The Pre-Discharge Oxygen Uptake Efficiency Slope Predicts One-Year Cardiovascular Events in Acute Decompensated Heart Failure Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Exercise Testing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ponikowski, P.; Anker, S.D.; Alhabib, K.F.; Cowie, M.R.; Force, T.L.; Hu, S.; Jaarsma, T.; Krum, H.; Rastogi, V.; Rohde, L.E.; et al. Heart failure: Preventing disease and death worldwide. ESC Heart Fail. 2014, 1, 4–25. [Google Scholar] [CrossRef]
- Savarese, G.; Lund, L.H. Global Public Health Burden of Heart Failure. Card. Fail. Rev. 2017, 3, 7–11. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Del Buono, M.G.; Arena, R.; Borlaug, B.A.; Carbone, S.; Canada, J.M.; Kirkman, D.L.; Garten, R.; Rodriguez-Miguelez, P.; Guazzi, M.; Lavie, C.J.; et al. Exercise Intolerance in Patients with Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 2209–2225. [Google Scholar] [CrossRef]
- Paolillo, S.; Veglia, F.; Salvioni, E.; Corrà, U.; Piepoli, M.; Lagioia, R.; Limongelli, G.; Sinagra, G.; Cattadori, G.; Scardovi, A.B.; et al. Heart failure prognosis over time: How the prognostic role of oxygen consumption and ventilatory efficiency during exercise has changed in the last 20 years. Eur. J. Heart Fail. 2019, 21, 208–217. [Google Scholar] [CrossRef]
- Guazzi, M.; Adams, V.; Conraads, V.; Halle, M.; Mezzani, A.; Vanhees, L.; Arena, R.; Fletcher, G.F.; Forman, D.E.; Kitzman, D.W.; et al. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur. Heart J. 2012, 33, 2917–2927. [Google Scholar] [CrossRef]
- Arrigo, M.; Jessup, M.; Mullens, W.; Reza, N.; Shah, A.M.; Sliwa, K.; Mebazaa, A. Acute heart failure. Nat. Rev. Dis. Primers 2020, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Deborah Riebe, J.K.E.; Liguori, G.; Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription, 11th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2021. [Google Scholar]
- Dougherty, R.J.; Lindheimer, J.B.; Stegner, A.J.; Van Riper, S.; Okonkwo, O.C.; Cook, D.B. An Objective Method to Accurately Measure Cardiorespiratory Fitness in Older Adults Who Cannot Satisfy Widely Used Oxygen Consumption Criteria. J. Alzheimer’s Dis 2017, 61, 601–611. [Google Scholar] [CrossRef]
- Kaneko, H.; Itoh, H.; Kamiya, K.; Morita, K.; Sugimoto, T.; Konishi, M.; Kiriyama, H.; Kamon, T.; Fujiu, K.; Michihata, N.; et al. Acute-phase initiation of cardiac rehabilitation and clinical outcomes in hospitalized patients for acute heart failure. Int. J. Cardiol. 2021, 340, 36–41. [Google Scholar] [CrossRef]
- Choi, B.G.; Rha, S.W.; Yoon, S.G.; Choi, C.U.; Lee, M.W.; Kim, S.W. Association of Major Adverse Cardiac Events up to 5 Years in Patients With Chest Pain Without Significant Coronary Artery Disease in the Korean Population. J. Am. Heart Assoc. 2019, 8, e010541. [Google Scholar] [CrossRef]
- Scicchitano, P.; Ciccone, M.M.; Iacoviello, M.; Guida, P.; De Palo, M.; Potenza, A.; Basile, M.; Sasanelli, P.; Trotta, F.; Sanasi, M.; et al. Respiratory failure and bioelectrical phase angle are independent predictors for long-term survival in acute heart failure. Scand. Cardiovasc. J. 2022, 56, 28–34. [Google Scholar] [CrossRef]
- Alba, A.C.; Adamson, M.W.; MacIsaac, J.; Lalonde, S.D.; Chan, W.S.; Delgado, D.H.; Ross, H.J. The Added Value of Exercise Variables in Heart Failure Prognosis. J. Card. Fail. 2016, 22, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Gavotto, A.; Vandenberghe, D.A.; Abassi, H.; Huguet, H.; Macioce, V.; Picot, M.-C.; Guillaumont, S.; Matecki, S.; Amedro, P. Oxygen uptake efficiency slope: A reliable surrogate parameter for exercise capacity in healthy and cardiac children? Arch. Dis. Child. 2020, 105, 1167–1174. [Google Scholar] [CrossRef]
- Myers, J.; Arena, R.; Dewey, F.; Bensimhon, D.; Abella, J.; Hsu, L.; Chase, P.; Guazzi, M.; Peberdy, M.A. A cardiopulmonary exercise testing score for predicting outcomes in patients with heart failure. Am. Heart J. 2008, 156, 1177–1183. [Google Scholar] [CrossRef]
- Lin, Y.S.; Huang, H.Y.; Lin, W.H.; Wei, J.; Chen, J.C.; Kuo, L.Y.; Hsu, C.L.; Chen, B.Y.; Cheng, F.H. Oxygen Uptake Efficiency Slope Predicts Major Cardiac Events in Patients With End-Stage Heart Failure. Transplant. Proc. 2016, 48, 956–958. [Google Scholar] [CrossRef]
- Tsai, Y.J.; Li, M.H.; Chen, C.H.; Tuan, S.H.; Chen, Y.J.; Lin, K.L. Improved oxygen uptake efficiency slope in acute myocardial infarction patients after early phase I cardiac rehabilitation. Int. J. Rehabil. Res. 2017, 40, 215–219. [Google Scholar] [CrossRef]
- Buys, R.; Coeckelberghs, E.; Cornelissen, V.A.; Goetschalckx, K.; Vanhees, L. Prognostic value of the post-training oxygen uptake efficiency slope in patients with coronary artery disease. Eur. J. Prev. Cardiol. 2016, 23, 1363–1371. [Google Scholar] [CrossRef]
- Tsai, Y.J.; Li, M.H.; Tsai, W.J.; Tuan, S.H.; Liao, T.Y.; Lin, K.L. Oxygen uptake efficiency slope and peak oxygen consumption predict prognosis in children with tetralogy of Fallot. Eur. J. Prev. Cardiol. 2016, 23, 1045–1050. [Google Scholar] [CrossRef]
- Giannitsi, S.; Bougiakli, M.; Bechlioulis, A.; Kotsia, A.; Michalis, L.K.; Naka, K.K. 6-minute walking test: A useful tool in the management of heart failure patients. Ther. Adv. Cardiovasc. Dis. 2019, 13, 175394471987008. [Google Scholar] [CrossRef]
- Fan, Y.; Gu, X.; Zhang, H. Prognostic value of six-minute walk distance in patients with heart failure: A meta-analysis. Eur. J. Prev. Cardiol. 2019, 26, 664–667. [Google Scholar] [CrossRef]
- Grundtvig, M.; Eriksen-Volnes, T.; Ørn, S.; Slind, E.K.; Gullestad, L. 6 min walk test is a strong independent predictor of death in outpatients with heart failure. ESC Heart Fail. 2020, 7, 2904–2911. [Google Scholar] [CrossRef]
- Chen, Y.J.; Tu, H.P.; Lee, C.L.; Huang, W.C.; Yang, J.S.; Li, C.F.; Chen, C.H.; Lin, K.L. Comprehensive Exercise Capacity and Quality of Life Assessments Predict Mortality in Patients with Pulmonary Arterial Hypertension. Acta Cardiol. Sin. 2019, 35, 55–64. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 85) | |||||
---|---|---|---|---|---|
n (%) | Mean ± SD | 25th | Median | 75th | |
Age (year) | 61.33 ± 14.30 | ||||
Gender | |||||
Male | 64 (75.3) | ||||
Female | 21 (24.7) | ||||
Height (cm) | 163.93 ± 10.94 | 156.40 | 165.30 | 170.60 | |
Weight (kg) | 69.13 ± 19.10 | 58.30 | 63.90 | 75.20 | |
BMI (kg/m2) | 25.22 ± 5.93 | 22.05 | 24.20 | 26.89 | |
NYHA classification | |||||
II | 23 (27.1) | ||||
III | 62 (72.9) | ||||
HF etiology | |||||
DCM | 12 (14.1) | ||||
MR | 23 (27.1) | ||||
CAD | 35 (41.2) | ||||
Obesity | 1 (1.2) | ||||
AS | 4 (4.7) | ||||
Thrombus | 2 (2.4) | ||||
CTD | 1 (1.2) | ||||
Unknown | 7 (8.2) | ||||
Comorbidities | |||||
CVA | 4 (4.7) | ||||
Hypertension | 63 (74.1) | ||||
DM | 31 (36.5) | ||||
Dyslipidemia | 31 (36.5) | ||||
PAOD | 5 (5.9) | ||||
ESRD | 3 (3.5) | ||||
Medications | |||||
ACEI/ARB/ARNI | 74 (87.1) | ||||
Beta-blockers | 69 (81.2) | ||||
Diuretics | 68 (80.0) | ||||
MRA | 56 (65.9) | ||||
Direct vasodilators | 9 (10.6) | ||||
Digitalis | 6 (7.1) | ||||
Sinus node inhibitor | 40 (47.1) | ||||
LVEF (%) | 30.52 ± 7.42 | ||||
BNP (pg/mL) | 1390.29 ± 1395.39 (n = 75) | 324.00 | 884.10 | 2209.00 | |
ATVO2 (mL/min/kg) | 7.72 ± 2.45 | 5.95 | 7.35 | 8.93 | |
AT heart rate | 91 ± 15 | 79 | 89 | 102.5 | |
PeakVO2 (mL/min/kg) | 10.85 ± 3.49 | ||||
Percent predict peakVO2 | 45.55 ± 16.72 | 34.34 | 45.41 | 54.49 | |
Peak heart rate | 103 ± 20 | 90 | 101 | 117.5 | |
6MWT (m) | 260.97 ± 113.66 (n = 83) | 192.0 | 276.0 | 343.2 | |
HR after 6MWT | 87 ± 14 | 76 | 86 | 100 | |
Peak VE (L/min) | 33.73 ± 12.46 | 25.27 | 32.00 | 40.85 | |
HRR | 8 ± 6 | 4 | 7 | 13 | |
VE/VCO2 slope | 40.73 ± 11.12 | 34.05 | 40.30 | 45.10 | |
OUES | 1.03 ± 0.41 | ||||
ECP | 5.89 ± 5.40 | 4.10 | 5.06 | 6.46 | |
VO2/WR slope | 7.85 ± 4.54 | 5.55 | 7.70 | 9.40 | |
Chronotropic index | 0.34 ± 0.21 | 0.20 | 0.32 | 0.46 |
No MACE (n = 42) | MACE (n = 43) | p-Value | |||
---|---|---|---|---|---|
n | Mean ± SD | n | Mean ± SD | ||
Age (year) | 58.50 ± 14.30 | 64.09 ± 13.91 | 0.071 | ||
Gender | 0.850 | ||||
Male | 32 | 32 | |||
Female | 10 | 11 | |||
Height (cm) | 164.40 ± 12.14 | 163.47 ± 19.75 | 0.698 | ||
Weight (kg) | 73.83 ± 22.48 | 64.55 ± 13.88 | 0.026 | ||
BMI (kg/m2) | 26.37 ± 7.16 | 24.11 ± 4.22 | 0.079 | ||
NYHA classification | 0.385 | ||||
II | 14 | 9 | |||
III | 28 | 34 | |||
LVEF (%) | 30.48 ± 7.51 | 30.56 ± 7.41 | 0.960 | ||
BNP (pg/mL) | 1183.11 ± 1226.85 (n = 39) | 1614.74 ± 1543.67 (n = 36) | 0.183 | ||
ATVO2 (mL/min/kg) | 8.23 ± 2.79 | 7.22 ± 1.98 | 0.056 | ||
AT heart rate | 92 ± 18 | 90 ± 12 | 0.629 | ||
PeakVO2 (mL/min/kg) | 11.38 ± 3.86 | 10.33 ± 3.05 | 0.169 | ||
Peak heart rate | 102 ± 22 | 104 ± 18 | 0.742 | ||
6MWT (m) | 268.47 ± 107.78 (n = 41) | 253.65 ± 119.97 (n = 42) | 0.556 | ||
HR after 6MWT | 86 ± 14 | 88 ± 14 | 0.502 | ||
Peak VE (L/min) | 35.02 ± 13.56 | 32.47 ± 11.30 | 0.347 | ||
HRR | 8 ± 5 | 9 ± 7 | 0.432 | ||
VE/VCO2 slope | 39.21 ± 11.96 | 42.22 ± 10.16 | 0.214 | ||
OUES | 1.15 ± 0.47 | 0.92 ± 0.31 | 0.010 | ||
ECP | 5.77 ± 2.41 | 6.01 ± 7.26 | 0.844 | ||
VO2/WR slope | 7.79 ± 3.11 | 7.91 ± 5.64 | 0.905 | ||
Chronotropic index | 0.32 ± 0.22 | 0.36 ± 0.20 | 0.302 |
RER < 1.1 (n = 45) | RER ≥ 1.1 (n = 40) | p-Value | |||
---|---|---|---|---|---|
n | Mean ± SD | n | Mean ± SD | ||
Age (year) | 64.64 ± 15.61 | 57.60 ± 11.76 | 0.022 | ||
Gender | 0.077 | ||||
Male | 30 | 34 | |||
Female | 15 | 6 | |||
Height (cm) | 161.92 ± 12.66 | 166.20 ± 8.19 | 0.072 | ||
Weight (kg) | 67.24 ± 16.53 | 71.26 ± 21.65 | 0.335 | ||
BMI (kg/m2) | 24.88 ± 4.31 | 25.61 ± 7.39 | 0.577 | ||
NYHA classification | 0.485 | ||||
II | 12 | 11 | |||
III | 33 | 29 | |||
LVEF (%) | 31.36 ± 7.78 | 29.58 ± 6.95 | 0.272 | ||
BNP (pg/mL) | 1409.62 ± 1504.40 (n = 41) | 1366.99 ± 1273.55 (n = 34) | 0.896 | ||
ATVO2 (mL/min/kg) | 7.58 ± 2.59 | 7.88 ± 2.31 | 0.587 | ||
AT heart rate | 89 ± 14 | 94 ± 17 | 0.174 | ||
PeakVO2 (mL/min/kg) | 10.21 ± 3.34 | 11.56 ± 3.56 | 0.076 | ||
Peak heart rate | 99 ± 16 | 109 ± 24 | 0.028 | ||
6MWT (m) | 235.39 ± 114.99 (n = 43) | 288.47 ± 106.89 (n = 40) | 0.033 | ||
HR after 6MWT | 89 ± 15 | 87 ± 15 | 0.556 | ||
Peak VE (L/min) | 29.48 ± 9.30 | 38.51 ± 13.87 | 0.001 | ||
HRR | 8 ± 6 | 9 ± 7 | 0.463 | ||
VE/VCO2 slope | 42.38 ± 12.81 | 38.87 ± 8.64 | 0.147 | ||
OUES | 0.99 ± 0.37 | 1.07 ± 0.45 | 0.364 | ||
ECP | 5.04 ± 1.81 | 6.85 ± 7.57 | 0.123 | ||
VO2/WR slope | 7.92 ± 5.80 | 7.78 ± 2.53 | 0.894 | ||
Chronotropic index | 0.28 ± 0.17 | 0.41 ± 0.23 | 0.006 |
Variable | No. of Patients | MACE | HR † | 95% CI |
---|---|---|---|---|
OUES | ||||
>1.25 | 23 | 4 | 1.00 | |
<1.25 | 62 | 39 | 5.421 ** | 1.694 to 17.347 |
Peak VO2 | ||||
>10 mL/min/kg | 50 | 23 | 1.00 | |
<10 mL/min/kg | 35 | 20 | 1.208 | 0.574 to 2.544 |
VE/VCO2 slope | ||||
<45.0 | 62 | 31 | 1.00 | |
>45.0 | 23 | 12 | 0.962 | 0.424 to 2.184 |
6MWT | ||||
>330 m | 24 | 11 | 1.00 | |
<330 m | 61 | 32 | 0.583 | 0.249 to 1.368 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, I.-C.; Chen, Y.-J.; Chen, C.-H.; Huang, W.-C.; Lin, K.-L. The Pre-Discharge Oxygen Uptake Efficiency Slope Predicts One-Year Cardiovascular Events in Acute Decompensated Heart Failure Patients. Life 2022, 12, 1449. https://doi.org/10.3390/life12091449
Huang I-C, Chen Y-J, Chen C-H, Huang W-C, Lin K-L. The Pre-Discharge Oxygen Uptake Efficiency Slope Predicts One-Year Cardiovascular Events in Acute Decompensated Heart Failure Patients. Life. 2022; 12(9):1449. https://doi.org/10.3390/life12091449
Chicago/Turabian StyleHuang, I-Ching, Yi-Jen Chen, Chia-Hsin Chen, Wei-Chun Huang, and Ko-Long Lin. 2022. "The Pre-Discharge Oxygen Uptake Efficiency Slope Predicts One-Year Cardiovascular Events in Acute Decompensated Heart Failure Patients" Life 12, no. 9: 1449. https://doi.org/10.3390/life12091449
APA StyleHuang, I. -C., Chen, Y. -J., Chen, C. -H., Huang, W. -C., & Lin, K. -L. (2022). The Pre-Discharge Oxygen Uptake Efficiency Slope Predicts One-Year Cardiovascular Events in Acute Decompensated Heart Failure Patients. Life, 12(9), 1449. https://doi.org/10.3390/life12091449