Evaluation of the Antihyperglycemic and Antihyperlipidemic Activity of Saussurea hypoleuca Root in Alloxan-Induced Diabetes in Rat Model and Correlation to Its Major Secondary Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of the Plant Extract
2.3. Chemicals and Reagents
2.4. In Vivo Antihyperglycemic and Antihyperlipidemic Evaluation
2.4.1. Animals and Animal Treatment
2.4.2. Acute Oral Toxicity Study
2.4.3. Induction of Diabetes
2.4.4. Experimental Protocol
Short-Term Study
Different Administration Doses Study
Long-Term Study
2.4.5. Analytical Procedure
2.4.6. Histopathological Examination
2.5. Statistical Analysis
2.6. In Silico Molecular Docking Study
3. Results and Discussion
3.1. Functional Substances Predominating in Saussurea hypoleuca Roots
3.2. Acute Oral Toxicity Study
3.3. In Vivo Antihyperglycemic Evaluation of Saussurea hypoleuca Roots
3.3.1. Short-Term Study
3.3.2. Different Administration Dose Study
3.3.3. Long-Term Study
3.4. In Vivo Antihyperlipidemic Evaluation of Saussurea hypoleuca Roots
3.5. In Vivo Evaluation of Saussurea hypoleuca Roots on Liver and Kidney Markers
3.6. Histopathological Examination
3.7. Molecular Docking Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yong, J.; Johnson, J.D.; Arvan, P.; Han, J.; Kaufman, R.J. Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus. Nat. Rev. Endocrinol. 2021, 17, 455–467. [Google Scholar] [CrossRef]
- Goldberg, I.J. Diabetic dyslipidemia: Causes and consequences. J. Clin. Endocrinol. Metab. 2001, 86, 965–971. [Google Scholar] [CrossRef]
- Carson, J.L.; Scholz, P.M.; Chen, A.Y.; Peterson, E.D.; Gold, J.; Schneider, S.H. Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. J. Am. College Cardiol. 2002, 40, 418–423. [Google Scholar] [CrossRef]
- Yi, X.; Nickeleit, V.; James, L.R.; Maeda, N. α-Lipoic acid protects diabetic apolipoprotein E-deficient mice from nephropathy. J. Diab. Comp. 2011, 25, 193–201. [Google Scholar] [CrossRef]
- Hill, M.F. Emerging role for antioxidant therapy in protection against diabetic cardiac complications: Experimental and clinical evidence for utilization of classic and new antioxidants. Curr. Cardiol. Rev. 2008, 4, 259–268. [Google Scholar] [CrossRef]
- Youssef, F.S.; Ashour, M.L.; El-Beshbishy, H.A.; Ahmed Hamza, A.; Singab, A.N.B.; Wink, M. Pinoresinol-4-O-β-D-glucopyranoside: A lignan from prunes (Prunus domestica) attenuates oxidative stress, hyperglycaemia and hepatic toxicity in vitro and in vivo. J. Pharm. Pharmacol. 2020, 72, 1830–1839. [Google Scholar] [CrossRef]
- Goldstein, B.J. Clinical translation of “a diabetes outcome progression trial”: ADOPT appropriate combination oral therapies in type 2 diabetes. J. Clin. Endocrinol. Metab. 2007, 92, 1226–1228. [Google Scholar] [CrossRef]
- Hao, E.; Tyrberg, B.; Itkin-Ansari, P.; Lakey, J.R.; Geron, I.; Monosov, E.Z.; Barcova, M.; Mercola, M.; Levine, F. Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nat. Med. 2006, 12, 310–316. [Google Scholar] [CrossRef]
- Thabet, A.A.; Youssef, F.S.; Korinek, M.; Chang, F.-R.; Wu, Y.-C.; Chen, B.-H.; El-Shazly, M.; Singab, A.N.B.; Hwang, T.-L. Study of the anti-allergic and anti-inflammatory activity of Brachychiton rupestris and Brachychiton discolor leaves (Malvaceae) using in vitro models. BMC Complement. Alt. Med. 2018, 18, 299. [Google Scholar] [CrossRef]
- Wang, Y.F.; Ni, Z.Y.; Dong, M.; Cong, B.; Shi, Q.W.; Gu, Y.C.; Kiyota, H. Secondary metabolites of plants from the genus Saussurea: Chemistry and biological activity. Chem. Biodivers. 2010, 7, 2623–2659. [Google Scholar] [CrossRef]
- Medicine, J.C.O.N. A Dictionary of the Traditional Chinese Medicines; Shanghai Science and Technology Press: Shanghai, China, 1997. [Google Scholar]
- Yi, T.; Zhao, Z.-Z.; Yu, Z.-L.; Chen, H.-B. Comparison of the anti-inflammatory and anti-nociceptive effects of three medicinal plants known as “Snow Lotus” herb in traditional Uighur and Tibetan medicines. J. Ethnopharmacol. 2010, 128, 405–411. [Google Scholar] [CrossRef]
- Singh, G.; Rai, I.D.; Rawat, G.S.; Goraya, G.S.; Jalal, J.S. Additions to the flora of Great Himalayan National Park, Western Himalaya. Ind. J. Forest. 2015, 38, 375–381. [Google Scholar] [CrossRef]
- Arshad, N.; Ishtiaq, S.; Khan, F.Z. HPLC, GC-MS Analysis, Hepatoprotective and Antioxidant Activities of Saussurea hypoleuca spreng. root. Egypt. J. Chem. 2021, 64, 4343–4349. [Google Scholar] [CrossRef]
- Arshad, N.; Ishtiaq, S. Proximate analysis and in vitro biological assays of Saussurea hypoleuca Spreng. root. Pakistan J. Pharm. Sci. 2019, 32, 1235–1243. [Google Scholar]
- Arshad, N.; Ishtiaq, S.; Khan, F.Z.; Danish, Z.; Rashid, A.J.; Ijaz, B.; Tariq, S. GC-MS analysis, anticancer and anti-inflammatory activities of Saussurea hypoleuca spreng. Root. Pakistan J. Pharm. Sci. 2021, 34, 291–300. [Google Scholar]
- Elhady, S.S.; Arshad, N.; Ishtiaq, S.; Bayram, R.; Amin, A.; Bogari, H.A.; Abdelhameed, R.F.; Youssef, F.S.; Ashour, M.L. Phytochemical characterization and heavy metal and thermal analyses of Saussurea hypoleuca root and evaluation of its anthelmintic and antioxidant activity in vitro and in silico. Separations 2022, 9, 138. [Google Scholar] [CrossRef]
- Li, S.; Han, Q.; Qiao, C.; Song, J.; Lung Cheng, C.; Xu, H. Chemical markers for the quality control of herbal medicines: An overview. Chin. Med. 2008, 3, 7. [Google Scholar] [CrossRef]
- OECD. OECD Guidelines for the Testing of Chemicals; Organization for Economic: Copenhagen, Denmark, 1994. [Google Scholar]
- Jadhav, J.; Masirkar, V.; Deshmukh, V. Antihyperglycemic effect of Diospyros melanoxylon (Roxb.) bark against alloxan-induced diabetic rats. Int. J. Pharmtech. Res. 2009, 1, 196–200. [Google Scholar]
- Kesari, A.N.; Gupta, R.K.; Singh, S.K.; Diwakar, S.; Watal, G. Hypoglycemic and antihyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. J. Ethnopharmacol. 2006, 107, 374–379. [Google Scholar] [CrossRef]
- Waqar, M.A.; Mahmood, Y. Anti-platelet, anti-hypercholesterolemic and anti-oxidant effects of ethanolic extracts of Brassica oleracea in high fat diet provided rats. World App. Sci. J. 2010, 8, 107–112. [Google Scholar]
- Pandhare, R.B.; Sangameswaran, B.; Mohite, P.B.; Khanage, S.G. Antidiabetic activity of aqueous leaves extract of Sesbania sesban (L.) Merrin. streptozotocin induced diabetic rats. Avicenna J. Med. Biotechnol. 2011, 3, 37–43. [Google Scholar]
- Nabi, S.A.; Kasetti, R.B.; Sirasanagandla, S.; Tilak, T.K.; Kumar, M.V.J.; Rao, C.A. Antidiabetic and antihyperlipidemic activity of Piper longum root aqueous extract in STZ induced diabetic rats. BMC Complement. Alt. Med. 2013, 13, 37. [Google Scholar] [CrossRef]
- Eross, J.; Kreutzmann, D.; Jimenez, M.; Keen, R.; Rogers, S.; Cowell, C.; Vines, R.; Silink, M. Colorimetric measurement of glycosylated protein in whole blood, red blood cells, plasma and dried blood. Annals Clin. Biochem. 1984, 21, 477–483. [Google Scholar] [CrossRef]
- Zlatkis, A.; Zak, B.; Boyle, A.J. A new method for the direct determination of serum cholesterol. J. Lab. Clin. Med. 1953, 41, 486–492. [Google Scholar]
- Foster, L.B.; Dunn, R.T. Stable reagents for determination of serum triglycerides by a colorimetric Hantzsch condensation method. Clin. Chem. 1973, 19, 338–340. [Google Scholar] [CrossRef]
- Burstein, M.; Scholnick, H.; Morfin, R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J. Lipid Res. 1970, 11, 583–595. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Suanarunsawat, T.; Ayutthaya, W.D.N.; Songsak, T.; Thirawarapan, S.; Poungshompoo, S. Antioxidant activity and lipid-lowering effect of essential oils extracted from Ocimum sanctum L. leaves in rats fed with a high cholesterol diet. J. Clin. Biochem. Nut. 2009, 46, 52–59. [Google Scholar] [CrossRef]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef]
- Otto, A.; Oliver, H.; Jane, M. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 1946, 164, 321–329. [Google Scholar]
- Slot, C. Plasma creatinine determination a new and specific Jaffe reaction method. Scandinavian J. Clin. Lab. Investig. 1965, 17, 381–387. [Google Scholar] [CrossRef]
- Wybenga, D.R.; Di Giorgio, J.; Pileggi, V.J. Manual and automated methods for urea nitrogen measurement in whole serum. Clin. Chem. 1971, 17, 891–895. [Google Scholar] [CrossRef]
- Janibekov, A.A.; Youssef, F.S.; Ashour, M.L.; Mamadalieva, N.Z. New flavonoid glycosides from two Astragalus species (Fabaceae) and validation of their antihyperglycaemic activity using molecular modelling and in vitro studies. Ind. Crops Prod. 2018, 118, 142–148. [Google Scholar] [CrossRef]
- Altyar, A.E.; Ashour, M.L.; Youssef, F.S. Premna odorata: Seasonal metabolic variation in the essential oil composition of its leaf and verification of its anti-ageing potential via in vitro assays and molecular modelling. Biomolecules 2020, 10, 879. [Google Scholar] [CrossRef]
- Labib, R.M.; Ebada, S.S.; Youssef, F.S.; Ashour, M.L.; Ross, S.A. Ursolic acid, a natural pentacylcic triterpene from Ochrosia elliptica and its role in the management of certain neglected tropical diseases. Pharmacog. Mag. 2016, 12, 319–325. [Google Scholar]
- Lenzen, S. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia 2008, 51, 216–226. [Google Scholar] [CrossRef]
- Wrenshall, G.; Collins-Williams, J.; Best, C. Initial changes in the blood sugar of the fasted anesthetized dog after alloxan. Am. J. Physiol.-Legacy Content. 1950, 160, 228–246. [Google Scholar] [CrossRef]
- Poongothai, K.; Ponmurugan, P.; Ahmed, K.S.Z.; Kumar, B.S.; Sheriff, S. Antihyperglycemic and antioxidant effects of Solanum xanthocarpum leaves (field grown & in vitro raised) extracts on alloxan induced diabetic rats. Asian Pac. J. Trop. Med. 2011, 4, 778–785. [Google Scholar]
- Yazdanpanah, S.; Rabiee, M.; Tahriri, M.; Abdolrahim, M.; Rajab, A.; Jazayeri, H.E.; Tayebi, L. Evaluation of glycated albumin (GA) and GA/HbA1c ratio for diagnosis of diabetes and glycemic control: A comprehensive review. Crit. Rev. Clin. Lab. Sci. 2017, 54, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Howard, B.V. Lipoprotein metabolism in diabetes mellitus. J. Lipid Res. 1987, 28, 613–628. [Google Scholar] [CrossRef]
- Newfield, R.S.; Dewan, A.K.; Jain, S. Dyslipidemia in children with type 2 diabetes vs. obesity. Pediatric Diabetes 2008, 9, 115–121. [Google Scholar] [CrossRef]
- Hulbert, A.J.; Turner, N.; Storlien, L.; Else, P. Dietary fats and membrane function: Implications for metabolism and disease. Biol. Rev. 2005, 80, 155–169. [Google Scholar] [CrossRef]
- Baquer, N.Z.; Gupta, D.; Raju, J. Regulation of metabolic pathways in liver and kidney during experimental diabetes: Effects of antidiabetic compounds. Ind. J. Clin.Biochem. 1998, 13, 63–80. [Google Scholar] [CrossRef]
- Elhady, S.S.; Youssef, F.S.; Alahdal, A.M.; Almasri, D.M.; Ashour, M.L. Anti-hyperglycaemic evaluation of Buddleia indica leaves using in vitro, in vivo and in silico studies and its correlation with the major phytoconstituents. Plants 2021, 10, 2351. [Google Scholar] [CrossRef]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef]
- Ibitoye, O.B.; Ajiboye, T.O. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Arch. Physiol. Biochem. 2018, 124, 410–417. [Google Scholar] [CrossRef]
- Cherng, Y.-G.; Tsai, C.-C.; Chung, H.-H.; Lai, Y.-W.; Kuo, S.-C.; Cheng, J.-T. Antihyperglycemic action of sinapic acid in diabetic rats. J. Agri. Food Chem. 2013, 61, 12053–12059. [Google Scholar] [CrossRef]
Groups | 0 h | 1 h | 2 h | 3 h | 4 h | 5 h | 6 h |
---|---|---|---|---|---|---|---|
Normal | 75.9 ± 7.0 | 77.3 ± 7.6 | 76.6 ± 6.0 | 79.2 ± 4.8 | 76.1 ± 6.6 | 78.4 ± 2.8 | 77.5 ± 4.9 |
Diabetic | 309.2 ± 11.5 † | 305.3 ± 10.3 | 333.9 ± 14.7 | 347.8 ± 18.9 | 319.9 ± 16.6 | 326.2 ± 15.3 | 357.0 ± 16.4 |
Methanol | 300.9 ± 16.4 † | 260.8 ± 16.3 | 246.9 ± 8.61 | 240.1 ± 9.6 | 232.7 ± 8.0 * | 229.6 ± 9.4 * | 204.5 ± 8.6 ** |
n-Hexane | 307.9 ± 12.1 † | 300.2 ± 17.7 | 308.2 ± 15.2 | 311.5 ± 13.7 | 310.4 ± 13.5 | 315.5 ± 18.1 | 323.7 ± 13.0 |
Chloroform | 299.0 ± 15.9 † | 295.7 ± 15.3 | 304.5 ± 15.6 | 314.3 ± 13.9 | 304.7 ± 12.7 | 317.0 ± 11.2 | 322.2 ± 12.3 |
Ethyl acetate | 334.0 ± 14.6 † | 263.8 ± 12.7 | 223.8 ± 12.1 | 162 ± 10.9 ** | 119.0 ± 8.8 ** | 92.3 ± 10.8 ** | 79.2 ± 4.8 ** |
n-Butanol | 294.4 ± 16.7 † | 290.3 ± 15.4 | 298.7 ± 16.7 | 300.8 ± 14.0 | 303.7 ± 15.6 | 307.0 ± 13.9 | 311.2 ± 16.3 |
Aqueous | 298.0 ± 13.9 † | 293.7 ± 13.2 | 300.9 ± 16.4 | 309.2 ± 11.5 | 307.0 ± 20.1 | 313.7 ± 10.4 | 320.5 ± 17.0 |
Groups | 0 h | 1 h | 2 h | 3 h | 4 h | 5 h | 6 h |
---|---|---|---|---|---|---|---|
Normal | 76.6 ± 7.2 | 78.9 ± 8.4 | 76.4 ± 5.8 | 75.9 ± 6.6 | 73.9 ± 7.4 | 78.1 ± 5.2 | 70.7 ± 4.1 |
Diabetic | 334.12 ± 11.4 † | 333.7 ± 12.4 | 329.7 ± 13.2 | 355.2 ± 11.6 | 343.23 ± 11.8 | 353.2 ± 5.4 | 351. ± 12.3 |
Meth (200) | 300.9 ± 16.4 † | 260.8 ± 16.3 | 246.9 ± 8.6 * | 240.1 ± 9.6 * | 232.7 ± 8.0 * | 229.6 ± 9.4 * | 204.5 ± 8.6 * |
Meth (400) | 308.6 ± 13.9 † | 276.3 ± 12.7 | 215.5 ± 14.9 * | 161.6 ± 12.1 ** | 116.8 ± 8.7 ** | 97.4 ± 8.0 ** | 81.4 ± 10.0 ** |
E.A (200) | 330.1 ± 12.3 † | 260.6 ± 11.3 | 220.7 ± 10.5 * | 165.4 ± 8.1 ** | 117.7 ± 9.2 ** | 88.9 ± 7.8 ** | 79.3 ± 5.4 ** |
E.A (400) | 313.1 ± 11.3 † | 269.3 ± 10.8 | 211.0 ± 7.9 * | 165.2 ± 19.7 ** | 136.2 ± 10.0 ** | 113.9 ± 8.1 ** | 70.9 ± 8.6 ** |
Standard | 322.6 ± 6.6 † | 291.9 ± 7.6 | 271.6 ± 8.1 | 248.9 ± 11.1 * | 223.6 ± 6.8 * | 202.9 ± 8.7 ** | 226.6 ± 15.8 * |
Groups | 1st d | 10th d | 20th d | 30th d | Weight (g) |
---|---|---|---|---|---|
Normal | 82.1 ± 5.3 a | 89.4 ± 6.2 a | 87.1 ± 5.3 a | 83.8 ± 4.9 a | 218.2 ± 5.3 ab |
Diabetic | 350.9 ± 7.6 b | 423.2 ± 5.3 c | 431.0 ± 9.1 d | 444.6 ± 5.9 e | 170.7 ± 8.0 c |
Meth (400) | 310.1 ± 7.8 b | 179.2 ± 7.6 a | 104.5 ± 6.6 a | 102.2 ± 5.3 a | 216.8 ± 8.9 ab |
E.A (400) | 292.7 ± 15.7 b | 186.9 ± 4.2 a | 105.1 ± 6.0 a | 101.3 ± 6.1 a | 216 ± 5.1 ab |
Standard | 309.4 ± 7.8 b | 276.6 ± 4.7 b | 242.3 ± 8.7 b | 207.5 ± 6.7 b | 216.8 ± 4.1 ab |
Compounds | Human α-Glucosidase (HAG) | ATP Citrate Lyase (ACL) |
---|---|---|
Decanedioic acid | −47.68 | −40.22 |
Dioctyl ether | −37.33 | −29.99 |
Hexadecanoic acid | −46.42 | −34.84 |
Isopropyl myristate | −43.86 | −34.15 |
Oleic acid | −29.48 | −23.86 |
Tetracosapentaene | −32.76 | −15.70 |
Kaempferol | −37.05 | −22.29 |
Luteolin | −43.28 | −30.32 |
Myricetin | −48.86 | −32.87 |
Quercetin | −43.90 | −26.51 |
Sinapic acid | −29.82 | −27.43 |
Caffeic acid | −28.42 | −23.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, N.; Ishtiaq, S.; Kamran, S.H.; Rehman, M.S.-u.; Akbar, S.; Rehman, S.; Rehman, S.; Hareeri, R.H.; Fadil, S.A.; Youssef, F.S.; et al. Evaluation of the Antihyperglycemic and Antihyperlipidemic Activity of Saussurea hypoleuca Root in Alloxan-Induced Diabetes in Rat Model and Correlation to Its Major Secondary Metabolites. Life 2022, 12, 1451. https://doi.org/10.3390/life12091451
Arshad N, Ishtiaq S, Kamran SH, Rehman MS-u, Akbar S, Rehman S, Rehman S, Hareeri RH, Fadil SA, Youssef FS, et al. Evaluation of the Antihyperglycemic and Antihyperlipidemic Activity of Saussurea hypoleuca Root in Alloxan-Induced Diabetes in Rat Model and Correlation to Its Major Secondary Metabolites. Life. 2022; 12(9):1451. https://doi.org/10.3390/life12091451
Chicago/Turabian StyleArshad, Numera, Saiqa Ishtiaq, Sairah Hafeez Kamran, Muhammad Sajid-ur Rehman, Shehla Akbar, Saira Rehman, Sarah Rehman, Rawan H. Hareeri, Sana A. Fadil, Fadia S. Youssef, and et al. 2022. "Evaluation of the Antihyperglycemic and Antihyperlipidemic Activity of Saussurea hypoleuca Root in Alloxan-Induced Diabetes in Rat Model and Correlation to Its Major Secondary Metabolites" Life 12, no. 9: 1451. https://doi.org/10.3390/life12091451
APA StyleArshad, N., Ishtiaq, S., Kamran, S. H., Rehman, M. S. -u., Akbar, S., Rehman, S., Rehman, S., Hareeri, R. H., Fadil, S. A., Youssef, F. S., & Elhady, S. S. (2022). Evaluation of the Antihyperglycemic and Antihyperlipidemic Activity of Saussurea hypoleuca Root in Alloxan-Induced Diabetes in Rat Model and Correlation to Its Major Secondary Metabolites. Life, 12(9), 1451. https://doi.org/10.3390/life12091451