Transcriptome Analysis Provides Insights into Potentilla bifurca Adaptation to High Altitude
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. RNA Extraction and Transcriptome Sequencing
2.3. De Novo Assembly and Functional Annotation
2.4. Identification and Annotation of Differentially Expressed Genes
2.5. Identification of Transcription Factors and SSRs
2.6. Gene Ontology and KEGG Pathway Analysis
3. Results
3.1. Sequencing and Transcriptome Assembly
3.2. Sequence Assembly and Annotation
3.3. Differential Gene Expression Analysis
3.4. Functional Classification of DEGs
3.5. Transcription Factors and SSRs Analysis
3.6. Metabolic PathwayAanalysis by KEGG
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magana, U.R.; Escudero, A.; Gavilan, R.G. Metabolic and physiological responses of Mediterranean high-mountain and alpine plants to combined abiotic stresses. Physiol. Plant. 2019, 165, 403–412. [Google Scholar]
- Abbott, R.J.; Brennan, A.C. Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130346. [Google Scholar] [CrossRef] [PubMed]
- Rahbek, C.; Borregaard, M.K.; Antonelli, A.; Colwell, R.K.; Holt, B.G.; Nogues-Bravo, D.; Rasmussen, C.; Richardson, K.; Rosing, M.T.; Whittaker, R.J.; et al. Building mountain biodiversity: Geological and evolutionary processes. Science 2019, 365, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.M.; Chalmandrier, L.; Lenoir, J.; Burgess, T.I.; Essl, F.; Haider, S.; Kueffer, C.; McDougall, K.; Milbau, A.; Nunez, M.A.; et al. Lags in the response of mountain plant communities to climate change. Glob. Chang. Biol. 2018, 24, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, Y.; Wang, Z.; Shrestha, N.; Liu, J. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet Plateau. New Phytol. 2022, 234, 392–404. [Google Scholar] [CrossRef]
- Dobes, C.; Paule, J. A comprehensive chloroplast DNA-based phylogeny of the genus Potentilla (Rosaceae): Implications for its geographic origin, phylogeography and generic circumscription. Mol. Phylogenet. Evol. 2010, 56, 156–175. [Google Scholar] [CrossRef]
- Torsten, E.; Magnus, L.; Mats, T.; Pia, Ö.; Jenny, E.E.S. Sibbaldia: A molecular phylogenetic study of a remarkably polyphyletic genus in Rosaceae. Plant Syst. Evol. 2015, 301, 171–184. [Google Scholar]
- Wang, M.; Lin, P.; Fan, Y. The complete chloroplast genome of Sibbaldianthe bifurca Linnaeus. Mitochondrial DNA B Resour. 2021, 6, 1968–1970. [Google Scholar] [CrossRef]
- Xun, T.; Yang, Z.; Jinping, L. Effects of Potentilla bifurca var. humilior on the expression of glucose and lipid metabolism key enzymes and hormones in type 2 diabetes mellitus rats. China J. Tradit. Chin. Med. Pharm. 2019, 34, 1703–1706. [Google Scholar]
- Piao, X.; Tian, Y.; Mi, X.; Cui, J. Tyrosinase inhibition of Potentilla bifurca. China J. Chin. Mater. Medica 2009, 34, 1952–1954. [Google Scholar]
- Godin, V.N. Population structure of Potentilla bifurca L. in the altai-sayan mountain region. Contemp. Probl. Ecol. 2009, 2, 456–461. [Google Scholar] [CrossRef]
- Li, X.; Li, Y. The complete chloroplast genome sequence of Potentilla bifurca L. Mitochondrial DNA B Resour. 2022, 7, 753–754. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiang, S.; Fu, X. Characterization of the complete chloroplast genome sequence of medicinal plant: Potentilla bifurca (Rosaceae). Mitochondrial DNA B Resour. 2021, 6, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Buti, M.; Moretto, M.; Barghini, E.; Mascagni, F.; Natali, L.; Brilli, M.; Lomsadze, A.; Sonego, P.; Giongo, L.; Alonge, M.; et al. The genome sequence and transcriptome of Potentilla micrantha and their comparison to Fragaria vesca (the woodland strawberry). Gigascience 2018, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gan, X.; Li, S.; Zong, Y.; Cao, D.; Li, Y.; Liu, R.; Cheng, S.; Liu, B.; Zhang, H. Chromosome-Level Genome Assembly Provides New Insights into Genome Evolution and Tuberous Root Formation of Potentilla anserina. Genes 2021, 12, 1993. [Google Scholar] [CrossRef]
- Xue, L.; Wang, J.; Zhao, J.; Zheng, Y.; Wang, H.F.; Wu, X.; Xian, C.; Lei, J.J.; Zhong, C.F.; Zhang, Y.T. Study on cyanidin metabolism in petals of pink-flowered strawberry based on transcriptome sequencing and metabolite analysis. BMC Plant Biol. 2019, 19, 423. [Google Scholar] [CrossRef]
- Ding, Y.; Xue, L.; Guo, R.X.; Luo, G.J.; Song, Y.T.; Lei, J.J. De Novo Assembled Transcriptome Analysis and Identification of Genic SSR Markers in Red-Flowered Strawberry. Biochem. Genet. 2019, 57, 607–622. [Google Scholar] [CrossRef]
- Jinqiu, Y.; Bing, L.; Tingting, S.; Jinglei, H.; Zelai, K.; Lu, L.; Wenhua, H.; Tao, H.; Xinyu, H.; Zengqing, L.; et al. Integrated physiological and transcriptomic analyses responses to altitude stress in Oat (Avena sativa L.). Front. Genet. 2021, 12, 638683. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, M.L.; Yue, M.; Zhao, Z.; Zhao, G.F.; Li, Z.H. Comparative transcriptome analysis reveals adaptive evolution of Notopterygium incisum and Notopterygium franchetii, two high-alpine herbal species endemic to China. Molecules 2017, 22, 1158. [Google Scholar] [CrossRef]
- Liu, X.W.; Wang, Y.H.; Shen, S.K. Transcriptomic and metabolomic analyses reveal the altitude adaptability and evolution of different-colored flowers in alpine Rhododendron species. Tree Physiol. 2022, 42, 1100–1113. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.; Tian, F.; Yang, D.C.; Meng, Y.Q.; Kong, L.; Luo, J.; Gao, G. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017, 45, D1040–D1045. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Munch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Conesa, A.; Gotz, S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genom. 2008, 2008, 619832. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef]
- Liu, W.; Tang, X.; Qi, X.; Fu, X.; Ghimire, S.; Ma, R.; Li, S.; Zhang, N.; Si, H. The ubiquitin conjugating enzyme: An important ubiquitin transfer platform in ubiquitin-proteasome system. Int. J. Mol. Sci. 2020, 21, 2894. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Anjum, N.A.; Gill, R.; Yadav, S.; Hasanuzzaman, M.; Fujita, M.; Mishra, P.; Sabat, S.C.; Tuteja, N. Superoxide dismutase—Mentor of abiotic stress tolerance in crop plants. Environ. Sci. Pollut. Res. Int. 2015, 22, 10375–10394. [Google Scholar] [CrossRef] [PubMed]
- Rios-Touma, B.; Holzenthal, R.W.; Razuri-Gonzales, E.; Heckenhauer, J.; Pauls, S.U.; Storer, C.G.; Frandsen, P.B. De novo genome assembly and annotation of an andean caddisfly, atopsyche davidsoni sykora, 1991, a model for genome research of high-elevation adaptations. Genome Biol. Evol. 2022, 14, evab286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Y.; Landis, J.B.; Shen, J.; Zhang, H.; Kuang, T.; Sun, W.; Sun, J.; Tiamiyu, B.B.; Deng, T.; et al. Transcriptomes of Saussurea (asteraceae) provide insights into high-altitude adaptation. Plants 2021, 10, 1715. [Google Scholar] [CrossRef]
- Bodega, G.; Alique, M.; Puebla, L.; Carracedo, J.; Ramirez, R.M. Microvesicles: ROS scavengers and ROS producers. J. Extracell. Vesicles 2019, 8, 1626654. [Google Scholar] [CrossRef]
- Dvorak, P.; Krasylenko, Y.; Zeiner, A.; Samaj, J.; Takac, T. Signaling toward reactive oxygen species-scavenging enzymes in plants. Front. Plant Sci. 2020, 11, 618835. [Google Scholar] [CrossRef]
- Li, W.; Pang, S.; Lu, Z.; Jin, B. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants 2020, 9, 1515. [Google Scholar] [CrossRef]
- Goyal, P.; Devi, R.; Verma, B.; Hussain, S.; Arora, P.; Tabassum, R.; Gupta, S. WRKY transcription factors: Evolution, regulation, and functional diversity in plants. Protoplasma 2022, 1–18. [Google Scholar] [CrossRef]
- Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 2012, 1819, 86–96. [Google Scholar] [CrossRef]
- Feng, K.; Hou, X.L.; Xing, G.M.; Liu, J.X.; Duan, A.Q.; Xu, Z.S.; Li, M.Y.; Zhuang, J.; Xiong, A.S. Advances in AP2/ERF super-family transcription factors in plant. Crit. Rev. Biotechnol. 2020, 40, 750–776. [Google Scholar] [CrossRef] [PubMed]
- Ritonga, F.N.; Ngatia, J.N.; Wang, Y.; Khoso, M.A.; Farooq, U.; Chen, S. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. Physiol. Mol. Biol. Plants 2021, 27, 1953–1968. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Nolan, T.; Jiang, H.; Tang, B.; Zhang, M.; Li, Z.; Yin, Y. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell 2019, 31, 1788–1806. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Hsu, F.C.; Li, J.P.; Wang, N.N.; Shih, M.C. The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol. 2011, 156, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Kunwar, R.M.; Bussmann, R.W. Ethnobotany in the Nepal himalaya. J. Ethnobiol. Ethnomed. 2008, 4, 24. [Google Scholar] [CrossRef]
- Fujino, N.; Tenma, N.; Waki, T.; Ito, K.; Komatsuzaki, Y.; Sugiyama, K.; Yamazaki, T.; Yoshida, S.; Hatayama, M.; Yamashita, S.; et al. Physical interactions among flavonoid enzymes in snapdragon and torenia reveal the diversity in the flavonoid metabolon organization of different plant species. Plant J. 2018, 94, 372–392. [Google Scholar] [CrossRef]
- Zalapa, J.E.; Cuevas, H.; Zhu, H.; Steffan, S.; Senalik, D.; Zeldin, E.; McCown, B.; Harbut, R.; Simon, P. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am. J. Bot. 2012, 99, 193–208. [Google Scholar] [CrossRef]
- Narnoliya, L.K.; Kaushal, G.; Singh, S.P.; Sangwan, R.S. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis. BMC Genom. 2017, 18, 74. [Google Scholar] [CrossRef]
- Al-Qurainy, F.; Alshameri, A.; Gaafar, A.R.; Khan, S.; Nadeem, M.; Alameri, A.A.; Tarroum, M.; Ashraf, M. Comprehensive Stress-Based De novo transcriptome assembly and annotation of guar (Cyamopsis tetragonoloba (L.) Taub.): An important industrial and forage crop. Int. J. Genom. 2019, 2019, 7295859. [Google Scholar] [CrossRef]
- Agarwal, M.; Shrivastava, N.; Padh, H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 2008, 27, 617–631. [Google Scholar] [CrossRef]
- Heubl, G. New aspects of DNA-based authentication of Chinese medicinal plants by molecular biological techniques. Planta Med. 2010, 76, 1963–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | Replicate | Raw Reads | Clean Reads | Clean Bases (Gbp) | Q20 (%) | Q30 (%) | GC (%) |
---|---|---|---|---|---|---|---|
PbH | 1 | 64,595,390 | 64,583,098 | 8.94 | 97.34 | 91.91 | 47.2 |
2 | 70,717,906 | 70,697,140 | 9.77 | 96.82 | 90.47 | 47.93 | |
3 | 53,381,820 | 53,368,334 | 7.35 | 97.85 | 93.44 | 46.1 | |
PbL | 1 | 51,198,370 | 51,187,944 | 6.99 | 98.2 | 94.42 | 45.5 |
2 | 62,122,516 | 62,109,606 | 8.59 | 96.99 | 90.99 | 46.2 | |
3 | 103,556,534 | 10,3521,292 | 14.38 | 97.83 | 93.34 | 45.74 |
Pfam ID | Pfam Description | Number |
---|---|---|
PF13041, PF01535, PF12854, PF13812 | Pentatricopeptide repeat family | 2639 |
PF12799, PF00560, PF13855 | Leucine-rich repeats | 1710 |
PF00069 | Protein kinase domain | 1402 |
PF07714 | Protein tyrosine kinase | 1287 |
PF00071, PF08477 | Ras family | 763 |
PF00076 | RNA recognition motif | 550 |
PF00083 | Sugar (and other) transporter | 511 |
PF07690 | Major facilitator superfamily | 482 |
PF00067 | Cytochrome P450 | 476 |
PF00012 | Hsp70 protein | 425 |
PF00400 | WD domain | 419 |
PF17177 | Pentacotripeptide-repeat region of PRORP | 390 |
PF00106 | Short-chain dehydrogenase | 372 |
PF13561 | Enoyl-(Acyl carrier protein) reductase | 353 |
PF00931 | NB-ARC domain | 332 |
PF00025 | ADP-ribosylation factor family | 313 |
PF00005 | ABC transporter | 305 |
PF00271 | Helicase-conserved C-terminal domain | 292 |
PF00240 | Ubiquitin family | 286 |
PF00153 | Mitochondrial carrier protein | 281 |
Family | Total | Positive | Negative |
---|---|---|---|
Homeobox | 24 | 21 | 3 |
zf-C2H2 | 22 | 14 | 8 |
bZIP_2 | 17 | 12 | 5 |
bZIP_1 | 15 | 9 | 6 |
AP2 | 14 | 14 | 0 |
HLH | 14 | 14 | 0 |
NAM | 9 | 8 | 1 |
B3 | 8 | 8 | 0 |
SRF-TF | 6 | 5 | 1 |
WRKY | 6 | 6 | 0 |
HSF_DNA-bind | 4 | 2 | 2 |
Ets | 3 | 3 | 0 |
CP2 | 2 | 0 | 2 |
CSD | 2 | 2 | 0 |
E2F_TDP | 2 | 2 | 0 |
GATA | 2 | 2 | 0 |
Pou | 2 | 2 | 0 |
SBP | 2 | 2 | 0 |
zf-C4 | 2 | 2 | 0 |
CUT | 1 | 1 | 0 |
DDT | 1 | 0 | 1 |
Forkhead | 1 | 1 | 0 |
Not1 | 1 | 1 | 0 |
Runt | 1 | 1 | 0 |
STAT bind | 1 | 1 | 0 |
zf-BED | 1 | 1 | 0 |
zf-Dof | 1 | 1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Li, J.; Liu, L.; Jing, H.; Zuo, W.; Zeng, Y. Transcriptome Analysis Provides Insights into Potentilla bifurca Adaptation to High Altitude. Life 2022, 12, 1337. https://doi.org/10.3390/life12091337
Tang X, Li J, Liu L, Jing H, Zuo W, Zeng Y. Transcriptome Analysis Provides Insights into Potentilla bifurca Adaptation to High Altitude. Life. 2022; 12(9):1337. https://doi.org/10.3390/life12091337
Chicago/Turabian StyleTang, Xun, Jinping Li, Likuan Liu, Hui Jing, Wenming Zuo, and Yang Zeng. 2022. "Transcriptome Analysis Provides Insights into Potentilla bifurca Adaptation to High Altitude" Life 12, no. 9: 1337. https://doi.org/10.3390/life12091337
APA StyleTang, X., Li, J., Liu, L., Jing, H., Zuo, W., & Zeng, Y. (2022). Transcriptome Analysis Provides Insights into Potentilla bifurca Adaptation to High Altitude. Life, 12(9), 1337. https://doi.org/10.3390/life12091337