Finding the Best Match: A Ranking Procedure of Fish Species Combinations for Polyculture Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Four-Step of the Ranking Procedure
2.1.1. The First Step: Biological Trait Selection
- Survival and morphological traits
- 2.
- Behavioral and physiological traits
2.1.2. The Second Step: Dataset Treatment
2.1.3. The Third Step: Weighting the Traits
2.1.4. The Fourth Step: Integrating the Results
2.2. Test Cases
3. Results
3.1. The Test Case 1
3.2. The Test Case 2
3.3. The Test Case 3
4. Discussion
4.1. The Importance of Considering Stakeholder Priorites to Rank Polycultures
4.2. Ranking Procedure Limitations
4.3. What Is Next?
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-Year Retrospective Review of Global Aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Bostock, J.; McAndrew, B.; Richards, R.; Jauncey, K.; Telfer, T.; Lorenzen, K.; Little, D.; Ross, L.; Handisyde, N.; Gatward, I.; et al. Aquaculture: Global Status and Trends. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2897–2912. [Google Scholar] [CrossRef] [PubMed]
- Kozłowski, M.; Szczepkowski, M.; Wunderlich, K.; Szczepkowska, B.; Piotrowska, I. Polyculture of Juvenile Pikeperch (Sander lucioperca (L.)) and Sterlet (Acipenser ruthenus L.) in a Recirculating System. Arch. Polish Fish. 2014, 22, 237–242. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M.; Turchini, G.M.; de Silva, S.S. Responsible Aquaculture and Trophic Level Implications to Global Fish Supply. Rev. Fish. Sci. 2010, 18, 94–105. [Google Scholar] [CrossRef]
- Dahlberg, K.A. Beyond the Green Revolution. The Ecology and Politics of Global Agricultural Developments; Western Michigan University: Kalamazoo, MI, USA, 1979. [Google Scholar]
- Medeiros, M.V.; Aubin, J.; Camargo, A.F.M. Life Cycle Assessment of Fish and Prawn Production: Comparison of Monoculture and Polyculture Freshwater Systems in Brazil. J. Clean. Prod. 2017, 156, 528–537. [Google Scholar] [CrossRef]
- Ashley, P.J. Fish Welfare: Current Issues in Aquaculture. Appl. Anim. Behav. Sci. 2007, 104, 199–235. [Google Scholar] [CrossRef]
- Stickney, R.R. Polyculture in Aquaculture. In Sustainable Food Production; Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Thomas, M.; Lecocq, T.; Abregal, C.; Nahon, S.; Aubin, J.; Jaeger, C.; Wilfart, A.; Schae, L.; Ledoré, Y.; Puillet, L.; et al. The Effects of Polyculture on Behaviour and Production of Pikeperch in Recirculation Systems. Aquac. Rep. 2020, 17, 100333. [Google Scholar] [CrossRef]
- Nhan, D.K.; Bosma, R.H.; Little, D.C. Integrated Freshwater Aquaculture, Crop and Livestock Production in the Mekong Delta, Vietnam: Determinants and the Role of the Pond. Agric. Syst. 2007, 94, 445–458. [Google Scholar] [CrossRef]
- Chopin, T.; Buschmann, A.H.; Halling, C.; Troell, M.; Kautsky, N.; Neori, A.; Kraemer, G.P.; Zertuche-Gonzales, J.A.; Yarish, C.; Neefus, C. Integrating Seaweeds into Marine Aquaculture Systems: A Key toward Sustainability. J. Phycol. 2001, 37, 975–986. [Google Scholar] [CrossRef]
- Flickinger, D.L.; Dantas, D.P.; Proença, D.C.; David, F.S.; Valenti, W.C. Phosphorus in the Culture of the Amazon River Prawn (Macrobrachium amazonicum) and Tambaqui (Colossoma macropomum) Farmed in Monoculture and in Integrated Multitrophic Systems. J. World Aquac. Soc. 2020, 51, 1002–1023. [Google Scholar] [CrossRef]
- Thomas, M.; Pasquet, A.; Aubin, J.; Nahon, S.; Lecocq, T. When More Is More: Taking Advantage of Species Diversity to Move towards Sustainable Aquaculture. Biol. Rev. 2021, 96, 767–784. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R.; et al. Achieving Sustainable Aquaculture: Historical and Current Perspectives and Future Needs and Challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Dumont, B.; Puillet, L.; Martin, G.; Savietto, D.; Aubin, J.; Ingrand, S.; Niderkorn, V.; Steinmetz, L.; Thomas, M. Incorporating Diversity into Animal Production Systems Can Increase Their Performance and Strengthen Their Resilience. Front. Sustain. Food Syst. 2020, 4, 109. [Google Scholar] [CrossRef]
- Ulikowski, D.; Szczepkowski, M.; Szczepkowska, B. Preliminary Studies of Intensive Wels Catfish (Silurus glanis L.) and Sturgeon (Acipenser sp.) Pond Cultivation. Arch. Polish Fish. 2003, 2, 295–300. [Google Scholar]
- Goodwin, A.E. Massive Lernaea cyprinacea Infestations Damaging the Gills of Channel Catfish Polycultured with Bighead Carp. J. Aquat. Anim. Health 1999, 11, 406–408. [Google Scholar] [CrossRef]
- Abbas, S.; Ashraf, M.; Ahmed, I. Effect of Fertilization and Supplementary Feeding on Growth Performance of Labeo rohita, Catla catla and Cyprinus carpio. J. Anim. Plant Sci. 2014, 24, 142–148. [Google Scholar]
- Papoutsoglou, S.E.; Miliou, H.; Karakatsouli, N.P.; Tzitzinakis, M.; Chadio, S. Growth and Physiological Changes in Scaled Carp and Blue Tilapia under Behavioral Stress in Mono- and Polyculture Rearing Using a Recirculated Water System. Aquac. Int. 2001, 9, 509–518. [Google Scholar] [CrossRef]
- Gibbard, G.L.; Strawn, K.; Aldrich, D.V. Feeding and Aggressive Behavior of Atlantic Croaker, Black Drum, and Striped Mullet in Monoculture and Polyculture. Proc. World Maric. Soc. 2009, 10, 241–248. [Google Scholar] [CrossRef]
- Oladi, M.; Badri, S.; Shahrokni, S.A.N.; Ghazilou, A. Observation of the Eye-Attacking Behaviour of Koi Cyprinus carpio Var. Koi in a Koi-Goldfish Polyculture System. J. Appl. Anim. Res. 2017, 45, 215–216. [Google Scholar] [CrossRef] [Green Version]
- Frimpong, E.A.; Angermeier, P.L. Fish Traits: A Database of Ecological and Life-History Traits of Freshwater Fishes of the United States. Fisheries 2009, 34, 487–495. [Google Scholar] [CrossRef]
- Brosse, S.; Charpin, N.; Su, G.; Toussaint, A.; Herrera-R, G.A.; Tedesco, P.A.; Villéger, S. FISHMORPH: A Global Database on Morphological Traits of Freshwater Fishes. Glob. Ecol. Biogeogr. 2021, 30, 2330–2336. [Google Scholar] [CrossRef]
- Lecocq, T.; Benard, A.; Pasquet, A.; Nahon, S.; Ducret, A.; Dupont-Marin, K.; Lang, I.; Thomas, M. TOFF, a Database of Traits of Fish to Promote Advances in Fish Aquaculture. Sci. Data 2019, 6, 301. [Google Scholar] [CrossRef] [PubMed]
- Huntingford, F.; Jobling, M.; Kadri, S.; Wiley InterScience (Online service). Aquaculture and Behavior; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Milla, S.; Mathieu, C.; Wang, N.; Lambert, S.; Nadzialek, S.; Massart, S.; Henrotte, E.; Douxfils, J.; Mélard, C.; Mandiki, S.N.M.; et al. Spleen Immune Status Is Affected after Acute Handling Stress but Not Regulated by Cortisol in Eurasian Perch, Perca fluviatilis. Fish Shellfish Immunol. 2010, 28, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Brummett, R.E. Production Priorities. Overshadow Genetic Quality at African Fish Hatcheries. Glob. Aquac. 2004, 42–43. [Google Scholar]
- Frewer, L.J.; Kole, A.; van de Kroon, S.M.; de Lauwere, C. Consumer Attitudes towards the Development of Animal-Friendly Husbandry Systems. J. Agric. Environ. Ethics 2005, 18, 345–367. [Google Scholar] [CrossRef]
- Osmundsen, T.C.; Almklov, P.; Tveterås, R. Fish Farmers and Regulators Coping with the Wickedness of Aquaculture. Aquac. Econ. Manag. 2017, 21, 163–183. [Google Scholar] [CrossRef]
- Quéméner, L.; Suquet, M.; Mero, D.; Gaignon, J. Selection Method of New Candidates for Finfish Aquaculture: The Case of the French Atlantic, the Channel and the North Sea Coasts. Aquat. Living Resourc. 2002, 15, 293–302. [Google Scholar] [CrossRef]
- Toomey, L.; Fontaine, P.; Lecocq, T. Unlocking the Intraspecific Aquaculture Potential from the Wild Biodiversity to Facilitate Aquaculture Development. Rev. Aquac. 2020, 12, 2212–2227. [Google Scholar] [CrossRef]
- Toomey, L.; Lecocq, T.; Pasquet, A.; Fontaine, P. Finding a Rare Gem: Identification of a Wild Biological Unit with High Potential for European Perch Larviculture. Aquaculture 2021, 530, 735–807. [Google Scholar] [CrossRef]
- Habte-Tsion, H.M.; Riche, M.; Mejri, S.; Bradshaw, D.; Wills, P.S.; Myers, J.J.; Perricone, C.S. The Effects of Fish Meal Substitution by Clam Meal on the Growth and Health of Florida Pompano (Trachinotus carolinus). Sci. Rep. 2022, 12, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Mccarthy, I.D.; Carter, C.G.; Houlihan, D.F. The Effect of Feeding Hierarchy on Individual Variability in Daily Feeding of Rainbow Trout, Oncorhynchus mykiss (Walbaum). J. Fish Biol. 1992, 41, 257–263. [Google Scholar] [CrossRef]
- Jobling, M. Simple Indices for the Assessment of the Influences of Social Environment on Growth Performance, Exemplified by Studies on Arctic Charr. Aquac. Int. 1995, 3, 60–65. [Google Scholar] [CrossRef]
- Bolger, T.; Connolly, P.L. The Selection of Suitable Indices for the Measuremnet and Analyses of Fish Condition. J. Fish Biol. 1989, 34, 171–182. [Google Scholar] [CrossRef]
- Smolders, R.; Bervoets, L.; De Boeck, G.; Blust, R. Integrated Condition Indices as a Measure of Whole Effluent Toxicity in Zebrafish (Danio rerio). Environ. Toxicol. Chem. 2002, 21, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Lund, V. Natural Living: A Precondition for Animal Welfare in Organic Farming. Livest. Sci. 2006, 100, 71–83. [Google Scholar] [CrossRef]
- Berckmans, D. Precision Livestock Farming Technologies for Welfare Management in Intensive Livestock Systems. Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef]
- Rowland, W.J. The Effects of Body Size, Aggression and Nuptial Coloration on Competition for Territories in Male Threespine Sticklebacks, Gasterosteus aculeatus. Anim. Behav. 1989, 37 Pt 2, 282–289. [Google Scholar] [CrossRef]
- Huntingford, F.A. Implications of Domestication and Rearing Conditions for the Behaviour of Cultivated Fishes. J. Fish Biol. 2004, 65, 122–142. [Google Scholar] [CrossRef]
- Macaulay, G. Challenges and Benefits of Applying Fish Behaviour to Improve Production and Welfare in Industrial Aquaculture. Rev. Aquac. 2021, 13, 934–948. [Google Scholar] [CrossRef]
- Paradis, E.; Schliep, K. Ape 5.0: An Environment for Modern Phylogenetics and Evolutionary Analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G. Vegan: Community Ecology Package; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Jarek, S. Mvnormtest: Normality Test for Multivariate Variables; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- Amoussou, N.; Thomas, M.; Pasquet, A.; Lecocq, T. The Trial Protocols of the Test Cases Used in Amoussou et al. “Finding the Best Match: A Ranking Procedure of Fish Species Combinations for Polyculture Development.”; FigShare: London, UK, 2022. [Google Scholar] [CrossRef]
- Amoussou, N.; Thomas, M.; Pasquet, A.; Lecocq, T. Datasets from Amoussou et al. “Finding the Best Match: A Ranking Procedure of Fish Species Combinations for Polyculture Development.”; FigShare: London, UK, 2022. [Google Scholar] [CrossRef]
- Amoussou, N.; Thomas, M.; Pasquet, A.; Lecocq, T. R-Scripts Used in Amoussou et al. “Finding the Best Match: A Ranking Procedure of Fish Species Combinations for Polyculture Development.”; FigShare: London, UK, 2022. [Google Scholar] [CrossRef]
- Kestemont, P.; Dabrowski, K.; Summerfelt, R.C. Biology and Culture of Percid Fishes: Principles and Practices. In Biology and Culture of Percid Fishes: Principles and Practices; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–901. [Google Scholar] [CrossRef]
- Chanda, M.; Paul, M.; Maity, J.; Dash, G.; Gupta, S.; Patra, B. Ornamental Fish Goldfish, Carassius auratus and Related Parasites in Three Districts of West Bengal, India. Chron. Young Sci. 2011, 2, 51. [Google Scholar] [CrossRef]
- Trujillo-González, A.; Becker, J.A.; Hutson, K.S. Parasite Dispersal from the Ornamental Goldfish Trade. Adv. Parasitol. 2018, 100, 239–281. [Google Scholar] [CrossRef] [PubMed]
- Alsaqufi, A.S.; Gomelsky, B.; Schneider, K.J.; Pomper, K.W. Using Microsatellite DNA Markers. Aquac. Res. 2014, 45, 410–416. [Google Scholar] [CrossRef]
- Engle, C.R.; Stone, N.; Xie, L. Feasibility of Pond Production of Largemouth Bass, Micropterus salmoides, for a Filet Market. J. World Aquac. Soc. 2013, 44, 805–813. [Google Scholar] [CrossRef]
- Fontaine, P.; Teletchea, F. Domestication of the Eurasian Perch (Perca fluviatilis). In Animal Domestication; IntechOpen: London, UK, 2019. https://doi.org/10.5772/intechopen.85132.fluviatilis). In Animal Domestication; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Shivaramu, S.; Lebeda, I.; Kašpar, V.; Flajšhans, M. Intraspecific Hybrids versus Purebred: A Study of Hatchery-Reared Populations of Sterlet Acipenser ruthenus. Animals 2020, 10, 1149. [Google Scholar] [CrossRef]
- Başkurt, S.; Emiroglu, Ö.; Tarkan, A.S.; Vilizzi, L. The Life-History Traits of Widespread Freshwater Fish Species: The Case of Roach Rutilus rutilus (Linnaeus, 1758) (Pisces: Teleostei) in Water Bodies at the Southern Limits of Distribution. Zool. Middle East 2015, 61, 339–348. [Google Scholar] [CrossRef]
- Gonzales Serrano, J.L. FAO 2022. Espagne. In The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2022. [Google Scholar]
- Mamcarz, A.; Skrzypczak, A. Changes in Commercially Exploited Populations of Tench, Tinca tinca (L.), in Littoral Zones of Lakes of Northeastern Poland. Aquac. Int. 2006, 14, 171–177. [Google Scholar] [CrossRef]
- Svanberg, I.; Locker, A. Caviar, Soup and Other Dishes Made of Eurasian Ruffe, Gymnocephalus cernua (Linnaeus, 1758): Forgotten Foodstuff in Central, North and West Europe and Its Possible Revival. J. Ethn. Foods 2020, 7, 3. [Google Scholar] [CrossRef]
- Amoussou, N.; Thomas, M.; Pasquet, A.; Lecocq, T. The Results of the Correlation Tests Performed in Amoussou et al. “Finding the Best Match: A Ranking Procedure of Fish Species Combinations for Polyculture Development.”; FigShare: London, UK, 2022. [Google Scholar] [CrossRef]
- Moroni, F.T.; Moroni, R.B.; Mayag, B.; de Jesus, R.S.; Lessi, E. Limitations in Decision Context for Selection of Amazonian Armoured Catfish Acari-Bod (Pterygoplichthys pardalis) as Candidate Species for Aquaculture. Int. J. Fish. Aquac. 2015, 7, 142–150. [Google Scholar] [CrossRef]
- Castellini, C.; Mugnai, C.; Cortina, C.; Bosco, A.; Mugnai, C.; Novelli, E.; Mugnai, C. A Multicriteria Approach for Measuring the Sustainability of Different Poultry Production Systems. J. Clean. Prod. J. 2012, 37, 192–201. [Google Scholar] [CrossRef]
- Rocchi, L.; Paolotti, L.; Rosati, A.; Boggia, A.; Castellini, C. Assessing the Sustainability of Different Poultry Production Systems: A Multicriteria Approach. J. Clean. Prod. 2019, 211, 103–114. [Google Scholar] [CrossRef]
- Cap, S.; Bots, P.; Scherer, L. Environmental, Nutritional and Social Assessment of Nuts. Sustain. Sci. 2022. [Google Scholar] [CrossRef]
- Kim, Y.; Eisenberg, D.A.; Bondank, E.N.; Chester, M.V.; Mascaro, G.; Underwood, B.S. Fail-Safe and Safe-to-Fail Adaptation: Decision-Making for Urban Flooding under Climate Change. Clim. Chang. 2017, 145, 397–412. [Google Scholar] [CrossRef]
- Lee, H.C.; Chang, C. Ter. Comparative Analysis of MCDM Methods for Ranking Renewable Energy Sources in Taiwan. Renew. Sustain. Energy Rev. 2018, 92, 883–896. [Google Scholar] [CrossRef]
- Sae-Lim, P.; Gjerde, B.; Nielsen, H.M.; Mulder, H.; Kause, A. A Review of Genotype-by-Environment Interaction and Micro-Environmental Sensitivity in Aquaculture Species. Rev. Aquac. 2016, 8, 369–393. [Google Scholar] [CrossRef]
- Shoko, A.P.; Limbu, S.M.; Mrosso, H.D.J.; Mkenda, A.F.; Mgaya, Y.D. Effect of Stocking Density on Growth, Production and Economic Benefits of Mixed Sex Nile Tilapia (Oreochromis niloticus) and African Sharptooth Catfish (Clarias gariepinus) in Polyculture and Monoculture. Aquac. Res. 2016, 47, 36–50. [Google Scholar] [CrossRef]
- Hossain, M.D.A.; Nabi, S.M.N.; Alam, M.M.; Rashid, M.H.; Hossain, M.A.; Sikendar, M.A. Optimum Stocking Density of Stinging Catfish (Heteropneustes fossilis) Based Carp Polyculture in Homestead Ponds in a Drought Prone Area of Bangladesh. Bangladesh J. Fish. 2022, 33, 177–186. [Google Scholar] [CrossRef]
- Milstein, A.; Wahab, M.A.; Rahman, M.M. Environmental Effects of Common Carp Cyprinus carpio (L.) and Mrigal Cirrhinus mrigala (Hamilton) as Bottom Feeders in Major Indian Carp Polycultures. Aquac. Res. 2002, 33, 1103–1117. [Google Scholar] [CrossRef]
- Toomey, L.; Dellicour, S.; Kapusta, A.; Żarski, D.; Buhrke, F.; Milla, S.; Fontaine, P.; Lecocq, T. Split It up and See: Using Proxies to Highlight Divergent Inter-Populational Performances in Aquaculture Standardised Conditions. BMC Ecol. Evol. 2021, 21, 2–14. [Google Scholar] [CrossRef]
- Kohinoor, A.H.M.; Islam, M.L.; Wahab, M.A.; Thilsted, S.H. Effect of Mola (Amblypharyngodon mola Ham.) on the Growth and Production of Carps in Polyculture. Bangladesh.J. Fish. Res 1998, 2, 119–126. [Google Scholar]
- Bouyssou, D. Décision Multicritère Ou Aide Multicritère? Newsl. Eur. Work. Gr. 1993, 1–2. [Google Scholar]
- Gan, X.; Fernandez, I.C.; Guo, J.; Wilson, M.; Zhao, Y.; Zhou, B.; Wu, J. When to Use What: Methods for Weighting and Aggregating Sustainability Indicators. Ecol. Indic. 2017, 81, 491–502. [Google Scholar] [CrossRef]
- Sen, S. Involving Stakeholders in Aquaculture Policy-Making, Planning and Management. In Proceedings of the Aquaculture in the Third Millennium Echnical Proceedings, Bangkok, Thailand, 20–25 February 2000; pp. 83–93. [Google Scholar]
- Chu, J.; Anderson, J.L.; Asche, F.; Tudur, L. Stakeholders’ Perceptions of Aquaculture and Implications for Its Future: A Comparison of the U.S.A. and Norway. Mar. Resour. Econ. 2010, 25, 61–76. [Google Scholar] [CrossRef]
- Jennings, S.; Stentiford, G.D.; Leocadio, A.M.; Jeffery, K.R.; Metcalfe, J.D.; Auchterlonie, N.A.; Mangi, S.C.; Pinnegar, J.K.; Ellis, T.; Peeler, E.J.; et al. Aquatic Food Security: Insights into Challenges and Solutions from an Analysis of Interactions between Fi Sheries, Aquaculture, Food Safety, Human Health, Fish and Human Welfare, Economy and Environment. Fish Fish. 2016, 17, 893–938. [Google Scholar] [CrossRef]
- Galparsoro, I.; Murillas, A.; Pinarbasi, K.; Sequeira, A.M.M.; Stelzenmüller, V.; Borja, Á.; O’Hagan, A.M.; Boyd, A.; Bricker, S.; Garmendia, J.M.; et al. Global Stakeholder Vision for Ecosystem-Based Marine Aquaculture Expansion from Coastal to Offshore Areas. Rev. Aquac. 2020, 12, 2061–2079. [Google Scholar] [CrossRef]
Categories | Traits | Polarized Delta Values (ΔVal) |
---|---|---|
Survival | SR | +SR |
Morphological | Wf | +Wf |
SGR | +SGR | |
CV | −CV | |
FCF | +FCF | |
Behavioral | Agr | −Agr |
Flg | −Flg | |
Physiological | Hct | −Hct |
Glu | −Glu | |
Cort | −Cort | |
Ser | −Ser | |
Dop | −Dop |
Delta Values (ΔVal) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Priorities | SR | Wf | SGR | CV | FCF | Agr | Flg | Hct | Glu | Cort | Ser | Dop |
Neutral-weighting | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Production-weighting | 2, 5 or 10 | 2, 5 or 10 | 2, 5 or 10 | 2, 5 or 10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Welfare-weighting | 2, 5 or 10 | 1 | 1 | 1 | 2, 5 or 10 | 2, 5 or 10 | 2, 5 or 10 | 2, 5 or 10 | 2, 5 or 10 | 2, 5 or 10 | 2, 5 or 10 | 2, 5 or 10 |
Test Cases | Polycultures | Rearing Volume (m3) | Trial Duration (Days) | Traits | Measurement Time (Days) |
---|---|---|---|---|---|
1 |
| 2 | 90 | SR, SGR Wf, CV, FCF, Hct, Glu, Cort, Ser, Dop Agr *, Flg * | Between 0–90 At 90 At 48 |
| |||||
| |||||
2 |
| 0.3 | 90 | SR, SGR Wf, CV, FCF, Hct, Glu, Cort Agr **, Flg ** | Between 0–90 At 90 At 48 |
| |||||
3 |
| 0.3 | 60 | SR, SGR Wf, CV, FCF, Ser Agr * | Between 0–60 At 60 At 32 |
| |||||
| |||||
(A) | |||||||||||
Priorities | Weighting Coefficients | ||||||||||
1 | 2 | 5 | 10 | ||||||||
Neutral-weighting | df = 2 | - | - | - | |||||||
A = 0.197 | |||||||||||
Production-weighting | - | df = 2 | df = 2 | df = 2 | |||||||
A = 0.324 | A = 0.381 | A = 0.396 | |||||||||
Welfare-weighting | - | df = 2 | df = 2 | df = 2 | |||||||
A = 0.213 | A = 0.199 | A = 0.197 | |||||||||
(B) | |||||||||||
Priorities | Polycultures | SC | SM | ||||||||
Neutral-weighting | SM | df = 1 | |||||||||
A = 0.224 | |||||||||||
SCP | df = 1 | df = 1 | |||||||||
A = 0.197 | A = 0.198 | ||||||||||
Production-weighting | SM | df = 1 | |||||||||
A = 0.245[2], 0.273[5], 0.282[10] | |||||||||||
SCP | df = 1 | df = 1 | |||||||||
A = 0.250[2], 0.325[5], 0.350[10], | A = 0.316[2], 0.424[5], 0.452[10] | ||||||||||
Neutral-weighting | SM | df = 1 | |||||||||
A = 0.222[2], 0.222[5], 0.222[10] | |||||||||||
SCP | df = 1 | df = 1 | |||||||||
A = 0.171[2], 0.162[5], 0.161[10] | A = 0.119[2], 0.088[5], 0.082[10] | ||||||||||
(C) | |||||||||||
Polycultures | Neutral | Production | Welfare | ||||||||
Weighting coefficients | |||||||||||
1 | 2 | 5 | 10 | 2 | 5 | 10 | |||||
SC | rs | 15 | 14 | 12 | 10 | 15 | 16 | 16 | |||
rank | 2nd | 2nd | 2nd | 1st | 2nd | 2nd | 3rd | ||||
SCP | rs | 10 | 10 | 10 | 11 | 10 | 10 | 11 | |||
rank | 1st | 1st | 1st | 2nd | 1st | 1st | 1st | ||||
SM | rs | 17 | 18 | 20 | 21 | 16 | 16 | 15 | |||
rank | 3rd | 3rd | 3rd | 3rd | 3rd | 2nd | 2nd |
(A) | |||||||||||
Priorities | Weighting Coefficients | ||||||||||
1 | 2 | 5 | 10 | ||||||||
Neutral-weighting | df = 1 | - | - | - | |||||||
A = 0.103 | |||||||||||
Production-weighting | - | df = 1 | df = 1 | df = 1 | |||||||
A = 0.104 | A = 0.104 | A = 0.105 | |||||||||
Welfare-weighting | - | df = 1 | df = 1 | df = 1 | |||||||
A = 0.094 | A = 0.091 | A = 0.091 | |||||||||
(B) | |||||||||||
Polycultures | Neutral | Production | Welfare | ||||||||
Weighting coefficients | |||||||||||
1 | 2 | 5 | 10 | 2 | 5 | 10 | |||||
CRG | rs | 17 | 18 | 21 | 22 | 17 | 17 | 17 | |||
rank | 1st | 1st | 1st | 1st | 1st | 1st | 1st | ||||
CRP | rs | 34 | 33 | 30 | 29 | 34 | 34 | 34 | |||
rank | 2nd | 2nd | 2nd | 2nd | 2nd | 2nd | 2nd |
(A) | ||||||||||
Priorities | Weighting Coefficients | |||||||||
1 | 2 | 5 | 10 | |||||||
Neutral-weighting | df = 2 | - | - | - | ||||||
A = 0.148 | ||||||||||
Production-weighting | - | df = 2 | df = 2 | df = 2 | ||||||
A = 0.139 | A = 0.136 | A = 0.135 | ||||||||
Welfare-weighting | - | df = 2 | df = 2 | df = 2 | ||||||
A = 0.161 | A = 0.170 | A = 0.172 | ||||||||
(B) | ||||||||||
Priorities | Polycultures | PS | PT | |||||||
Neutral-weighting | PT | df = 1 | ||||||||
A = 0.871 | ||||||||||
PST | df = 1 | df = 1 | ||||||||
A = 0.072 | A = 0.196 | |||||||||
Production-weighting | PT | df = 1 | ||||||||
A = 0.099[2], 0.103[5], 0.103[10] | ||||||||||
PST | df = 1 | df = 1 | ||||||||
A = 0.050[2], 0.040[5], 0.039[10], | A = 0.191[2], 0.191[5], 0.192[10] | |||||||||
Welfare-weighting | PT | df = 1 | ||||||||
A = 0.079[2], 0.074[5], 0.074[10] | ||||||||||
PST | df = 1 | df = 1 | ||||||||
A = 0.104[2], 0.121[5], 0.124[10] | A = 0.104[2], 0.121[5], 0.124[10] | |||||||||
(C) | ||||||||||
Polycultures | Neutral | Production | Welfare | |||||||
Weighting coefficients | ||||||||||
1 | 2 | 5 | 10 | 2 | 5 | 10 | ||||
PS | rs | 12 | 13 | 14 | 15 | 13 | 13 | 13 | ||
rank | 1st | 2nd | 2nd | 2nd | 1st | 2nd | 2nd | |||
PST | rs | 13 | 11 | 10 | 10 | 15 | 18 | 19 | ||
rank | 2nd | 1st | 1st | 1st | 3rd | 3rd | 3rd | |||
PT | rs | 17 | 18 | 18 | 18 | 14 | 11 | 10 | ||
rank | 3rd | 3rd | 3rd | 3rd | 2nd | 1st | 1st |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoussou, N.; Thomas, M.; Pasquet, A.; Lecocq, T. Finding the Best Match: A Ranking Procedure of Fish Species Combinations for Polyculture Development. Life 2022, 12, 1315. https://doi.org/10.3390/life12091315
Amoussou N, Thomas M, Pasquet A, Lecocq T. Finding the Best Match: A Ranking Procedure of Fish Species Combinations for Polyculture Development. Life. 2022; 12(9):1315. https://doi.org/10.3390/life12091315
Chicago/Turabian StyleAmoussou, Nellya, Marielle Thomas, Alain Pasquet, and Thomas Lecocq. 2022. "Finding the Best Match: A Ranking Procedure of Fish Species Combinations for Polyculture Development" Life 12, no. 9: 1315. https://doi.org/10.3390/life12091315
APA StyleAmoussou, N., Thomas, M., Pasquet, A., & Lecocq, T. (2022). Finding the Best Match: A Ranking Procedure of Fish Species Combinations for Polyculture Development. Life, 12(9), 1315. https://doi.org/10.3390/life12091315