Comprehensive Metabolite Profiling of Cinnamon (Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Cinnamon (C. zeylanicum) Leaf Oil
2.3. Polyphenolic Composition Using LC-HRMS Analysis
2.4. Essential Oil Isolation and GC/MS and GC-FID Analyses of Cinnamon Leaf Oil
2.5. Reducing Ability Assays
2.6. Radical Scavenging Activities
2.7. Acetylcholinesterase Inhibition Assay
2.8. α-Amylase Inhibition Assay
2.9. hCA II Inhibition Assay
2.10. Determination of IC50 Value
2.11. Statistical Analysis
3. Results
3.1. Polyphenolic Composition of Cinnamon Leaf Oil
3.2. Reducing Ability of Cinnamon Leaf Oil
3.3. Radicals Scavenging Effect of Cinnamon Leaf Oil
3.4. Inhibition of Enzymes by Cinnamon Leaf Oil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Topal, M.; Gocer, H.; Topal, F.; Kalin, P.; Polat Kose, P.; Gulcin, I.; Cakmak, K.C.; Kucuk, M.; Durmaz, L.; Goren, A.C.; et al. Antioxidant, antiradical and anticholinergic properties of cynarin purified from the illyrian thistle (Onopordum illyricum L.). J. Enzym. Inhib. Med. Chem. 2016, 31, 266–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koksal, E.; Bursal, E.; Gulcin, I.; Korkmaz, M.; Caglayan, C.; Goren, A.C.; Alwasel, S.H. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by LC-MS/MS. Int. J. Food Prop. 2017, 20, 514–525. [Google Scholar] [CrossRef] [Green Version]
- Gulcin, I.; Beydemir, Ş.; Sat, I.G.; Küfrevioglu, O.I. Evaluation of antioxidant activity of cornelian cherry (Cornus mas L.). Acta Aliment. Hung. 2005, 34, 193–202. [Google Scholar] [CrossRef]
- Gulcin, I.; Sat, I.G.; Beydemir, Ş.; Kufrevioglu, O.I. Evaluation of the in vitro antioxidant properties of extracts of broccoli (Brassica oleracea L.). Ital. J. Food Sci. 2004, 16, 17–30. [Google Scholar]
- Gulcin, I.; Topal, F.; Ozturk Sarikaya, S.B.; Bursal, E.; Goren, A.C.; Bilsel, M. Polyphenol contents and antioxidant properties of medlar (Mespilus germanica L.). Rec. Nat. Prod. 2011, 5, 158–175. [Google Scholar]
- Serbetci Tohma, H.; Gulcin, I. Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). Int. J. Food Prop. 2010, 13, 657–671. [Google Scholar] [CrossRef]
- Elmastas, M.; Türkekul, I.; Ozturk, L.; Gulcin, I.; Isıldak, O.; Aboul-Enein, H.Y. The antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta). Comb. Chem. High Throughput Screen. 2006, 9, 443–448. [Google Scholar] [CrossRef]
- Gulcin, I.; Tel, A.Z.; Kirecci, E. Antioxidant, antimicrobial, antifungal and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. Int. J. Food Prop. 2008, 11, 450–471. [Google Scholar] [CrossRef] [Green Version]
- Ak, T.; Gulcin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef]
- Talaz, O.; Gulcin, I.; Göksu, S.; Saracoglu, N. Antioxidant activity of 5,10-dihydroindeno[1,2-b]indoles containing substituents on dihydroindeno part. Bioorg. Med. Chem. 2009, 17, 6583–6589. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant activity of eugenol-a structure and activity relationship study. J. Med. Food 2011, 14, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Kiziltas, H.; Goren, A.C.; Alwasel, S.; Gulcin, I. Sahlep (Dactylorhiza osmanica): Comprehensive metabolic profiling of Acantholimon caryophyllaceum using LC-HRMS and evaluation of antioxidant activities, enzyme inhibition properties and molecular docking studies. S. Afr. J. Bot. 2022, 151, 743–751. [Google Scholar] [CrossRef]
- Gulcin, I.; Oktay, M.; Kirecci, E.; Kufrevioglu, O.I. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 2003, 83, 371–382. [Google Scholar] [CrossRef]
- Elmastas, M.; Celik, S.M.; Genc, N.; Aksit, H.; Erenler, R.; Gulcin, I. Antioxidant activity of an Anatolian herbal tea-Origanum minutiflorum: Isolation and characterization of its secondary metabolites. Int. J. Food Prop. 2018, 21, 374–384. [Google Scholar] [CrossRef] [Green Version]
- Koksal, E.; Bursal, E.; Dikici, E.; Tozoglu, F.; Gulcin, I. Antioxidant activity of Melissa officinalis leaves. J. Med. Plants Res. 2011, 5, 217–222. [Google Scholar]
- Gulcin, I.; Sat, I.G.; Beydemir, Ş.; Elmastas, M.; Kufrevioglu, O.I. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem. 2004, 87, 393–400. [Google Scholar] [CrossRef]
- Tulini, F.L.; Souza, V.B.; Echalar-Barrientos, M.A.; Thomazini, M.; Pallone, E.M.J.A.; Favaro-Trindade, C.S. Development of solid lipid microparticles loaded with a proanthocyanidin-rich cinnamon extract (Cinnamomum zeylanicum): Potential for increasing antioxidant content in functional foods for diabetic population. Food Res. Int. 2016, 85, 10–18. [Google Scholar] [CrossRef]
- Hanumantha, M.; Vasudeva, R. Influence of patch geometry, post-bark-extraction-treatment on bark recovery and standardizing number of sprouts for bark harvest from coppices in Cinnamomum zeylanicum blume: Implications for sustainable harvesting. Environ. Monit. Assess. 2022, 194, 214. [Google Scholar] [CrossRef]
- Ali, S.S.; Abd Elnabi, M.K.; Alkherkhisy, M.M.; Hasan, A.; Li, F.; Khalil, M.; Sun, J.; El-Zawawy, N. Exploring the potential of Cinnamomum zeylanicum oil against drug resistant Helicobacter pylori-producing cytotoxic genes. J. Appl. Biomed. 2022, 20, 22–36. [Google Scholar] [CrossRef]
- Azab, S.S.; Abdel Jaleel, G.A.; Eldahshan, O.A. Anti-inflammatory and gastroprotective potential of leaf essential oil of Cinnamomum glanduliferum in ethanol-induced rat experimental gastritis. Pharm. Biol. 2017, 55, 1654–1661. [Google Scholar] [CrossRef] [Green Version]
- Sihoglu Tepe, A.; Ozaslan, M. Anti-Alzheimer, anti-diabetic, skin-whitening, and antioxidant activities of the essential oil of Cinnamomum zeylanicum. Ind. Crops Prod. 2020, 145, 112069. [Google Scholar] [CrossRef]
- Oztaskın, N.; Goksu, S.; Demir, Y.; Maras, A.; Gulcin, I. Synthesis of novel bromophenol including diaryl Methanes-Determination of their inhibition effects on carbonic anhydrase and acetylcholinesterase. Molecules 2022, 27, 7426. [Google Scholar] [CrossRef] [PubMed]
- Aktas, A.; Yaklı, G.; Demir, Y.; Gulcin, I.; Aygun, M.; Gok, Y. The palladium-based complexes bearing 1,3-dibenzylbenzimidazolium with morpholine, triphenylphosphine, and pyridine derivate ligands: Synthesis, characterization, structure and enzyme ınhibitions. Heliyon 2022, 8, e10625. [Google Scholar] [CrossRef] [PubMed]
- Gocer, H.; Topal, F.; Topal, M.; Kucuk, M.; Teke, D.; Gulcin, I.; Alwasel, S.H.; Supuran, C.T. Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. J. Enzym. Inhib. Med. Chem. 2016, 31, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Bursal, E.; Taslimi, P.; Goren, A.; Gulcin, I. Assessments of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocat. Agric. Biotechnol. 2020, 28, 101711. [Google Scholar] [CrossRef]
- Durmaz, L.; Kiziltas, H.; Guven, L.; Karagecili, H.; Alwasel, S.; Gulcin, I. Antioxidant, antidiabetic, anticholinergic, and antiglaucoma effects of magnofluorine. Molecules 2020, 27, 5902. [Google Scholar] [CrossRef] [PubMed]
- Bora, R.E.; Genç Bilgicli, H.; Uc, E.M.; Alagoz, M.A.; Zengin, M.; Gulcin, I. Synthesis, characterization, evaluation of metabolic enzyme inhibitors and in silico studies of thymol based 2-amino thiol and sulfonic acid compounds. Chem. Biol. Interact. 2022, 366, 110134. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Scozzafava, A.; Supuran, C.T.; Akıncıoglu, H.; Koksal, Z.; Turkan, F.; Alwasel, S. The effect of caffeic acid phenethyl ester (CAPE) metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione s-transferase, lactoperoxidase and carbonic anhydrase isoenzymes I, II, IX and XII. J. Enzym. Inhib. Med. Chem. 2016, 31, 1095–1101. [Google Scholar] [CrossRef]
- Ozbey, F.; Taslimi, P.; Gulcin, I.; Maras, A.; Goksu, S.; Supuran, C.T. Synthesis, acetylcholinesterase, butyrilcholinesterase, carbonic anhydrase inhibitory and metal chelating properties of some novel diaryl ether. J. Enzym. Inhib. Med. Chem. 2016, 31, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Polat Kose, L.; Bingol, Z.; Kaya, R.; Goren, A.C.; Akincioglu, H.; Durmaz, L.; Koksal, E.; Alwasel, S.; Gulcin, I. Anticholinergic and antioxidant activities of avocado (Folium perseae) leaves—Phytochemical content by LC-MS/MS Analysis. Int. J. Food Prop. 2020, 23, 878–893. [Google Scholar] [CrossRef]
- Gulcin, I.; Kaya, R.; Goren, A.C.; Akıncıoğlu, H.; Topal, M.; Bingol, Z.; Cetin Cakmak, K.; Ozturk Sarikaya, S.B.; Durmaz, L.; Alwasel, S. Anticholinergic, antidiabetic and antioxidant activities of Cinnamon (Cinnamomum verum) bark extracts: Polyphenol contents analysis by LC-MS/MS. Int. J. Food Prop. 2019, 22, 1511–1526. [Google Scholar] [CrossRef] [Green Version]
- Aktas Anıl, D.; Polat, M.F.; Saglamtas, R.; Tarikogulları, A.H.; Alagoz, M.A.; Gulcin, I.; Algul, O.; Burmaoglu, S. Exploring enzyme inhibition profiles of novel halogenated chalcone derivatives on some metabolic enzymes: Synthesis, characterization and molecular modeling studies. Comp. Biol. Chem. 2022, 100, 107748. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, F.; Barut Celepci, D.; Aktas, A.; Gök, Y.; Kaya, R.; Taslimi, P.; Demir, Y.; Gulcin, I. Novel 2-aminopyridine liganded Pd(II) N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure and bioactivity properties. Bioorg. Chem. 2019, 91, 103134. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, F.; Barut Celepci, D.; Aktas, A.; Taslimi, P.; Gok, Y.; Karabıyık, H.; Gulcin, I. 2-Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. J. Mol. Struct. 2018, 1155, 797–806. [Google Scholar] [CrossRef]
- Akter, K.; Lanza, E.A.; Martin, S.A.; Myronyuk, N.; Rua, M.; Raffa, R.B. Diabetes mellitus and Alzheimer’s disease: Shared pathology and treatment? Br. J. Clin. Pharmacol. 2010, 71, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Gulcin, I.; Tel, A.Z.; Goren, A.C.; Taslimi, P.; Alwasel, S. Sage (Salvia pilifera): Determination its polyphenol contents, anticholinergic, antidiabetic and antioxidant activities. J. Food Meas. Charact. 2019, 13, 2062–2074. [Google Scholar] [CrossRef]
- Fatah, N.H.A.; Amen, Y.; Abdel Bar, F.M.; Halim, A.F.; Saad, H.E.A. Antioxidants and α-glucosidase Inhibitors from Lactuca serriola L. Rec. Nat. Prod. 2020, 14, 410–415. [Google Scholar] [CrossRef]
- Dasgin, S.; Gok, Y.; Barut Celepci, D.; Taslimi, P.; Izmirli, M.; Aktas, A.; Gulcin, I. Synthesis, characterization, crystal structure and bioactivity properties of the benzimidazole-functionalized PEPPSI type of Pd(II)NHC complexes. J. Mol. Struct. 2021, 1228, 129442. [Google Scholar] [CrossRef]
- Takım, K.; Yigin, A.; Koyuncu, I.; Kaya, R.; Gulcin, I. Anticancer, anticholinesterase and antidiabetic activities of Tunceli garlic (Allium tuncelianum)—Determining its phytochemical content by LC-MS/MS analysis. J. Food Meas. Charact. 2021, 15, 3323–3335. [Google Scholar] [CrossRef]
- Atmaca, U.; Alp, C.; Akıncıoglu, H.; Karaman, H.S.; Gulcin, I.; Celik, M. Novel hypervalent iodine catalyzed synthesis of α-sulfonoxy ketones: Biological activity and molecular docking studies. J. Mol. Struct. 2021, 1239, 130492. [Google Scholar] [CrossRef]
- Aktas, A.; Barut Celepci, D.; Gok, Y.; Taslimi, P.; Akıncıoglu, H.; Gulcin, I. A novel Ag-N-heterocyclic carbene complex bearing the hydroxyethyl ligand: Synthesis, characterization, crystal and spectral structures and bioactivity properties. Crystals 2020, 10, 171. [Google Scholar] [CrossRef] [Green Version]
- Akıncıoglu, A.; Akıncıoglu, H.; Gulcin, I.; Durdagı, S.; Supuran, C.T.; Goksu, S. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: Novel sulfamoylcarbamates and sulfamides derived from acetophenones. Bioorg. Med. Chem. 2015, 23, 3592–3602. [Google Scholar] [CrossRef] [PubMed]
- Pedrood, K.; Sherefati, M.; Taslimi, P.; Mohammadi-Khanaposhtani, M.; Asgari, M.S.; Hosseini, S.; Rastegar, H.; Larijani, B.; Mahdavi, M.; Taslimi, P.; et al. Design, synthesis, characterization, enzymatic inhibition evaluations, and docking study of novel quinazolinone derivatives. Int. J. Biol. Macromol. 2021, 170, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, S.; Khan, S.; Shafiq, Z.; Taslimi, P.; Ishaq, M.; Sadeghian, N.; Karaman, S.H.; Akhtar, N.; Islam, M.; Asari, A.; et al. Probing 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones as multi-target directed ligands against cholinesterases, carbonic anhydrases and α-glycosidase enzymes. Bioorg. Chem. 2021, 107, 104554. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Trofimov, B.; Kaya, R.; Taslimi, P.; Sobenina, L.; Schmidt, E.; Petrova, O.; Malysheva, S.; Gusarova, N.; Farzaliyev, V.; et al. Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds-determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glucosidase inhibition properties. Bioorg. Chem. 2020, 103, 104171. [Google Scholar] [CrossRef]
- Lolak, N.; Akocak, S.; Turkes, C.; Taslimi, P.; Isık, M.; Beydemir, S.; Gulcin, I.; Durgun, M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg. Chem. 2020, 100, 103897. [Google Scholar] [CrossRef]
- Yigit, B.; Taslimi, P.; Barut Celepci, D.; Taskin-Tok, T.; Yigit, M.; Aygun, M.; Ozdemir, I.; Gulcin, I. Novel PEPPSI-type N-heterocyclic carbene palladium(II) complexes: Synthesis, characterization, in silico studies and enzyme inhibitory properties against some metabolic enzymes. Inorg. Chim. Acta 2023, 544, 121239. [Google Scholar] [CrossRef]
- Boztas, M.; Cetinkaya, Y.; Topal, M.; Gulcin, I.; Menzek, A.; Şahin, E.; Tanc, M.; Supuran, C.T. Synthesis and carbonic anhydrase isoenzymes I, II, IX, and XII inhibitory effects of dimethoxy-bromophenol derivatives incorporating cyclopropane moieties. J. Med. Chem. 2015, 58, 640–650. [Google Scholar] [CrossRef]
- Akbaba, Y.; Akıncıoğlu, A.; Göçer, H.; Goksu, S.; Gulcin, I.; Supuran, C.T. Carbonic anhydrase inhibitory properties of novel sulfonamide derivatives of aminoindanes and aminotetralins. J. Enzyme Inhib. Med. Chem. 2014, 29, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Akbas, F.; Ozaydın, A.; Polat, E.; Onaran, I. Lucilia sericata larval secretions stimulating wound healing effects on rat dermal fibroblast cells. Rec. Nat. Prod. 2020, 14, 340–354. [Google Scholar] [CrossRef]
- Kiziltas, H.; Goren, A.C.; Bingol, Z.; Alwasel, S.H.; Gulcin, I. Anticholinergic, antidiabetic and antioxidant activities of Ferula oriantalis L. determination of its polyphenol contents by LC-HRMS. Rec. Nat. Prod. 2021, 15, 513–528. [Google Scholar]
- Magnusson, B.; Ornemark, U. (Eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; LGC: Teddington, UK, 2014; ISBN 978-91-87461-59-0. [Google Scholar]
- Patino-Bayona, W.R.; Plazas, E.; Bustos-Cortes, J.J.; Prieto-Rodríguez, J.A.; Patino-Ladino, O.J. Essential oils of three Hypericum species from Colombia: Chemical composition, insecticidal and repellent activity against Sitophilus zeamais Motsch. (Coleoptera: Curculionidae). Rec. Nat. Prod. 2021, 15, 111–121. [Google Scholar]
- Suzgec-Selcuk, S.; Ozek, G.; Yur, S.; Goger, F.; Gurdal, M.B.; Toplan, G.G.; Mericli, A.H.; Baser, K.H.C. The leaf and the gall volatiles of Salvia fruticosa miller from Turkey: Chemical composition and biological activities. Rec. Nat. Prod. 2021, 15, 10–24. [Google Scholar] [CrossRef]
- Altun, M.; Goren, A.C. Essential oil composition of Satureja cuneifolia by simultaneous distillation-extraction and thermal desorption GC-MS techniques. J. Essent. Oil Bear. Plants 2007, 10, 139–144. [Google Scholar] [CrossRef]
- Ha, C.T.T.; Thuy, D.T.T.; Nam, V.Q.; Tam, N.K.B.; Setzer, W.N. Composition and antimicrobial activity of essential oils from leaves and twigs of Magnolia hookeri var. Longirostrata, D.X.LI & R. Z. Zhou and Magnolia insignis wall. in Ha Giang province of Vietnam. Rec. Nat. Prod. 2021, 15, 207–212. [Google Scholar]
- Salinas, M.; Bec, N.; Calva, J.; Ramírez, J.; Andrade, J.M.; Vidari, G.; Larroque, C. Chemical composition and anticholinesterase activity of the essential oil from the ecuadorian plant Salvia pichinchensis Benth. Rec. Nat. Prod. 2021, 14, 276–2285. [Google Scholar] [CrossRef]
- Gulcin, I.; Buyukokuroglu, M.E.; Oktay, M.; Kufrevioglu, O.I. Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. Subsp. pallsiana (Lamb.) Holmboe. J. Ethnopharmacol. 2003, 86, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Topal, F.; Topal, M.; Gocer, H.; Kalın, P.; Kocyigit, U.M.; Gulcin, I.; Alwasel, S.H. Antioxidant activity of taxifolin: An activity-structure relationship. J. Enzyme Inhib. Med. Chem. 2016, 31, 674–683. [Google Scholar] [CrossRef]
- Artunc, T.; Menzek, A.; Taslimi, P.; Gulcin, I.; Kazaz, C.; Sahin, E. Synthesis and antioxidant activities of phenol derivatives from 1,6-bis(dimethoxyphenyl)hexane-1,6-dione. Bioorg. Chem. 2020, 100, 103884. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 26, 1199–1200. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant activity of L-Adrenaline: An activity-structure insight. Chem. Biol. Interact. 2009, 179, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Huyut, Z.; Elmastas, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Taslimi, P.; Gulcin, I. Antioxidant and anticholinergic properties of olivetol. J. Food Biochem. 2018, 42, e12516. [Google Scholar] [CrossRef]
- Yigit, B.; Kaya, R.; Taslimi, P.; Isık, Y.; Karaman, M.; Yigit, M.; Ozdemir, I.; Gulcin, I. Imidazolinium chloride salts bearing wing tip groups: Synthesis, molecular docking and metabolic enzymes inhibition. J. Mol. Struct. 2019, 1179, 709–718. [Google Scholar] [CrossRef]
- Bal, S.; Demirci, O.; Sen, B.; Taslimi, P.; Aktas, A.; Gok, Y.; Aygun, M.; Gulcin, I. PEPPSI type Pd(II)NHC complexes bearing Chloro-/fluorobenzyl group: Synthesis, characterization, crystal structures, α-glycosidase and acetylcholinesterase inhibitory properties. Polyhedron 2021, 198, 115060. [Google Scholar] [CrossRef]
- Xiao, Z.; Storms, R.; Tsang, A. A quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 2006, 351, 146–148. [Google Scholar] [CrossRef]
- Karimov, A.; Orujova, A.; Taslimi, P.; Sadeghian, N.; Mammadov, B.; Karaman, H.S.; Farzaliyev, V.; Sujayev, A.; Tas, R.; Alwasel, S.; et al. Novel functionally substituted esters based on sodium diethyldithiocarbamate derivatives: Synthesis, characterization, biological activity and molecular docking studies. Bioorg. Chem. 2020, 99, 103762. [Google Scholar] [CrossRef]
- Scozzafava, A.; Passaponti, M.; Supuran, C.T.; Gulcin, I. Carbonic anhydrase inhibitors: Guaiacol and catechol derivatives effectively inhibit certain human carbonic anhydrase isoenzymes (hCA I, II, IX, and XII). J. Enzyme Inhib. Med. Chem. 2015, 30, 586–591. [Google Scholar] [CrossRef] [Green Version]
- Kucuk, M.; Gulcin, I. Purification and characterization of carbonic anhydrase enzyme from black sea trout (Salmo trutta Labrax Coruhensis) kidney and inhibition effects of some metal ions on the enzyme activity. Environ. Toxicol. Pharmacol. 2016, 44, 134–139. [Google Scholar] [CrossRef]
- Akıncıoglu, A.; Topal, M.; Gulcin, I.; Goksu, S. Novel sulfamides and sulfonamides incorporating tetralin scaffold as carbonic anhydrase and acetylcholine esterase inhibitors. Arch. Pharm. 2014, 347, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M. A Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Coban, T.A.; Beydemir, Ş.; Gulcin, I.; Ekinci, D. The inhibitory effect of ethanol on carbonic anhydrase isoenzymes: In vivo and in vitro studies. J. Enzyme Inhib. Med. Chem. 2005, 23, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Bicer, A.; Taslimi, P.; Yakali, G.; Gulcin, I.; Gultekin, M.S.; Turgut Cin, G. Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes. Bioorg. Chem. 2019, 82, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, U.M.; Budak, Y.; Gurdere, M.B.; Erturk, F.; Yencilek, B.; Taslimi, P.; Gulcin, I.; Ceylan, M. Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Arch. Physiol. Biochem. 2018, 124, 61–68. [Google Scholar] [CrossRef]
- Gulcin, I.; Alwasel, S.H. Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes 2022, 10, 132. [Google Scholar] [CrossRef]
- Hamad, H.O.; Alma, M.H.; Gulcin, I.; Yılmaz, M.A.; Karaogul, E. Evaluation of phenolic contents and bioactivity of root and nutgall extracts from Iraqian Quercus infectoria Olivier. Rec. Nat. Prod. 2017, 11, 205–210. [Google Scholar]
- Han, H.; Yılmaz, H.; Gulcin, I. Antioxidant activity of flaxseed (Linum usitatissimum L.) and analysis of its polyphenol contents by LC-MS/MS. Rec. Nat. Prod. 2018, 12, 397–402. [Google Scholar] [CrossRef]
- Topal, M. Secondary metabolites of ethanol extracts of Pinus sylvestris cones from Eastern Anatolia and their antioxidant, cholinesterase and α-glucosidase activities. Rec. Nat. Prod. 2019, 14, 129–138. [Google Scholar] [CrossRef]
- Sarikahya, N.B.; Sumer Okkali, G.; Celenk, V.U.; Mertoglu, E.; Pekmez, M.; Arda, N.; Topcu, G.; Goren, A.C. Identification of natural compounds of Jurinea species by LC-HRMS and GC-FID and their bioactivities. J. Pharm. Biomed. Anal. 2021, 202, 114146. [Google Scholar] [CrossRef]
- Gulcin, I.; Kufrevioglu, O.I.; Oktay, M.; Buyukokuroglu, M.E. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J. Ethnopharmacol. 2004, 90, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Kufrevioglu, O.I.; Oktay, M. Purification and characterization of polyphenol oxidase from nettle (Urtica dioica L.) and inhibition effects of some chemicals on the enzyme activity. J. Enzyme Inhib. Med. Chem. 2005, 20, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tohma, H.; Koksal, E.; Kılıc, O.; Alan, Y.; Yılmaz, M.A.; Gulcin, I.; Bursal, E.; Alwasel, S.H. RP-HPLC/MS/MS analysis of the phenolic compounds, antioxidant and antimicrobial activities of Salvia L. species. Antioxidants 2016, 5, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarikahya, N.B.; Goren, A.C.; Kirmizigul, S. Simultaneous determination of several flavonoids and phenolic compounds in nineteen different Cephalaria species by HPLC-MS/MS. J. Pharm. Biomed. 2019, 173, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Ozer, Z.; Carıkcı, S.; Yılmaz, H.; Kılıc, T.; Dirmenci, T.; Goren, A.C. Determination of secondary metabolites of Origanum vulgare subsp. hirtum and O. vulgare subsp. vulgare by LC-MS/MS. J. Chem. Metrol. 2020, 14, 25–34. [Google Scholar] [CrossRef]
- Su, M.; Mi, W.; Zhang, Y.; Lv, M.; Shen, W. Determination of illegal additive-ethyl maltol in edible oil by LC-MS/MS in China. J. Food Comp. Anal. 2022, 114, 104822. [Google Scholar] [CrossRef]
- Koksal, E.; Gulcin, I.; Ozturk Sarikaya, S.B.; Bursal, E. On the in vitro antioxidant activity of silymarin. J. Enzyme Inhib. Med. Chem. 2009, 24, 395–405. [Google Scholar] [CrossRef]
- Gulcin, I.; Elmastas, M.; Aboul-Enein, H.Y. Antioxidant activity of clove oil-A powerful antioxidant source. Arab. J. Chem. 2012, 5, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Balaydin, H.T.; Gulcin, I.; Menzek, A.; Goksu, S.; Sahin, E. Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. J. Enzyme Inhib. Med. Chem. 2010, 25, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Vega-Villa, K.R.; Remsberg, C.M.; Podelnyk, K.L.; Davies, N.M. Stereospecific high-performance liquid chromatographic assay of isosakuranetin in rat urine. J. Chromatogr. B 2008, 875, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Kacper Kut, K.; Bartosz, G.; Soszynskic, M.; Sadowska-Bartosz, I. Antioxidant properties of hispidulin. Nat. Prod. Res. 2022, 36, 6401–6404. [Google Scholar]
- Yin, X.; He, X.; Wu, L.; Yan, D.; Yan, S. Chlorogenic acid, the main antioxidant in coffee, reduces radiation-induced apoptosis and DNA damage via NF-E2-related factor 2 (Nrf2) activation in hepatocellular carcinoma. Oxid. Med. Cell. Longev. 2022, 2022, 4566949. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I. Antioxidants and antioxidant methods-An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulcin, I.; Mshvildadze, V.; Gepdiremen, A.; Elias, R. Antioxidant activity of saponins isolated from ivy: α-Hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside F. Planta Med. 2004, 70, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I. Antioxidant properties of resveratrol: A structure-activity insight. Innov. Food Sci. Emerg. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Gulcin, I. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids 2007, 32, 431–438. [Google Scholar] [CrossRef]
- Hamide, M.; Gok, Y.; Demir, Y.; Yakali, G.; Taskin-Tok, T.; Aktas, A.; Sevincek, R.; Guzel, B.; Gulcin, I. Pentafluorobenzyl-substituted benzimidazolium salts: Synthesis, characterization, crystal structures, computational studies and inhibitory properties of some metabolic enzymes. J. Mol. Struct. 2022, 1265, 133266. [Google Scholar] [CrossRef]
- Gulcin, I.; Mshvildadze, V.; Gepdiremen, A.; Elias, R. Antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(β-D-glucopyranosyl)-hederagenin. Phytother. Res. 2006, 20, 130–134. [Google Scholar] [CrossRef]
- Gulcin, I.; Goren, A.C.; Taslimi, P.; Alwasel, S.H.; Kilic, O.; Bursal, E. Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium)-Analysis of its polyphenol contents by LC-MS/MS. Biocat. Agric. Biotechnol. 2020, 23, 101441. [Google Scholar] [CrossRef]
- Tohma, H.; Altay, A.; Koksal, E.; Goren, A.C.; Gulcin, I. Measurement of anticancer, antidiabetic and anticholinergic properties of sumac (Rhus coriaria)-Analysis of its phenolic compounds by LC-MS/MS. J. Food Meas. Charact. 2019, 13, 1607–1619. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. 2013, 27, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Alici, H.A.; Cesur, M. Determination of in vitro antioxidant and radical scavenging activities of propofol. Chem. Pharm. Bull. 2005, 53, 281–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arachchige, S.P.G.; Abeysekera, W.P.K.M.; Ratnasooriya, W.D. Antiamylase, Anticholinesterases, antiglycation, and glycation reversing potential of bark and leaf of Ceylon cinnamon (Cinnamomum zeylanicum Blume) in vitro. Evid. Based Complement. Alternat. Med. 2017, 2017, 5076029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gocer, H.; Gulcin, I. Caffeic acid phenethyl ester (CAPE): Correlation of structure and antioxidant properties. Int. J. Food Sci. Nutr. 2011, 62, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I. Measurement of antioxidant ability of melatonin and serotonin by the DMPD and CUPRAC methods as trolox equivalent. J. Enzyme Inhib. Med. Chem. 2008, 23, 871–876. [Google Scholar] [CrossRef]
Phenolic Compounds | Molecular Formula | m/z | Ionization Mode | Linear Range | Linear Regression Equation | LOD/LOQ | R2 | Recovery | Phenolics | U% |
---|---|---|---|---|---|---|---|---|---|---|
Ascorbic acid | C6H8O6 | 175.0248 | Negative | 0.5–10 | y = 0.00347x − 0.00137 | 0.39/1.29 | 0.9988 | 96.20 | 4.33 | 3.94 |
Epigallocatechin | C15H14O7 | 307.0812 | Positive | 0.3–5 | y = 0.00317x + 0.000443 | 0.17/0.57 | 0.9947 | 102.22 | 1.38 | 3.09 |
Chlorogenic acid | C16H18O9 | 353.0878 | Negative | 0.05–10 | y = 0.00817x + 0.000163 | 0.02/0.06 | 0.9994 | 96.68 | 0.60 | 3.58 |
Fumaric acid | C4H4O4 | 115.0037 | Negative | 0.1–10 | y = 0.00061x − 0.0000329 | 0.05/0.17 | 0.9991 | 97.13 | 4.39 | 2.88 |
Verbascoside | C29H36O15 | 623.1981 | Negative | 0.1–10 | y = 0.00758x + 0.000563 | 0.03/0.1 | 0.9995 | 96.19 | 0.05 | 2.93 |
Orientin | C21H20O11 | 447.0933 | Negative | 0.1–10 | y = 0.00757x + 0.000347 | 0.01/0.03 | 0.9993 | 96.22 | 0.31 | 3.67 |
Caffeic acid | C9H8O4 | 179.0350 | Negative | 0.3–10 | y = 0.0304x + 0.00366 | 0.08/0.27 | 0.9993 | 94.51 | 0.46 | 3.74 |
Luteolin-7-rutinoside | C27H30O15 | 593.1512 | Negative | 0.1–10 | y = 0.00879x + 0.000739 | 0.01/0.03 | 0.9988 | 93.05 | - | 3.06 |
Luteolin 7-glycoside | C21H20O11 | 447.0933 | Negative | 0.1–7 | y = 0.0162x + 0.00226 | 0.01/0.03 | 0.9961 | 96.31 | 0.30 | 4.14 |
Rutin | C27H30O16 | 609.1461 | Negative | 0.05–10 | y = 0.00329x − 0.00005576 | 0.01/0.03 | 0.999 | 96.97 | 0.26 | 3.07 |
Rosmarinic acid | C18H16O8 | 359.0772 | Negative | 0.05–10 | y = 0.00717x − 0.0003067 | 0.01/0.03 | 0.9992 | 99.85 | 3.25 | 3.77 |
Hyperoside | C21H20O12 | 463.0882 | Negative | 0.05–10 | y = 0.0072x − 0.00003096 | 0.01/0.03 | 0.9995 | 96.62 | 0.56 | 3.46 |
Apigenin 7-glycoside | C21H20O10 | 431.0984 | Negative | 0.3–7 | y = 0.0246x + 0.00306 | 0.01/0.03 | 0.9962 | 96.07 | 0.01 | 2.86 |
Ellagic acid | C14H6O8 | 300.9990 | Negative | 0.05–10 | y = 0.0085x − 0.000612 | 0.03/1 | 0.9994 | 101.49 | 0.27 | 3.59 |
Quercitrin | C21H20O11 | 447.0933 | Negative | 0.05–10 | y = 0.0179 + 0.0003331 | 0.01/0.03 | 0.999 | 97.00 | 0.93 | 4.20 |
Quercetin | C15H10O7 | 301.0354 | Negative | 0.1–10 | y = 0.0509x + 0.00467 | 0.01/0.03 | 0.9978 | 96.41 | 0.06 | 3.78 |
Herniarin | C10H8O3 | 177.0546 | Positive | 0.1–7 | y = 0.309x + 0.0266 | 0.01/0.03 | 0.9983 | 92.92 | 0.03 | 2.95 |
Salicylic acid | C7H6O3 | 137.0244 | Negative | 0.3–10 | y = 0.0361x + 0.00245 | 0.01/0.03 | 0.9982 | 92.88 | 7.82 | 3.89 |
Naringenin | C15H12O5 | 271.0612 | Negative | 0.1–10 | y = 0.0281x + 0.00182 | 0.01/0.03 | 0.9995 | 86.65 | 0.38 | 1.89 |
Luteolin | C15H10O6 | 285.0405 | Negative | 0.1–10 | y = 0.117x + 0.00848 | 0.01/0.03 | 0.9981 | 96.98 | 1.65 | 4.20 |
Apigenin | C15H10O5 | 269.0456 | Negative | 0.3–10 | y = 0.104x + 0.0199 | 0.01/0.03 | 0.9998 | 81.55 | 0.40 | 3.42 |
Hispidulin | C16H12O6 | 301.0707 | Positive | 0.05–10 | y = 0.02614x + 0.0003114 | 0.01/0.03 | 0.9993 | 98.36 | 6.61 | 2.87 |
Isosakuranetin | C16H14O5 | 285.0769 | Negative | 0.05–10 | y = 0.0235x + 0.000561 | 0.01/0.03 | 0.9992 | 96.56 | 9.98 | 3.41 |
Penduletin | C18H16O7 | 343.0823 | Negative | 0.3–10 | y = 0.0258x + 0.00253 | 0.01/0.03 | 0.9991 | 83.43 | 0.71 | 3.20 |
CAPE | C17H16O4 | 283.0976 | Negative | 0.3–7 | y = 0.255x + 0.0477 | 0.01/0.03 | 0.9964 | 94.42 | 0.13 | 3.13 |
Chrysin | C15H10O4 | 253.0506 | Negative | 0.05–7 | y = 0.0964x − 0.0002622 | 0.01/0.03 | 0.999 | 87.92 | 0.17 | 3.24 |
Quillaic acid | C30H46O5 | 485.3273 | Negative | 0.05–10 | y = 0.00781x − 0.0001318 | 0.01/0.03 | 0.9992 | 90.29 | 1.47 | 2.56 |
Caryophyllene oxide | C15H24O | 221.1900 | Positive | 3–7 | y = 0.00151x + 0.00692 | 0.9909 | 96.87 | 1.53 | 4.05 |
RT | Essential Oils | Contents (%) |
---|---|---|
937 | α-Pinene | 1.00 |
953 | Camphene | 0.34 |
986 | β-Pinene | 0.38 |
1008 | Phellandrene | 0.70 |
1026 | p-Cymene | 1.48 |
1097 | Linalool | 1.80 |
1193 | α-Terpineol | 0.48 |
1235 | Z-Cinnamaldehyde | 1.10 |
1281 | Safrole | 1.18 |
1284 | E-Cinnamaldehyde | 72.98 |
1365 | Eugenol | 1.48 |
1376 | α-Copaene | 0.77 |
1420 | β-Caryophyllene | 3.45 |
1433 | trans-Cinnamylacetate | 3.36 |
1458 | α-Humulene | 0.63 |
1525 | Acetyleugenol | 1.58 |
1586 | (−)-Caryophyllene oxide | 0.98 |
Total | 97.70 |
Antioxidants | Fe3+ Reducing * | Cu2+ Reducing * | Fe3+-TPTZ Reducing * | |||
---|---|---|---|---|---|---|
λ700 | r2 | λ450 | r2 | λ593 | r2 | |
BHA | 2.292 ± 0.012 | 0.9993 | 2.418 ± 0.018 | 0.9887 | 1.172 ± 0.014 | 0.9605 |
BHT | 2.136 ± 0.090 | 0.9957 | 1.953 ± 0.045 | 0.9998 | 0.690 ± 0.008 | 0.9645 |
Trolox | 1.514 ± 0.066 | 0.9963 | 1.800 ± 0.096 | 0.9974 | 1.180 ± 0.032 | 0.9732 |
α-Tocopherol | 0.862 ± 0.038 | 0.9996 | 0.851 ± 0.046 | 0.9994 | 0.918 ± 0.011 | 0.9904 |
Ascorbic acid | 2.298 ± 0.086 | 0.9659 | 0.983 ± 0.048 | 0.9822 | 1.257 ± 0.024 | 0.9869 |
Cinnamon leaf oil | 2.190 ± 0.039 | 0.9741 | 1.918 ± 0.031 | 0.9992 | 1.900 ± 0.021 | 0.9725 |
Antioxidants | DPPH• Scavenging | ABTS•+ Scavenging | ||
---|---|---|---|---|
IC50 | r2 | IC50 | r2 | |
BHA | 6.86 | 0.9949 | 6.35 | 0.9746 |
BHT | 49.50 | 0.9957 | 12.60 | 0.9995 |
Trolox | 6.03 | 0.9925 | 16.50 | 0.9775 |
α-Tocopherol | 7.70 | 0.9961 | 18.72 | 0.9347 |
Ascorbic acid | 5.82 | 0.9668 | 11.74 | 0.9983 |
Cinnamon leaf oil | 4.78 | 0.9344 | 5.21 | 0.9563 |
Enzymes | Cinnamon Leaf Oil | Standard Inhibitors | ||
---|---|---|---|---|
IC50 | r2 | IC50 | r2 | |
α-Amylase 1 | 553.07 | 0.9058 | 7.54 | 0.9074 |
Acetylcholinesterase 2 | 16.03 | 0.9874 | 8.82 | 0.9836 |
Carbonic anhydrase II 3 | 243.24 | 0.9092 | 9.96 | 0.9930 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutlu, M.; Bingol, Z.; Uc, E.M.; Köksal, E.; Goren, A.C.; Alwasel, S.H.; Gulcin, İ. Comprehensive Metabolite Profiling of Cinnamon (Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life 2023, 13, 136. https://doi.org/10.3390/life13010136
Mutlu M, Bingol Z, Uc EM, Köksal E, Goren AC, Alwasel SH, Gulcin İ. Comprehensive Metabolite Profiling of Cinnamon (Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life. 2023; 13(1):136. https://doi.org/10.3390/life13010136
Chicago/Turabian StyleMutlu, Muzaffer, Zeynebe Bingol, Eda Mehtap Uc, Ekrem Köksal, Ahmet C. Goren, Saleh H. Alwasel, and İlhami Gulcin. 2023. "Comprehensive Metabolite Profiling of Cinnamon (Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles" Life 13, no. 1: 136. https://doi.org/10.3390/life13010136
APA StyleMutlu, M., Bingol, Z., Uc, E. M., Köksal, E., Goren, A. C., Alwasel, S. H., & Gulcin, İ. (2023). Comprehensive Metabolite Profiling of Cinnamon (Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life, 13(1), 136. https://doi.org/10.3390/life13010136