Hsrω and Other lncRNAs in Neuronal Functions and Disorders in Drosophila
Abstract
:1. Introduction
2. LncRNAs Associated with Neuronal Functions and Diseases in Drosophila
3. Role of Hsrω lncRNAs in Neuron Development and Neurodegenerative Diseases
4. Role of Hsrω lncRNA in polyQ Expansion Disorders
5. Role of Hsrω lncRNAs in ALS Disease
6. Hsrω lncRNAs as a Hub for RBPs to Modulate Neurodegeneration
7. Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Riva, P.; Ratti, A.; Venturin, M. The Long Non-Coding RNAs in Neurodegenerative Diseases: Novel Mechanisms of Pathogenesis. Curr. Alzheimer Res. 2016, 13, 1219–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, T.C.; Morris, K.V.; Wood, M.J. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, P.; Su, W.; Zhuo, Y. The Role of Long Noncoding RNAs in Neurodegenerative Diseases. Mol. Neurobiol. 2017, 54, 2012–2021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; He, P.; Bian, Z. Long Noncoding RNAs in Neurodegenerative Diseases: Pathogenesis and Potential Implications as Clinical Biomarkers. Front. Mol. Neurosci. 2021, 14, 685143. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Williams, N.G.; Shelkovnikova, T.A. NEAT1 and paraspeckles in neurodegenerative diseases: A missing lnc found? Noncoding RNA Res. 2018, 3, 243–252. [Google Scholar] [CrossRef]
- Lin, Y.; Schmidt, B.F.; Bruchez, M.P.; McManus, C.J. Structural analyses of NEAT1 lncRNAs suggest long-range RNA interactions that may contribute to paraspeckle architecture. Nucleic Acids Res. 2018, 46, 3742–3752. [Google Scholar] [CrossRef]
- Yamazaki, T.; Souquere, S.; Chujo, T.; Kobelke, S.; Chong, Y.S.; Fox, A.H.; Bond, C.S.; Nakagawa, S.; Pierron, G.; Hirose, T. Functional Domains of NEAT1 Architectural lncRNA Induce Paraspeckle Assembly through Phase Separation. Mol. Cell 2018, 70, 1038–1053.e7. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.; Li, Y.; Zhang, W.; Fang, F.; Sun, J.; Liu, M.; Li, K.; Dong, L. Long Non-coding RNA MALAT1 Inhibits Neuron Apoptosis and Neuroinflammation While Stimulates Neurite Outgrowth and Its Correlation with MiR-125b Mediates PTGS2, CDK5 and FOXQ1 in Alzheimer’s Disease. Curr. Alzheimer Res. 2019, 16, 596–612. [Google Scholar] [CrossRef]
- Masoumi, F.; Ghorbani, S.; Talebi, F.; Branton, W.G.; Rajaei, S.; Power, C.; Noorbakhsh, F. Malat1 long noncoding RNA regulates inflammation and leukocyte differentiation in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2019, 328, 50–59. [Google Scholar] [CrossRef]
- Li, M.; Wen, S.; Guo, X.; Bai, B.; Gong, Z.; Liu, X.; Wang, Y.; Zhou, Y.; Chen, X.; Liu, L.; et al. The novel long non-coding RNA CRG regulates Drosophila locomotor behavior. Nucleic Acids Res. 2012, 40, 11714–11727. [Google Scholar] [CrossRef]
- Martin, J.R.; Ollo, R. A new Drosophila Ca2+/calmodulin-dependent protein kinase (Caki) is localized in the central nervous system and implicated in walking speed. EMBO J. 1996, 15, 1865–1876. [Google Scholar] [CrossRef]
- Slawson, J.B.; Kuklin, E.A.; Ejima, A.; Mukherjee, K.; Ostrovsky, L.; Griffith, L.C. Central regulation of locomotor behavior of Drosophila melanogaster depends on a CASK isoform containing CaMK-like and L27 domains. Genetics 2011, 187, 171–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soshnev, A.A.; Ishimoto, H.; McAllister, B.F.; Li, X.; Wehling, M.D.; Kitamoto, T.; Geyer, P.K. A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics 2011, 189, 455–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soshnev, A.A.; Li, X.; Wehling, M.D.; Geyer, P.K. Context differences reveal insulator and activator functions of a Su(Hw) binding region. PLoS Genet. 2008, 4, e1000159. [Google Scholar] [CrossRef] [Green Version]
- Gummalla, M.; Maeda, R.K.; Castro Alvarez, J.J.; Gyurkovics, H.; Singari, S.; Edwards, K.A.; Karch, F.; Bender, W. abd-A regulation by the iab-8 noncoding RNA. PLoS Genet. 2012, 8, e1002720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Tian, Y.; Yuan, Y.; Fan, X.; Yang, M.; He, Z.; Yang, D. Insights into the Functions of LncRNAs in Drosophila. Int. J. Mol. Sci. 2019, 20, 4646. [Google Scholar] [CrossRef] [Green Version]
- Muraoka, Y.; Nakamura, A.; Tanaka, R.; Suda, K.; Azuma, Y.; Kushimura, Y.; Lo Piccolo, L.; Yoshida, H.; Mizuta, I.; Tokuda, T.; et al. Genetic screening of the genes interacting with Drosophila FIG4 identified a novel link between CMT-causing gene and long noncoding RNAs. Exp. Neurol. 2018, 310, 1–13. [Google Scholar] [CrossRef]
- Okamura, K.; Chung, W.J.; Ruby, J.G.; Guo, H.; Bartel, D.P.; Lai, E.C. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 2008, 453, 803–806. [Google Scholar] [CrossRef] [Green Version]
- Shimada, S.; Muraoka, Y.; Ibaraki, K.; Takano-Shimizu-Kouno, T.; Yoshida, H.; Yamaguchi, M. Identification of CR43467 encoding a long non-coding RNA as a novel genetic interactant with dFIG4, a CMT-causing gene. Exp. Cell Res. 2020, 386, 111711. [Google Scholar] [CrossRef]
- Mohler, J.; Pardue, M.L. Deficiency mapping of the 93D heat-shock locus in Drosophila melanogaster. Chromosoma 1982, 86, 457–467. [Google Scholar] [CrossRef]
- Sahu, R.K.; Mutt, E.; Lakhotia, S.C. Conservation of gene architecture and domains amidst sequence divergence in the hsromega lncRNA gene across the Drosophila genus: An in silico analysis. J. Genet. 2020, 99, 64. [Google Scholar] [CrossRef]
- Walldorf, U.; Richter, S.; Ryseck, R.P.; Steller, H.; Edstrom, J.E.; Bautz, E.K.; Hovemann, B. Cloning of heat-shock locus 93D from Drosophila melanogaster. EMBO J. 1984, 3, 2499–2504. [Google Scholar] [CrossRef] [PubMed]
- Garbe, J.C.; Pardue, M.L. Heat shock locus 93D of Drosophila melanogaster: A spliced RNA most strongly conserved in the intron sequence. Proc. Natl. Acad. Sci. USA 1986, 83, 1812–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardue, M.L.; Bendena, W.G.; Garbe, J.C. Heat shock: Puffs and response to environmental stress. Results Probl. Cell Differ 1987, 14, 121–131. [Google Scholar] [CrossRef]
- Bendena, W.G.; Garbe, J.C.; Traverse, K.L.; Lakhotia, S.C.; Pardue, M.L. Multiple inducers of the Drosophila heat shock locus 93D (hsr omega): Inducer-specific patterns of the three transcripts. J. Cell Biol. 1989, 108, 2017–2028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallik, M.; Lakhotia, S.C. Pleiotropic consequences of misexpression of the developmentally active and stress-inducible non-coding hsromega gene in Drosophila. J. Biosci. 2011, 36, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Lakhotia, S.C. The hnRNP A1 homolog Hrp36 is essential for normal development, female fecundity, omega speckle formation and stress tolerance in Drosophila melanogaster. J. Biosci. 2012, 37, 659–678. [Google Scholar] [CrossRef]
- Lakhotia, S.C. Forty years of the 93D puff of Drosophila melanogaster. J. Biosci. 2011, 36, 399–423. [Google Scholar] [CrossRef]
- Lakhotia, S.C.; Mallik, M.; Singh, A.K.; Ray, M. The large noncoding hsromega-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma 2012, 121, 49–70. [Google Scholar] [CrossRef]
- Prasanth, K.V.; Rajendra, T.K.; Lal, A.K.; Lakhotia, S.C. Omega speckles—A novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J. Cell Sci. 2000, 113 Pt 19, 3485–3497. [Google Scholar] [CrossRef]
- Singh, A.K.; Lakhotia, S.C. Dynamics of hnRNPs and omega speckles in normal and heat shocked live cell nuclei of Drosophila melanogaster. Chromosoma 2015, 124, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Hogan, N.C.; Traverse, K.L.; Sullivan, D.E.; Pardue, M.L. The nucleus-limited Hsr-omega-n transcript is a polyadenylated RNA with a regulated intranuclear turnover. J. Cell Biol. 1994, 125, 21–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fini, M.E.; Bendena, W.G.; Pardue, M.L. Unusual behavior of the cytoplasmic transcript of hsr omega: An abundant, stress-inducible RNA that is translated but yields no detectable protein product. J. Cell Biol. 1989, 108, 2045–2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hovemann, B.T.; Reim, I.; Werner, S.; Katz, S.; Saumweber, H. The protein Hrb57A of Drosophila melanogaster closely related to hnRNP K from vertebrates is present at sites active in transcription and coprecipitates with four RNA-binding proteins. Gene 2000, 245, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Jolly, C.; Lakhotia, S.C. Human sat III and Drosophila hsr omega transcripts: A common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res. 2006, 34, 5508–5514. [Google Scholar] [CrossRef]
- Lo Piccolo, L.; Yamaguchi, M. RNAi of arcRNA hsromega affects sub-cellular localization of Drosophila FUS to drive neurodiseases. Exp. Neurol. 2017, 292, 125–134. [Google Scholar] [CrossRef]
- Chung, C.Y.; Berson, A.; Kennerdell, J.R.; Sartoris, A.; Unger, T.; Porta, S.; Kim, H.J.; Smith, E.R.; Shilatifard, A.; Van Deerlin, V.; et al. Aberrant activation of non-coding RNA targets of transcriptional elongation complexes contributes to TDP-43 toxicity. Nat. Commun. 2018, 9, 4406. [Google Scholar] [CrossRef] [Green Version]
- Lo Piccolo, L.; Bonaccorso, R.; Attardi, A.; Li Greci, L.; Romano, G.; Sollazzo, M.; Giurato, G.; Ingrassia, A.M.R.; Feiguin, F.; Corona, D.F.V.; et al. Loss of ISWI Function in Drosophila Nuclear Bodies Drives Cytoplasmic Redistribution of Drosophila TDP-43. Int. J. Mol. Sci. 2018, 19, 1082. [Google Scholar] [CrossRef] [Green Version]
- Fox, A.H.; Lamond, A.I. Paraspeckles. Cold Spring Harb. Perspect Biol. 2010, 2, a000687. [Google Scholar] [CrossRef] [Green Version]
- Onorati, M.C.; Lazzaro, S.; Mallik, M.; Ingrassia, A.M.; Carreca, A.P.; Singh, A.K.; Chaturvedi, D.P.; Lakhotia, S.C.; Corona, D.F. The ISWI chromatin remodeler organizes the hsromega ncRNA-containing omega speckle nuclear compartments. PLoS Genet. 2011, 7, e1002096. [Google Scholar] [CrossRef]
- Sekido, Y.; Bader, S.A.; Carbone, D.P.; Johnson, B.E.; Minna, J.D. Molecular analysis of the HuD gene encoding a paraneoplastic encephalomyelitis antigen in human lung cancer cell lines. Cancer Res. 1994, 54, 4988–4992. [Google Scholar] [PubMed]
- Corona, D.F.; Tamkun, J.W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 2004, 1677, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Morcillo, G.; Diez, J.L.; Carbajal, M.E.; Tanguay, R.M. HSP90 associates with specific heat shock puffs (hsr omega) in polytene chromosomes of Drosophila and Chironomus. Chromosoma 1993, 102, 648–659. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Parra, C.; Maggert, K.A. Drosophila SAF-B links the nuclear matrix, chromosomes, and transcriptional activity. PLoS ONE 2010, 5, e10248. [Google Scholar] [CrossRef] [Green Version]
- Zimowska, G.; Paddy, M.R. Structures and dynamics of Drosophila Tpr inconsistent with a static, filamentous structure. Exp. Cell Res. 2002, 276, 223–232. [Google Scholar] [CrossRef]
- Lakhotia, S.C.; Rajendra, T.K.; Prasanth, K.V. Developmental regulation and complex organization of the promoter of the non-coding hsr(omega) gene of Drosophila melanogaster. J. Biosci. 2001, 26, 25–38. [Google Scholar] [CrossRef]
- Mutsuddi, M.; Lakhotia, S.C. Spatial expression of the hsr-omega (93D) gene in different tissues of Drosophila melanogaster and identification of promoter elements controlling its developmental expression. Dev. Genet. 1995, 17, 303–311. [Google Scholar] [CrossRef]
- Johnson, T.K.; Cockerell, F.E.; McKechnie, S.W. Transcripts from the Drosophila heat-shock gene hsr-omega influence rates of protein synthesis but hardly affect resistance to heat knockdown. Mol. Genet. Genomics 2011, 285, 313–323. [Google Scholar] [CrossRef]
- Singh, A.K.; Lakhotia, S.C. Expression of hsromega-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster. Cell Stress Chaperones 2016, 21, 105–120. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Funez, P.; Nino-Rosales, M.L.; de Gouyon, B.; She, W.C.; Luchak, J.M.; Martinez, P.; Turiegano, E.; Benito, J.; Capovilla, M.; Skinner, P.J.; et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 2000, 408, 101–106. [Google Scholar] [CrossRef]
- Sengupta, S.; Lakhotia, S.C. Altered expressions of the noncoding hsromega gene enhances poly-Q-induced neurotoxicity in Drosophila. RNA Biol. 2006, 3, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallik, M.; Lakhotia, S.C. RNAi for the large non-coding hsromega transcripts suppresses polyglutamine pathogenesis in Drosophila models. RNA Biol. 2009, 6, 464–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallik, M.; Lakhotia, S.C. Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: Lessons from fly models. J. Genet. 2010, 89, 497–526. [Google Scholar] [CrossRef]
- Mallik, M.; Lakhotia, S.C. Improved activities of CREB binding protein, heterogeneous nuclear ribonucleoproteins and proteasome following downregulation of noncoding hsromega transcripts help suppress poly(Q) pathogenesis in fly models. Genetics 2010, 184, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.H., Jr.; Al-Chalabi, A. Amyotrophic Lateral Sclerosis. N. Engl. J. Med. 2017, 377, 1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapeli, K.; Martinez, F.J.; Yeo, G.W. Genetic mutations in RNA-binding proteins and their roles in ALS. Hum. Genet. 2017, 136, 1193–1214. [Google Scholar] [CrossRef] [Green Version]
- Layalle, S.; They, L.; Ourghani, S.; Raoul, C.; Soustelle, L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int. J. Mol. Sci. 2021, 22, 904. [Google Scholar] [CrossRef]
- Schwartz, J.C.; Wang, X.; Podell, E.R.; Cech, T.R. RNA seeds higher-order assembly of FUS protein. Cell Rep. 2013, 5, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Lo Piccolo, L.; Attardi, A.; Bonaccorso, R.; Li Greci, L.; Giurato, G.; Ingrassia, A.M.R.; Onorati, M.C. ISWI ATP-dependent remodeling of nucleoplasmic omega-speckles in the brain of Drosophila melanogaster. J. Genet. Genomics 2017, 44, 85–94. [Google Scholar] [CrossRef]
- Dormann, D.; Madl, T.; Valori, C.F.; Bentmann, E.; Tahirovic, S.; Abou-Ajram, C.; Kremmer, E.; Ansorge, O.; Mackenzie, I.R.; Neumann, M.; et al. Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J. 2012, 31, 4258–4275. [Google Scholar] [CrossRef]
- Hofweber, M.; Hutten, S.; Bourgeois, B.; Spreitzer, E.; Niedner-Boblenz, A.; Schifferer, M.; Ruepp, M.D.; Simons, M.; Niessing, D.; Madl, T.; et al. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell 2018, 173, 706–719.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo Piccolo, L.; Mochizuki, H.; Nagai, Y. The lncRNA hsromega regulates arginine dimethylation of human FUS to cause its proteasomal degradation in Drosophila. J. Cell Sci. 2019, 132, jcs236836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314, 130–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallik, M.; Lakhotia, S.C. The developmentally active and stress-inducible noncoding hsromega gene is a novel regulator of apoptosis in Drosophila. Genetics 2009, 183, 831–852. [Google Scholar] [CrossRef] [Green Version]
- Lo Piccolo, L.; Jantrapirom, S.; Nagai, Y.; Yamaguchi, M. FUS toxicity is rescued by the modulation of lncRNA hsromega expression in Drosophila melanogaster. Sci. Rep. 2017, 7, 15660. [Google Scholar] [CrossRef] [Green Version]
- Cooper, T.A.; Wan, L.; Dreyfuss, G. RNA and disease. Cell 2009, 136, 777–793. [Google Scholar] [CrossRef] [Green Version]
- Han, S.P.; Tang, Y.H.; Smith, R. Functional diversity of the hnRNPs: Past, present and perspectives. Biochem. J. 2010, 430, 379–392. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Smith, R. Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell. Mol. Life Sci. 2009, 66, 1239–1256. [Google Scholar] [CrossRef]
- Conlon, E.G.; Manley, J.L. RNA-binding proteins in neurodegeneration: Mechanisms in aggregate. Genes Dev. 2017, 31, 1509–1528. [Google Scholar] [CrossRef]
- Geuens, T.; Bouhy, D.; Timmerman, V. The hnRNP family: Insights into their role in health and disease. Hum. Genet. 2016, 135, 851–867. [Google Scholar] [CrossRef]
- Low, Y.H.; Asi, Y.; Foti, S.C.; Lashley, T. Heterogeneous Nuclear Ribonucleoproteins: Implications in Neurological Diseases. Mol. Neurobiol. 2021, 58, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Nussbacher, J.K.; Tabet, R.; Yeo, G.W.; Lagier-Tourenne, C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019, 102, 294–320. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Choudhury, S.R.; De, S.; Zhang, J.; Kissane, S.; Dwivedi, V.; Ramanathan, P.; Petric, M.; Orsini, L.; Hebenstreit, D.; et al. The RNA helicase UPF1 associates with mRNAs co-transcriptionally and is required for the release of mRNAs from gene loci. eLife 2019, 8, e41444. [Google Scholar] [CrossRef] [PubMed]
- Chujo, T.; Yamazaki, T.; Kawaguchi, T.; Kurosaka, S.; Takumi, T.; Nakagawa, S.; Hirose, T. Unusual semi-extractability as a hallmark of nuclear body-associated architectural noncoding RNAs. EMBO J. 2017, 36, 1447–1462. [Google Scholar] [CrossRef]
- Jolly, C.; Konecny, L.; Grady, D.L.; Kutskova, Y.A.; Cotto, J.J.; Morimoto, R.I.; Vourc’h, C. In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J. Cell Biol. 2002, 156, 775–781. [Google Scholar] [CrossRef]
Name/Synonyms | Mammalian Homolog | Spatial Location and Other Features | References |
---|---|---|---|
Hrb87F/Hrp36 | hnRNPA1 | hnRNP, present in omega speckles and accumulates at hsrω gene site (93D) during heat shock | [27,30,31] |
Hrb98DE/Hrp38 | hnRNP A | hnRNP, present in omega speckles and accumulates at hsrω gene site (93D) during heat shock | [27,30,31] |
Squid/Hrp40 | hnRNP D | hnRNP, present in omega speckles and accumulates at hsrω gene site (93D) during heat shock | [27,30,31] |
Hrb57A/Bancal | hnRNP K | hnRNP, present in omega speckles and accumulates at hsrω gene site (93D) during heat shock | [30,31,34] |
Rumpelstiltskin/Hrp59 | hnRNP M | hnRNP, present in omega speckles and accumulates at hsrω gene site (93D) during heat shock | [30,35] |
Cabeza | FUS | RNA-binding protein implicated in ALS, present in omega speckles | [36] |
TDPH | TDP-43 | RNA-binding protein implicated in ALS, present in omega speckles and accumulates at hsrω gene site (93D) during heat shock | [37,38] |
NonA | P54NRB, PSPC1, PSF | DBHS (Drosophila behavior and human splicing) family proteins, present in omega speckles | [27,39,40] |
PEP | ZNF236 | Preferentially present on ecdysone-induced sites, also present in omega speckles | [30,35] |
Sxl | HuR | Involved in sex determination and dosage compensation, present in omega speckles | [30,41] |
ISWI | SMARCA1 | Catalytic sub-unit of chromatin remodeling complex transitionally localized in omega speckles, essential for omega speckle maturation and localization | [40,42] |
Hsp83 | Hsp90 | Heat-shock protein, present in omega speckles and accumulates at hsrω gene site (93D) during heat shock | [43] Fatima and Lakhotia, Unpublished |
SAF-B | SAF-B | Nuclear matrix protein, present in omega speckles and accumulates at hsrω gene site (93D) during heat shock | [31,44] |
Megator | TPR | Nuclear matrix protein, present in omega speckles and accumulates at hsrω gene site (93D) during heat shock | [31,45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.K. Hsrω and Other lncRNAs in Neuronal Functions and Disorders in Drosophila. Life 2023, 13, 17. https://doi.org/10.3390/life13010017
Singh AK. Hsrω and Other lncRNAs in Neuronal Functions and Disorders in Drosophila. Life. 2023; 13(1):17. https://doi.org/10.3390/life13010017
Chicago/Turabian StyleSingh, Anand Kumar. 2023. "Hsrω and Other lncRNAs in Neuronal Functions and Disorders in Drosophila" Life 13, no. 1: 17. https://doi.org/10.3390/life13010017
APA StyleSingh, A. K. (2023). Hsrω and Other lncRNAs in Neuronal Functions and Disorders in Drosophila. Life, 13(1), 17. https://doi.org/10.3390/life13010017