Sorghum Allelopathy: Alternative Weed Management Strategy and Its Impact on Mung Bean Productivity and Soil Rhizosphere Properties
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site, Climate and Soil Sampling
2.2. Experimental Treatments and Design
2.3. Crop Management
2.4. Sorghum Crop Water Extracts Preparation
2.5. Sorghum Crop Residues Preparation
2.6. Data Analysis
2.6.1. Soil Attributes, Microbial Population, and Soil Enzymatic Activities
2.6.2. Weeds Dynamics
2.6.3. Yield Attributes
2.6.4. Statistical Analysis
3. Results
3.1. Weeds Dynamics
3.2. Yield and Yield Parameters
3.3. Rhizosphere Soil Microbial Population and Enzymes Activity
3.4. Rhizosphere Soil Properties and Nutrient Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Islam, S.M.F.; Karim, Z. World’s demand for food and water: The consequences of climate change. Desal. Chall. Opport. 2019, 57–84. [Google Scholar] [CrossRef]
- World Resources Institute. Creating a Sustainable Food Future. Report 2013–2014: Interim Findings; World Resources Institute: Washington, DC, USA, 2014. [Google Scholar]
- Tian, X.; Engel, B.A.; Qian, H.; Hua, E.; Sun, S.; Wang, Y. Will reaching the maximum achievable yield potential meet future global food demand? J. Clean. Prod. 2021, 294, 126285. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Liu, Z. Effects of climate change on paddy expansion and potential adaption strategies for sustainable agriculture development across Northeast China. Appl. Geogr. 2022, 141, 102667. [Google Scholar] [CrossRef]
- Khan, M.T.; Rafi, M.A.; Sultana, R.; Munir, A.; Ahmad, S. Diversity and Bio-Geography of Subfamily Eumeninae (Vespidae: Hymenoptera) in Sindh, Pakistan. Pak. J. Zool. 2022, 54, 1729. [Google Scholar] [CrossRef]
- dos Reis, J.C.; Rodrigues, G.S.; de Barros, I.; Rodrigues, R.D.A.R.; Garrett, R.D.; Valentim, J.F.; Smukler, S. Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. J. Clean. Prod. 2021, 283, 124580. [Google Scholar] [CrossRef]
- Farooq, N.; Abbas, T.; Tanveer, A.; Jabran, K. Allelopathy for weed management. Coevol. Sec. Metab. 2020, 1152, 505–519. [Google Scholar]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Thukral, A.K. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Abbas, T.; Tanveer, A.; Maqbool, R.; Zohaib, A.; Shehzad, M.A. Glyphosate hormesis in broad-leaved weeds: A challenge for weed management. Arch. Agron. Soil Sci. 2017, 63, 344–351. [Google Scholar] [CrossRef]
- Peerzada, A.M.; O’Donnell, C.; Adkins, S. Optimizing Herbicide Use in Herbicide-Tolerant Crops: Challenges, Opportunities, and Recommendations. Agron. Crops 2019, 283–316. [Google Scholar] [CrossRef]
- Farooq, M.; Jabran, K.; Cheema, Z.A.; Wahid, A.; Siddique, K.H.M. Role of allelopathy in agricultural pest management. Pest Manag. Sci. 2011, 67, 494–506. [Google Scholar] [CrossRef]
- Macias, F.A. New approaches in allelopathy, challenge for the new millenium. Third World Congr. Allelopath. Abstr. 2002, 38, 227–233. [Google Scholar]
- Islam, A.M.; Yeasmin, S.; Qasem, J.R.S.; Juraimi, A.S.; Anwar, M.P. Allelopathy of medicinal plants: Current status and future prospects in weed management. Agric. Sci. 2018, 9, 1569–1588. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, A.; Matloob, A.; Hussain, A.; Hussain, S.; Aslam, F.; Zamir, S.I.; Chattha, M.U. Wheat residue management options affect productivity, weed growth and soil properties in direct-seeded fine aromatic rice. Clean Soil Air Water 2015, 43, 1259–1265. [Google Scholar] [CrossRef]
- Qi, G.; Li, N.; Sun, X.S.; Wang, D. Overview of sorghum industrial utilization. Sorghum State Art Future Perspect. 2019, 58, 463–476. [Google Scholar]
- Hussain, M.I.; Danish, S.; Sánchez-Moreiras, A.M.; Vicente, Ó.; Jabran, K.; Chaudhry, U.K.; Reigosa, M.J. Unraveling sorghum allelopathy in agriculture: Concepts and implications. Plants 2021, 10, 1795. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Khan, I.; Nawaz, A.; Cheema, M.A.; Siddique, K.H. Using sorghum to suppress weeds in autumn planted maize. Crop Prot. 2020, 133, 105162. [Google Scholar] [CrossRef]
- Cheema, Z.A.; Khaliq, A. Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semi-arid region of Punjab. Agric. Ecosyst. Environ. 2000, 79, 105–112. [Google Scholar] [CrossRef]
- Cheema, Z.A.; Khaliq, A.; Akhtar, S. Use of sorghum water extract as a natural weed inhibitor in spring mung bean. Int. J. Agric. Biol. 2001, 3, 515–518. [Google Scholar]
- More, S.S.; Shinde, S.E.; Kasture, M.C. Root exudates a key factor for soil and plant: An overview. Pharma Innov. J. 2020, 8, 449–459. [Google Scholar]
- Kumar, A.; Dubey, A. Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. J. Adv. Res. 2020, 24, 337–352. [Google Scholar] [CrossRef]
- Komal, N.; Zaman, Q.U.; Yasin, G.; Nazir, S.; Ashraf, K.; Waqas, M.; Ahmad, M.; Batool, A.; Talib, I.; Chen, Y. Carbon Storage Potential of Agroforestry System near Brick Kilns in Irrigated Agro-Ecosystem. Agriculture 2022, 12, 295. [Google Scholar] [CrossRef]
- Bao, Y.; Dolfing, J.; Guo, Z.; Chen, R.; Wu, M.; Li, Z.; Feng, Y. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome 2021, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, Z.; Zulfiqar, F.; Datta, A.; Hasan, A.K.; Sarker, A. Potential and challenges of organic agriculture in Bangladesh: A review. J. Crop Improv. 2021, 35, 403–426. [Google Scholar] [CrossRef]
- Scavo, A.; Abbate, C.; Mauromicale, G. Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant Soil. 2019, 442, 23–48. [Google Scholar]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis: Laboratory Manual; International Center for Agricultural Research in Dry Areas (ICARDA): Aleppo, Syria; Nacional Agricultural Research Centre: Islamabad, Pakistan, 2001; p. 172. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis: Part 1. Physical and Mineroalogical Methods, 2nd ed.; Agronomy Monograph No. 9; Lute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 363–382. [Google Scholar]
- Vomocil, J.A. Porosity. In Methods of Soil Analysis; Blake, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 299–314. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Total nitrogen. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeny, D.R., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1982; pp. 1119–1123. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining soil organic matter and aproposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Olsen, S.O.; Sommers, I.E. Phosphorus. In Methods of Soil Analysis, 2nd ed.; Chemical and Microbial Properties: Part 2; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Helmke, P.A.; Sparks, D.L. Lithium, sodium and potassium, rubidium and cesium. In Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA, 1996; pp. 551–575. [Google Scholar]
- Aslam, Z.; Yasir, M.; Jeon, C.O.; Chung, Y.R. Lysobacter oryzae sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.) managed under no-tillage practice. Int. J. Syst. Evol. Microbiol. 2008, 59, 675–680. [Google Scholar] [CrossRef]
- Janssen, P.H.; Yates, P.S.; Grinton, B.E.; Taylor, P.M.; Sait, M. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 2002, 68, 2391–2396. [Google Scholar] [CrossRef]
- Wu, W.X.; Ye, Q.F.; Min, H.; Duan, X.J.; Jin, W.M. Bt-transgenic rice straw affects the culturable micro biota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biol. Biochem. 2004, 36, 289–295. [Google Scholar]
- Martin, J.P. Use of acid, rose bengal and streptomycin in the plate method for enumerating soil fungi. Soil Sci. 1950, 69, 215–232. [Google Scholar] [CrossRef]
- Min, H.; Ye, Y.F.; Chen, Z.Y.; Wu, W.X.; Du, Y.F. Effects of butachlor on microbial populations and enzyme activities in paddy soil. J. Environ. Sci. Health 2001, 36, 581–595. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Rab, A.; Khan, M.R.; Haq, S.U.; Zahid, S.; Asim, M.; Afridi, M.Z.; Munsif, F. Impact of biochar on mungbean yield and yield components. Pure Appl. Biol. 2016, 5, 632–640. [Google Scholar] [CrossRef]
- Won, O.J.; Uddin, M.R.; Park, K.W.; Pyon, J.Y.; Park, S.U. Phenolic compounds in sorghum leaf extracts and their effects on weed control. Allelopath. J. 2013, 31, 147. [Google Scholar]
- Ullah, R.; Aslam, Z.; Maitah, M.; Zaman, Q.; Bashir, S.; Hassan, W.; Chen, Z. Sustainable weed control and enhancing nutrient use efficiency in crops through Brassica (Brassica compestris L.) allelopathy. Sustainability 2020, 12, 5763. [Google Scholar]
- Cheema, Z.A.; Khaliq, A.; Abbas, M.; Farooq, M. Allelopathic potential of sorghum (Sorghum bicolor L. Moench) cultivars for weed management. Allelopath. J. 2007, 20, 167. [Google Scholar]
- Essien, B.; Essien, J.; Nwite, J.; Eke, K.; Anaele, U.; Ogbu, J. Effect of organic mulch materials on maize performance and weed growth in the derived savanna of South Eastern Nigeria. Nigeria Agric. J. 2009, 40, 1–9. [Google Scholar] [CrossRef]
- Zaji, B.; Majd, A. Allelopathic potential of canola (Brassica napus L.) residues on weed suppression and yield response of maize (Zea mays L.). In Proceedings of the International Conference on Chemical, Ecology and Environmental Sciences (IICCEES), Pattaya, Thailand, 17–18 December 2011; pp. 457–460. [Google Scholar]
- Kamara, A.; Akobundu, I.; Chikoye, D.; Jutzi, S. Selective control of weeds in an arable crop by mulches from some multipurpose trees in south western Nigeria. Agrofor. Sys. 2000, 50, 17–26. [Google Scholar]
- Khaliq, A.; Hussain, S.; Matloob, A.; Tanveer, A.; Aslam, F. Swine cress (Cronopus didymus L. Sm.) residues inhibit rice emergence and early seedling growth. Phillipine Agric. Sci. 2014, 96, 419–425. [Google Scholar]
- Khaliq, A.; Matloob, A.; Farooq, M.; Mushtaq, M.N.; Khan, M.B. Effect of crop residues applied isolated or in combination on the germination and seedling growth of horse purslane (Trianthema portulacastrum). Planta Daninha 2011, 29, 121–128. [Google Scholar]
- Khaliq, A.; Matloob, A.; Irshad, M.S.; Tanveer, A.; Zamir, M.S.I. Organic weed management in maize through integration of allelopathic crop residues. Pak. J. Weed Sci. Res. 2010, 16, 409–420. [Google Scholar]
- Khanh, T.D.; Chung, M.I.; Xuan, T.D.; Tawata, S. The exploitation of crop allelopathy in sustainable agricultural production. J. Agron. Crop Sci. 2005, 191, 172–184. [Google Scholar]
- Jabran, K.; Mahajan, G.; Sardana, V.; Chauhan, B.S. Allelopathy for weed control in agricultural systems. Crop Protect. 2015, 72, 57–65. [Google Scholar]
- Shehzad, T.; Okuno, K. Genetic analysis of QTLs controlling allelopathic characteristics in sorghum. PLoS ONE 2020, 15, 235896. [Google Scholar]
- Alsaadawi, I.S.; Khaliq, A.; Lahmod, N.R.; Matloob, A. Weed management in broad bean (Vicia faba L.) through allelopathic Sorghum bicolor (L.) Moench residues and reduced rate of a pre plant herbicide. Allelopath. J. 2011, 32, 203–212. [Google Scholar]
- Kruidhof, H.; Bastiaans, L.; Kropff, M. Ecological weed management by cover cropping: Effects on weed growth in autumn and weed establishment in spring. Weed Res. 2008, 48, 492–502. [Google Scholar]
- Stagnari, F.; Galieni, A.; Speca, S.; Cafiero, G.; Pisante, M. Effects of straw mulch on growth and yield of durum wheat during transition to conservation agriculture in Mediterranean environment. Field Crops Res. 2014, 167, 51–63. [Google Scholar]
- Alam, M.K.; Islam, M.M.; Salahin, N.; Hasanuzzaman, M. Effect of tillage practices on soil properties and crop productivity in wheat mungbean rice cropping system under subtropical climatic conditions. Sci. World J. 2014, 1, 437283. [Google Scholar]
- Adugna, A.; Abegaz, A. Effects of land use changes on the dynamics of selected soil properties in northeast Wellega, Ethiopia. Soil 2016, 2, 63–70. [Google Scholar]
- Marchiosi, R.; dos Santos, W.D.; Constantin, R.P.; de Lima, R.B.; Soares, A.R.; Finger-Teixeira, A.; Mota, T.R.; de Oliveira, D.M.; Foletto-Felipe, M.D.P.; Abrahão, J. Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem. Rev. 2020, 19, 865–906. [Google Scholar]
- Raza, T.; Khan, M.Y.; Nadeem, S.M.; Imran, S.; Qureshi, K.N.; Mushtaq, M.N.; Eash, N.S. Biological management of selected weeds of wheat through co-application of allelopathic rhizobacteria and sorghum extract. Biol. Control 2021, 164, 104775. [Google Scholar]
- Nawaz, A.; Lal, R.; Shrestha, R.K.; Farooq, M. Mulching affects soil properties and greenhouse gases emissions under long term no-till and plough till systems in Alfisol of central Ohio. Land Develop. Degrad. 2016, 28, 673–681. [Google Scholar]
- Vilkiene, M.; Mockeviciene, I.; Karcauskiene, D.; Suproniene, S.; Doyeni, M.O.; Ambrazaitiene, D. Biological indicators of soil quality under different tillage systems in retisol. Sustainability 2021, 13, 9624. [Google Scholar] [CrossRef]
- Duke, O.S. Proving Allelopathy in crop-weed interactions. Weed Sci. 2015, 63, 121–132. [Google Scholar] [CrossRef]
- Rathore, S.S.S.; Shekhawat, K. Crop Residue Recycling for Improving Crop Productivity and Soil Health. In Handbook of Research on Green Technologies for Sustainable Management of Agricultural Resources; IGI Global: New Delhi, India, 2022; pp. 290–308. [Google Scholar]
- Farhangi-Abriz, S.; Ghassemi-Golezani, K.; Torabian, S. A short-term study of soil microbial activities and soybean productivity under tillage systems with low soil organic matter. Appl. Soil Ecol. 2021, 168, 104122. [Google Scholar] [CrossRef]
- Głąb, L.; Sowiński, J.; Bough, R.; Dayan, F.E. Allelopathic potential of sorghum (Sorghum bicolor (L.) Moench) in weed control: A comprehensive review. Adv. Agron. 2017, 145, 43–95. [Google Scholar]
- Burezq, H.; Davidson, M.K. Ecological Intensification for Soil Management: Biochar—A Natural Solution for Soil from Agricultural Residues. In Sustainable Intensification for Agroecosystem Services and Management; Springer: Singapore, 2021; pp. 403–455. [Google Scholar]
- Ravankar, H.N.; Patil, R.; Puranik, R.B. Decomposition of different organic residues in soil. PKV Res. J. 2000, 24, 23–25. [Google Scholar]
- Anda, P. The reciprocal effect between soil water content and the soil bulk density on the growth and yield of onion (Allium cepa L.). J. Appl. Agric. Sci. Technol. 2021, 5, 84–94. [Google Scholar]
- Andrews, E.M.; Kassama, S.; Smith, E.E.; Brown, P.H.; Khalsa, S.D.S. A review of potassium-rich crop residues used as organic matter amendments in tree crop agroecosystems. Agriculture 2021, 11, 580. [Google Scholar]
- Krishna, G.A.; Misra, A.K.; Hati, K.M.; Bandyopadhyay, K.K.; Ghosh, P.K.; Mohanty, M. Rice residue management options and effects on soil properties and crop productivity. Food Agric. Environ. 2004, 2, 224–231. [Google Scholar]
- Verhulst, N.; Nelissen, V.; Jespers, N.; Haven, H.; Sayre, K.D.; Raes, D.; Deckers, J.; Govaerts, B. Soil water content, maize yield and its stability as affected by tillage and crop residue management in rainfed semi-arid highlands. Plant Soil 2011, 344, 73–85. [Google Scholar] [CrossRef]
- Nazir, S.; Zaman, Q.U.; Abbasi, A.; Komal, N.; Riaz, U.; Ashraf, K.; Ahmad, N.; Agerwal, S.; Chen, Y. Bioresource Nutrient Recycling in the Rice–Wheat Cropping System: Cornerstone of Organic Agriculture. Plants 2021, 10, 2323. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, D.; Xue, C. Study of comprehensive utilization efficiency of returning rice straw to field. Chin. Agric. Sci. Bull. 2002, 4, 7–10. [Google Scholar]
- Jin, Y.Q.; Du, D.J.; Gao, H.J.; Chang, J.; Zhang, L.G. Effects of maize straw returning on water dynamics and water use efficiency of winter wheat in lime concretion black soil. J. Triticeae Crops 2013, 33, 1–7. [Google Scholar]
- Raut, V.U.; Bhowate, R.T.; Waghmare, A.G. Effect of crop residues on nutrient contents in green gram-sunflower cropping sequence. Green Farm 2010, 1, 14–19. [Google Scholar]
- Saqib, S.; Uddin, S.; Zaman, W.; Ullah, F.; Ayaz, A.; Asghar, M.; Rehman, S.; Munis, M.F.H.; Chaudhary, H.J. Characterization and phytostimulatory activity of bacteria isolated from tomato (Lycopersicon esculentum Mill.) rhizosphere. Microb. Pathog. 2021, 140, 103966. [Google Scholar]
- Abbas, T.; Ahmad, A.; Kamal, A.; Nawaz, M.Y.; Jamil, M.A.; Saeed, T.; Ateeq, M. Ways to use allelopathic potential for weed management: A review. Int. J. Food Sci. Agric. 2021, 5, 492–498. [Google Scholar] [CrossRef]
- Hussain, M.I.; Reigosa, M.J. Secondary metabolites, ferulic acid and p-hydroxybenzoic acid induced toxic effects on photosynthetic process in Rumex acetosa L. Biomolecules 2021, 11, 233. [Google Scholar] [CrossRef]
Soil Indices | Experiment Year 1 | Experiment Year 2 |
---|---|---|
pH | 7.85 | 7.79 |
Electrical Conductivity (dS m−1) | 1.11 | 1.19 |
Total Soil Organic Matter (%) | 0.53 | 0.61 |
Available Phosphorous (mg kg−1) | 6.74 | 6.95 |
Available Potassium (mg kg−1) | 123.00 | 131.00 |
Total Soil Nitrogen (g kg−1) | 0.24 | 0.29 |
Bacteria (cfu/g × 105) | 35.00 | 45.00 |
Fungi (cfu/g × 104) | 5.00 | 8.00 |
Microbial Activity (mg CO2-C kg−1 d−1) | 3.05 | 3.14 |
Alkaline Phosphatase Activity (μg NP g−1 soil h−1) | 135.00 | 143.00 |
Dehydrogenase Activity (μg TPFg−1 soil h−1) | 21.00 | 25.00 |
Months | Weather Indices | Experiment Year 1 | Experiment Year 2 |
---|---|---|---|
March | Maximum Temperature (°C) | 25 | 25 |
Minimum Temperature (°C) | 14 | 14 | |
Rain Fall (mm) | 42 | 68 | |
Relative Humidity (%) | 60 | 64 | |
April | Maximum Temperature (°C) | 32 | 33 |
Minimum Temperature (°C) | 19 | 21 | |
Rain Fall (mm) | 28 | 33 | |
Relative Humidity (%) | 52 | 44 | |
May | Maximum Temperature (°C) | 37 | 39 |
Minimum Temperature (°C) | 24 | 25 | |
Rain Fall (mm) | 41 | 17 | |
Relative Humidity (%) | 33 | 28 | |
June | Maximum Temperature (°C) | 41 | 38 |
Minimum Temperature (°C) | 28 | 26 | |
Rain Fall (mm) | 7 | 12 | |
Relative Humidity (%) | 34 | 39 | |
July | Maximum Temperature (°C) | 37 | 35 |
Minimum Temperature (°C) | 28 | 27 | |
Rain Fall (mm) | 58 | 128 | |
Relative Humidity (%) | 54 | 61 |
Treatments | Year 1 | Year 2 | Mean (a) (T) | Year 1 | Year 2 | Mean (T) | Year 1 | Year 2 | Mean (T) |
---|---|---|---|---|---|---|---|---|---|
Horse Purslane Density (0.25 m−2) | Horse Purslane Fresh Weight (g/0.25 m2) | Horse Purslane Dry Weight (g/0.25 m2) | |||||||
T1 | 41 | 40 | 40 A | 156 | 147 | 152 A | 49 | 47 | 48 A |
T2 | 41 | 32 | 36 B | 135 | 126 | 130 B | 40 | 43 | 41 B |
T3 | 38 | 27 | 32 C | 118 | 99 | 108 C | 37 | 32 | 34 C |
T4 | 22 | 16 | 19 D | 82 | 65 | 73 D | 26 | 21 | 23 D |
T5 | 13 | 12 | 13 E | 48 | 43 | 46 E | 15 | 13 | 14 E |
Mean (b) (Y) | 31 A | 26 B | 104 A | 100 B | 33 A | 31 B | |||
LSD (p ≤ 0.05) | T = 3.76; Y = 2.38 | T = 14.19; Y = 3.15 | T = 4.51; Y = 1.85 | ||||||
Purple Nutsedge Density (0.25 m−2) | Purple Nutsedge Fresh Weight (g/0.25 m2) | Purple Nutsedge Dry Weight (g/0.25 m2) | |||||||
T1 | 10 | 10 | 10 A | 13 | 13 | 13 | 4 | 4 | 4 |
T2 | 9 | 7 | 8 B | 10 | 6 | 8 | 3 | 2 | 3 |
T3 | 7 | 7 | 7 C | 6 | 6 | 6 | 2 | 2 | 2 |
T4 | 6 | 5 | 5 D | 3 | 3 | 3 | 1 | 1 | 1 |
T5 | 3 | 2 | 3 E | 3 | 3 | 3 | 1 | 1 | 1 |
Mean (Y) | 7 A | 6 B | 7 | 6 | 2 | 2 | |||
LSD (p ≤ 0.05) | T = 1.09; Y = 0.68 | NS | NS | ||||||
Total Weed Density (0.25 m−2) | Total Weed Fresh Weight (g/0.25 m2) | Total Weed Dry Weight (g/0.25 m2) | |||||||
T1 | 57.15 a | 56.55 a | 56.85 A | 175.18 | 165.94 | 170.56 A | 58.05 | 55.12 | 56.58 A |
T2 | 52.93 ab | 49.61 bc | 51.27 B | 147.90 | 141.61 | 144.76 B | 49.39 | 47.39 | 48.39 B |
T3 | 45.77 c | 36.55 d | 41.16 C | 130.28 | 112.08 | 121.18 C | 43.79 | 38.02 | 40.91 C |
T4 | 35.98 d | 25.78 e | 30.88 D | 88.16 | 78.70 | 83.93 D | 31.37 | 26.15 | 28.76 D |
T5 | 24.35 e | 18.42 f | 21.39 E | 59.78 | 52.68 | 56.23 E | 20.78 | 19.16 | 19.97 E |
Mean (Y) | 43.12 A | 37.50 B | 120.26 A | 110.20 B | 39.69 A | 38.15 B | |||
LSD (p ≤ 0.05) | T = 3.81; Y = 2.41; T × Y = 5.39 | T = 14.44; Y = 8.13 | T = 4.59; Y = 0.55 |
Treatments | Year 1 | Year 2 | Mean (a) (T) | Year 1 | Year 2 | Mean (T) | Year 1 | Year 2 | Mean (T) |
---|---|---|---|---|---|---|---|---|---|
Final Emergence Count per Plot | Plant Height at Maturity (cm) | Number of Nodules per Plant | |||||||
T1 | 557 | 558 | 558 | 40.7 | 41.2 | 40.9 C | 5 | 5 | 5 C |
T2 | 558 | 560 | 559 | 42.5 | 42.7 | 42.6 C | 7 | 8 | 8 B |
T3 | 560 | 562 | 561 | 42.6 | 43.7 | 43.1 C | 7 | 8 | 8 B |
T4 | 561 | 562 | 562 | 45.5 | 46.6 | 46.0 B | 9 | 9 | 9 AB |
T5 | 563 | 565 | 564 | 47.7 | 49.0 | 48.3 A | 10 | 11 | 11 A |
Mean (b) (Y) | 560 | 561 | 44.0 | 44.4 | 8 | 8 | |||
LSD (p ≤ 0.05) | NS | T = 2.1 | T = 1.79 | ||||||
No. of Pods per Plant | No. of Seeds per Pod | Weight of 1000-Seeds (g) | |||||||
T1 | 13.76 | 15.33 | 14.55 D | 5.43 | 6.37 | 5.90 E | 49.95 | 50.54 | 50.25 E |
T2 | 17.00 | 19.09 | 18.05 C | 6.55 | 7.80 | 7.17 D | 52.58 | 54.03 | 53.31 D |
T3 | 19.45 | 21.19 | 20.32 BC | 6.95 | 8.02 | 7.48 C | 53.25 | 54.90 | 54.08 C |
T4 | 20.03 | 23.99 | 22.32 AB | 7.07 | 9.01 | 8.04 B | 53.76 | 55.66 | 54.71 B |
T5 | 23.55 | 25.72 | 24.63 A | 9.24 | 10.61 | 9.92 A | 54.49 | 56.16 | 55.33 A |
Mean (Y) | 17.96 | 21.86 | 7.05 | 8.36 | 52.81 B | 54.26 A | |||
LSD (p ≤ 0.05) | T = 2.62 | T = 0.25 | T = 0.59; Y = 1.45 | ||||||
Biological Yield (kg ha−1) | Harvest Index (%) | Yield (kg ha−1) | |||||||
T1 | 3196 | 3216 | 3206 E | 22.62 | 22.85 | 22.74 C | 741.9 e | 746.7 e | 744.3 E |
T2 | 3351 | 3410 | 3380 D | 22.48 | 23.07 | 22.78 C | 789.2 d | 811.5 d | 800.4 D |
T3 | 3525 | 3587 | 3556 C | 23.95 | 24.15 | 24.05 B | 844.1 c | 867.6 c | 855.8 C |
T4 | 3660 | 3670 | 3665 B | 24.26 | 24.74 | 24.50 B | 931.2 b | 934.2 b | 932.7 B |
T5 | 3970 | 4242 | 4106 A | 25.67 | 26.35 | 26.01 A | 1009.1 a | 1029.4 a | 1019.3 A |
Mean (Y) | 3540 B | 3625 A | 23.80 B | 24.23 A | 863.70 B | 877.29 A | |||
LSD (p ≤ 0.05) | T = 105.07; Y = 75.92 | T = 0.39; Y = 0.41 | T = 21.97; Y = 11.45; T × Y = 31.07 |
Treatments | Yield (kg ha−1) | Adjusted Yield (kg ha−1) | Gross Income (d) $ ha−1 | Total Cost $ ha−1 | Net Benefits $ ha−1 | Benefit–Cost Ratio |
---|---|---|---|---|---|---|
(a) Control | 744 | 670 | 750 | 615 | 135 | 0.22 |
(b) SWE at 10 L ha−1 | 800 | 720 | 806 | 628 | 179 | 0.29 |
SWE at 20 L ha−1 | 856 | 770 | 863 | 633 | 230 | 0.36 |
(c) SR at 4 tons ha−1 | 933 | 840 | 940 | 688 | 252 | 0.37 |
SR at 6 tons ha−1 | 1019 | 917 | 1027 | 721 | 306 | 0.42 |
Remarks | $44.67/40 kg |
Treatments | Year 1 | Year 2 | Mean (a) (T) | Year 1 | Year 2 | Mean (T) | Year 1 | Year 2 | Mean (T) | Year 1 | Year 2 | Mean (T) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bacteria (cfu/g × 105) 20 (c) DAS | Fungi (cfu/g × 104) 20 DAS | Microbial Activity (mg CO2-C kg−1 d−1) 20 DAS | Alkaline Phosphatase (μg NP g−1 Soil h−1) | |||||||||
T1 | 43 | 44 | 43 D | 7 d | 8 d | 8 C | 3.63 | 3.77 | 3.70 C | 135.47 e | 135.50 e | 135.48 C |
T2 | 46 | 48 | 47 CD | 8 d | 8 d | 8 C | 3.65 | 3.78 | 3.71 C | 135.48 e | 135.55 e | 135.52 C |
T3 | 48 | 49 | 48 C | 8 d | 9 d | 9 C | 3.72 | 3.81 | 3.77 C | 135.78 e | 135.85 e | 135.82 C |
T4 | 64 | 74 | 69 B | 15 c | 20 b | 18 B | 4.88 | 5.05 | 4.97 B | 167.26 d | 173.46 c | 170.36 B |
T5 | 74 | 83 | 79 A | 21 b | 25 a | 23 A | 5.45 | 5.58 | 5.52 A | 185.24 b | 196.22 a | 190.73 A |
Mean (b) (Y) | 55 B | 60 A | 12 B | 14 A | 4.26 B | 4.40 A | 151.85 B | 155.32 A | ||||
LSD (p ≤ 0.05) | T = 4.72; Y = 2.98 | T = 1.55; Y = 0.98; T × Y = 2.20 | T = 0.20; Y = 0.13 | T = 3.85; Y = 2.43; T × Y = 5.44 | ||||||||
Bacteria (cfu/g × 105) (d) AH | Fungi (cfu/g × 104) AH | Microbial Activity (mg CO2-C kg−1 d−1) AH | Dehydrogenase (μg TPFg−1 Soil h−1) | |||||||||
T1 | 21 | 22 | 22 C | 5 f | 6 f | 6 D | 2.99 | 3.13 | 3.06 C | 22.68 d | 23.33 d | 23.00 C |
T2 | 23 | 24 | 24 C | 6 f | 7 f | 7 CD | 3.05 | 3.15 | 3.10 C | 23.09 d | 23.59 d | 23.34 C |
T3 | 24 | 25 | 25 C | 6 f | 9 e | 8 C | 3.08 | 3.17 | 3.13 C | 23.33 d | 24.19 d | 23.76 C |
T4 | 35 | 40 | 38 B | 11 d | 17 b | 14 B | 3.99 | 4.11 | 4.05 B | 32.00 c | 38.00 b | 35.00 B |
T5 | 40 | 44 | 42 A | 14 c | 20 a | 17 A | 4.50 | 4.65 | 4.58 A | 37.33 b | 44.00 a | 40.67 A |
Mean (Y) | 29 B | 31 A | 9 B | 12 A | 3.52 B | 3.64 A | 27.69 B | 30.62 A | ||||
LSD (p ≤ 0.05) | T = 2.21; Y = 1.40 | T = 1.21; Y = 0.76; T × Y = 1.71 | T = 0.28; Y = 0.10 | T = 2.18; Y = 1.37; T × Y = 3.08 |
Treatments | 2014 | 2015 | Mean (a) (T) | 2014 | 2015 | Mean (T) | 2014 | 2015 | Mean (T) | 2014 | 2015 | Mean (T) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil Bulk Density (g cm−3) | Total Soil Porosity (%) | Soil pH | Soil EC (dS m−1) | |||||||||
T1 | 1.48 | 1.46 | 1.47 A | 42.82 | 43.73 | 43.27 C | 7.75 | 7.72 | 7.73 A | 1.07 | 1.11 | 1.09 C |
T2 | 1.47 | 1.46 | 1.46 A | 43.53 | 44.10 | 43.82 C | 7.75 | 7.70 | 7.73 A | 1.11 | 1.14 | 1.12 C |
T3 | 1.47 | 1.46 | 1.46 A | 43.80 | 44.11 | 43.96 C | 7.74 | 7.69 | 7.72 A | 1.12 | 1.14 | 1.13 C |
T4 | 1.41 | 1.29 | 1.35 B | 48.50 | 50.39 | 49.44 B | 7.44 | 7.41 | 7.43 B | 1.23 | 1.27 | 1.25 B |
T5 | 1.38 | 1.23 | 1.30 C | 48.66 | 51.79 | 50.22 A | 7.38 | 7.18 | 7.28 C | 1.32 | 1.36 | 1.34 A |
Mean (b) (Y) | 1.44 A | 1.38 B | 45.46 B | 46.83 A | 7.61 A | 7.54 B | 1.17 B | 1.20 A | ||||
LSD (p ≤ 0.05) | T = 0.04; Y = 0.06 | T = 0.75; Y = 0.92 | T = 0.12; Y = 0.04 | T = 0.07; Y = 0.02 | ||||||||
Total Soil Organic Matter (%) | Total Soil Nitrogen (g kg−1) | Available Potassium (mg kg−1) | Available Phosphorous (mg kg−1) | |||||||||
T1 | 0.67 d | 0.69 d | 0.68 C | 0.22 d | 0.21 d | 0.22 C | 121.45 | 121.93 | 121.69 C | 6.74 d | 6.77 d | 6.76 C |
T2 | 0.68 d | 0.69 d | 0.69 C | 0.22 d | 0.21 d | 0.22 C | 121.52 | 121.64 | 121.58 C | 6.77 d | 6.77 d | 6.78 C |
T3 | 0.69 d | 0.71 d | 0.70 C | 0.22 d | 0.21 d | 0.22 C | 121.52 | 122.00 | 122.76 C | 6.77 d | 6.80 d | 6.79 C |
T4 | 0.96 c | 1.24 ab | 1.10 B | 0.32 c | 0.38 b | 0.35 B | 178.85 | 190.00 | 184.43 B | 8.09 c | 9.28 b | 8.69 B |
T5 | 1.12 b | 1.37 a | 1.25 A | 0.38 b | 0.45 a | 0.42 A | 195.00 | 206.65 | 200.83 A | 9.25 b | 10.31 a | 9.78 A |
Mean (Y) | 0.82 B | 0.94 A | 0.27 B | 0.29 A | 147.67 | 152.45 | 7.53 B | 7.99 A | ||||
LSD (p ≤ 0.05) | T = 0.10; Y = 0.06; T × Y = 0.14 | T = 0.03; Y = 0.01; T × Y = 0.03 | T = 8.43 | T = 0.41; Y = 0.26; T × Y = 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, R.; Aslam, Z.; Attia, H.; Sultan, K.; Alamer, K.H.; Mansha, M.Z.; Althobaiti, A.T.; Al Kashgry, N.A.T.; Algethami, B.; Zaman, Q.u. Sorghum Allelopathy: Alternative Weed Management Strategy and Its Impact on Mung Bean Productivity and Soil Rhizosphere Properties. Life 2022, 12, 1359. https://doi.org/10.3390/life12091359
Ullah R, Aslam Z, Attia H, Sultan K, Alamer KH, Mansha MZ, Althobaiti AT, Al Kashgry NAT, Algethami B, Zaman Qu. Sorghum Allelopathy: Alternative Weed Management Strategy and Its Impact on Mung Bean Productivity and Soil Rhizosphere Properties. Life. 2022; 12(9):1359. https://doi.org/10.3390/life12091359
Chicago/Turabian StyleUllah, Raza, Zubair Aslam, Houneida Attia, Khawar Sultan, Khalid H. Alamer, Muhammad Zeeshan Mansha, Ashwaq T. Althobaiti, Najla Amin T. Al Kashgry, Badreyah Algethami, and Qamar uz Zaman. 2022. "Sorghum Allelopathy: Alternative Weed Management Strategy and Its Impact on Mung Bean Productivity and Soil Rhizosphere Properties" Life 12, no. 9: 1359. https://doi.org/10.3390/life12091359
APA StyleUllah, R., Aslam, Z., Attia, H., Sultan, K., Alamer, K. H., Mansha, M. Z., Althobaiti, A. T., Al Kashgry, N. A. T., Algethami, B., & Zaman, Q. u. (2022). Sorghum Allelopathy: Alternative Weed Management Strategy and Its Impact on Mung Bean Productivity and Soil Rhizosphere Properties. Life, 12(9), 1359. https://doi.org/10.3390/life12091359