ± 8.33 | −2.04 ± 12.94 |
SvO2 | Tmax > 4 s (n = 48) | Tmax > 6 s (n = 21) | Tmax > 8 s (n = 17) | Tmax > 10 s (n = 17) |
---|---|---|---|---|
Baseline | −0.343 ** | −0.483 * | −0.061 | −0.329 |
Follow-up | −0.455 ** | −0.610 ** | −0.152 | −0.110 |
Changes | −0.349 * | −0.552 ** | −0.445 | −0.358 |
Parameters | PPV (%) 1 | NPV (%) 2 | Accuracy (%) |
---|---|---|---|
NIHSS (1) 3 | 63.6 | 38.9 | 54.2 |
NIHSS (2) | 82.9 | 92.3 | 85.4 |
ΔNIHSS | 73.5 | 64.2 | 70.8 |
ICV (1) | 64.7 | 42.9 | 58.3 |
ICV (2) | 74.1 | 52.4 | 64.6 |
SvO2 (2) | 91.7 | 66.7 | 79.2 |
ΔSvO2 | 84.6 | 63.6 | 75.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, F.; Wang, M.; Fan, S.; Han, S.; Guo, Y.; Zaman, A.; Guo, J.; Luo, Y.; Kang, Y. Cerebral Venous Oxygen Saturation in Hypoperfusion Regions May Become a New Imaging Indicator to Predict the Clinical Outcome of Stroke. Life 2022, 12, 1312. https://doi.org/10.3390/life12091312
Cao F, Wang M, Fan S, Han S, Guo Y, Zaman A, Guo J, Luo Y, Kang Y. Cerebral Venous Oxygen Saturation in Hypoperfusion Regions May Become a New Imaging Indicator to Predict the Clinical Outcome of Stroke. Life. 2022; 12(9):1312. https://doi.org/10.3390/life12091312
Chicago/Turabian StyleCao, Fengqiu, Mingming Wang, Shengyu Fan, Shanhua Han, Yingwei Guo, Asim Zaman, Jia Guo, Yu Luo, and Yan Kang. 2022. "Cerebral Venous Oxygen Saturation in Hypoperfusion Regions May Become a New Imaging Indicator to Predict the Clinical Outcome of Stroke" Life 12, no. 9: 1312. https://doi.org/10.3390/life12091312
APA StyleCao, F., Wang, M., Fan, S., Han, S., Guo, Y., Zaman, A., Guo, J., Luo, Y., & Kang, Y. (2022). Cerebral Venous Oxygen Saturation in Hypoperfusion Regions May Become a New Imaging Indicator to Predict the Clinical Outcome of Stroke. Life, 12(9), 1312. https://doi.org/10.3390/life12091312